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Output: high-quality novel view synthesis from jointly optimized camera poses and 3D Gaussian Splatting

Input: casually-captured long video without camera poses

Figure 1. LongSplat achieves robust novel view synthesis from casually captured long videos without provided camera poses. Our
approach jointly optimizes camera poses and 3D Gaussian Splatting, producing accurate and visually coherent reconstructions even under
challenging conditions.

Abstract

LongSplat addresses critical challenges in novel view synthe-
sis (NVS) from casually captured long videos characterized
by irregular camera motion, unknown camera poses, and ex-
pansive scenes. Current methods often suffer from pose drift,
inaccurate geometry initialization, and severe memory limi-
tations. To address these issues, we introduce LongSplat, a
robust unposed 3D Gaussian Splatting framework featuring:
(1) Incremental Joint Optimization that concurrently opti-
mizes camera poses and 3D Gaussians to avoid local minima
and ensure global consistency; (2) a Pose Estimation Mod-
ule leveraging learned 3D priors; and (3) an adaptive Oc-
tree Anchor Formation mechanism that dynamically adjusts
anchor densities, significantly reducing memory usage. Ex-
tensive experiments on challenging benchmarks demonstrate
that LongSplat achieves state-of-the-art results, substantially
improving rendering quality, pose accuracy, and computa-
tional efficiency compared to prior approaches. Project page:
https://linjohnss.github.io/longsplat/

1. Introduction

High-quality 3D reconstruction and novel view synthesis
(NVS) are essential for applications such as virtual real-
ity, augmented reality, virtual tourism, and cultural her-
itage preservation. They also play a crucial role in video
editing tasks like stabilization, visual effects, and digital
mapping for real estate or pedestrian-level navigation. With
the widespread availability of smartphones and action cam-
eras, casually captured videos have emerged as a signifi-
cant source of 3D content. Unlike professionally acquired
datasets, casual videos present challenging characteristics:
irregular camera trajectories, long sequences spanning hun-
dreds or thousands of frames, and the absence of reliable
camera poses or precise geometric priors.

Addressing novel view synthesis (NVS) from casually
captured videos poses two critical challenges: accurate cam-
era pose estimation over extended trajectories and efficient
representation of large-scale scenes. Traditional methods rely
on precise poses from Structure-from-Motion (SfM) prepro-
cessing, yet as shown in Fig. 2, pipelines like COLMAP [50]
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frequently fail in casual settings. COLMAP-free methods,
such as CF-3DGS [14], often encounter severe memory con-
straints, limiting their effectiveness for large-scale scenarios.
Foundation models like MASt3R [27] provide fast initial
estimates but suffer inaccuracies and drift in long videos,
severely affecting reconstruction quality. Similarly, methods
like LocalRF [39] struggle with complex camera trajectories,
resulting in fragmented reconstructions.

To address these limitations, we introduce LongSplat, a
robust unposed 3D Gaussian Splatting (3DGS) [22] frame-
work designed specifically for casual long videos. As illus-
trated in Fig. 1, LongSplat achieves accurate novel view syn-
thesis without relying on provided camera poses. LongSplat
departs from traditional pipelines by jointly optimizing cam-
era poses and 3DGS in a unified framework. It integrates a
correspondence-guided Pose Estimation Module with 3DGS
geometry and photometric refinements to improve pose accu-
racy, even under large-scale and unstructured camera motion.
Furthermore, an adaptive Octree Anchor Formation mech-
anism dynamically adjusts anchor densities in the 3DGS
representation, drastically reducing memory usage while pre-
serving detailed scene structures. These components work
together in an incremental joint optimization strategy that
avoids local minima and ensures global geometric consis-
tency across extensive sequences.

Extensive experiments on challenging datasets, including
Tanks and Temples, Free, and Hike datasets, demonstrate
that LongSplat consistently outperforms existing approaches,
significantly improving rendering quality and pose accu-
racy. Compared to conventional methods shown in Fig. 2,
LongSplat produces clearer and more coherent reconstruc-
tions, effectively addressing pose drift and memory limita-
tions and substantially advancing the state-of-the-art. The
main contributions of our work are:
• An incremental joint optimization approach for simultane-

ous camera pose and 3DGS reconstruction, reducing local
minima and ensuring global consistency.

• A robust pose estimation module leveraging learned 3D
priors for accurate camera pose estimation.

• An adaptive Octree Anchor Formation strategy that signifi-
cantly reduces memory usage while preserving reconstruc-
tion quality.

2. Related Work
Novel View Synthesis. Novel View Synthesis (NVS) gener-
ates new perspectives from captured images, evolving from
early pixel interpolation methods [8] to depth-based warp-
ing techniques [28] and 3D reconstruction-based render-
ing [6, 12]. Various representations have been explored,
including planes [17, 18], meshes [20, 47, 48], point
clouds [67, 74], and multi-plane images [29, 57, 76]. Neu-
ral Radiance Fields (NeRF) [40] revolutionized photore-
alistic rendering, with subsequent improvements in anti-
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Figure 2. Motivation for LongSplat. Existing methods encounter
significant challenges when reconstructing scenes from casually
captured long videos: COLMAP [50] fails due to incorrect camera
pose estimation, CF-3DGS [14] suffers from out-of-memory issues,
MASt3R [27]+Scaffold-GS [36] provides inaccurate poses leading
to degraded rendering quality, and LocalRF [39] struggles with
error drift. In contrast, LongSplat robustly handles these challenges,
yielding accurate camera poses and high-quality novel view synthe-
sis without memory constraints.

aliasing [2–4, 73], reflectance [1, 58], sparse view training
[24, 43, 66, 68], faster training [41, 45, 49], and render-
ing speed [15, 34, 53, 71]. Recent works have extended
NeRF to few-shot scenarios without learned priors [32],
domain-specific applications such as autonomous driving
environments [51], and dynamic scenes with human pose
variations [38]. Point-based methods [22, 37, 67, 74], partic-
ularly 3D Gaussian Splatting (3DGS) [22], enable real-time
rendering through explicit representations. Recent advances
have extended 3DGS capabilities to dynamic specular scenes
with physically-based rendering [13], developed compres-
sion techniques for efficient storage and transmission [72],
and improved robustness for unconstrained image scenarios
[19]. However, most approaches still rely on pre-computed
camera parameters from SfM [16, 32, 42, 50, 55].
Unposed Novel View Synthesis. Recent work has aimed to
eliminate camera estimation preprocessing. i-NeRF [70] pre-
dicts camera poses using pre-trained NeRF. NeRFmm [64]
jointly optimizes NeRF and camera poses for forward-facing
scenes, with SiNeRF [65] offering improvements. BARF
[31] and GARF [10] address gradient inconsistency through
coarse-to-fine positional encoding but require good initializa-
tion. Advanced approaches [5, 9, 35, 39] leverage pre-trained
networks for geometric priors, with NoPe-NeRF [5] incor-
porating monocular depth priors and CF-3DGS [14] using
progressive optimization. Recent methods have improved ro-
bustness in joint optimization of camera poses and scene ge-
ometry using decomposed low-rank tensorial representations
[7] and dynamic radiance fields [35]. These methods typi-
cally assume small pose perturbations [10, 31], limited cam-
era motion [64, 65], or additional priors [5, 11, 21, 39], strug-
gling with challenging trajectories, like Free dataset[26, 44].
Large-scale Novel View Synthesis. Extending NVS to large-
scale environments introduces memory and computational
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Figure 3. Overview of the LongSplat framework. Given a casually captured long video without known poses, LongSplat incrementally
reconstructs the scene through tightly coupled pose estimation and 3D Gaussian Splatting. (a) Initialization converts MASt3R [27] depth
and correspondences into an octree-anchored 3DGS. (b) Global Optimization jointly refines all camera poses and Gaussians for global
consistency. (c) Frame Insertion estimates each new frame pose via correspondence-guided PnP, updates octree anchors using unprojected
points, and applies photometric refinement. If PnP fails, a fallback triggers global re-optimization to recover. (d) Incremental Optimization
alternates between Local Optimization within a visibility-adapted window and periodic Global Optimization to propagate consistent updates
across frames.

challenges that NeRF’s implicit global representation strug-
gles with. Recent research employs scene partitioning strate-
gies for managing large scenes [23, 54, 56]. Progressive
optimization techniques have been developed for robust
view synthesis in large-scale scenes from casually captured
videos [39]. At the same time, MVS-based approaches have
been enhanced to handle generalizable view synthesis at
scale [52]. For indoor environments, methods like GenRC
[30] enable room-scale 3D reconstruction from sparse im-
age collections. 3DGS offers explicit representation advan-
tages through Gaussian primitive. VastGaussian [33] divides
scenes into separately optimized blocks[22]. Scaffold-GS
[36] introduces anchor-based Gaussian representation with
fixed-resolution grids, though it requires SfM initialization.
Octree-GS [46] implements fixed-level octrees with preset
resolutions but similarly depends on SfM. Unlike these ap-
proaches, our method dynamically adjusts voxel size based
on point cloud density, without dependency on SfM, and
addresses unposed, large-scale, casually captured videos
through adaptive Octree Anchor Formation.

Casual Long Videos. Casual long videos present unique
challenges: free-moving trajectories, lack of pose informa-
tion, and continuously expanding scenes. LocalRF [39] ad-
dresses these through progressive localized field construction
but suffers from slow training and fragmentation under irreg-
ular camera movements. 3D Foundation Models [59], includ-
ing DUSt3R [62], MASt3R [27], Fast3r [69], and CUT3R
[61], estimate poses and geometry directly but accumulate
errors in long sequences. LongSplat treats foundation model
outputs as soft priors, jointly optimizing them with 3D Gaus-
sian Splatting while progressively correcting poses and ge-
ometry through combined PnP and optimization strategies.

3. Method
LongSplat reconstructs long video sequences with unknown
camera poses and unconstrained trajectories through a fully
incremental pipeline based on octree-anchored 3D Gaussian
Splatting. The process begins with octree anchor formation,
where per-frame dense point clouds are structured into an
adaptive representation. Next, camera poses are estimated
and refined using correspondence-guided initialization and
photometric alignment. Finally, the reconstruction alternates
between local optimization, which updates Gaussians within
a visibility-adapted window, and global refinement, which
ensures long-term consistency. This design allows LongSplat
to robustly handle long, unconstrained trajectories while
adapting to scene complexity and minimizing drift.

3.1. Preliminaries
Gaussian Splatting. 3D Gaussian Splatting (3DGS) [22]
represents the scene as a set of 3D Gaussians, each defined
by a center µ ∈ R3, a covariance matrix Σ, color, scale,
rotation, and opacity. The covariance is factorized into a
rotation R ∈ SO(3) and a diagonal scale matrix S, giving:

G(x) = e−
1
2
(x−µ)⊤Σ−1(x−µ), Σ = RSS⊤R⊤. (1)

This parameterization allows each Gaussian to adaptively
capture local scene geometry.

To render the scene, each Gaussian is projected onto the
image plane using the camera pose W , resulting in a 2D
Gaussian with covariance Σ2D = JWΣW⊤J⊤, where J
is the Jacobian of the projective transformation. The final
rendered color and depth are computed via alpha blending:

C =

N∑
i=1

ci αi

i−1∏
j=1

(
1− αj

)
, D =

N∑
i=1

di αi

i−1∏
j=1

(
1− αj

)
,

(2)
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Figure 4. Visualization of our proposed Octree Anchor For-
mation strategy. Given an initial sparse voxelized point cloud,
we iteratively perform density-guided adaptive voxel splitting and
pruning. Voxels with point cloud density (ρ) exceeding a threshold
are split, while those with density below the threshold are pruned.
Repeated across multiple octree levels, this adaptive octree anchor
design significantly reduces memory usage, allowing efficient rep-
resentation and rendering of large-scale scenes.

where ci and αi denote the color and opacity of the i-th
Gaussian, respectively. di denotes the depth value along the
ray at the Gaussian’s center.
Anchor-based 3D Gaussian Splatting. To enhance memory
efficiency and robustness in large scenes, Scaffold-GS [36]
introduces the anchor-based 3DGS representation. Instead
of directly maintaining individual Gaussians, the scene is
first divided into sparse voxels, each acting as an anchor.
From each anchor, k Gaussians are initialized with positions
relative to the anchor center:

{µ0, µ1, . . . , µk−1} = xv + {O0, O1, . . . , Ok−1} · lv, (3)

where xv denotes the anchor position, {Oi} are offset vec-
tors, and lv is a scaling factor. Each Gaussian’s opacity,
rotation, scale, and color are decoded from an anchor feature
through lightweight MLPs. For opacity, the formulation is:

{α0, α1, . . . , αk−1} = Fα(f̂v,∆vc, d̂v), (4)

where Fα is an MLP taking the anchor feature f̂v , the relative
view distance ∆vc, and the view direction d̂v as inputs.
Anchor Initialization. In traditional Scaffold-GS, initial
anchors are derived from sparse SfM point clouds. Points
are voxelized to form anchor centers:

V = {v | v = ⌊p
ϵ
⌋ · ϵ,∀p ∈ P}, (5)

where P is the SfM point cloud and ϵ is the voxel size.
Each anchor holds a local feature, managing its associated
Gaussians. This design ensures structured densification and
pruning, adapting Gaussian density to scene complexity and
improving both memory and rendering efficiency.

3.2. Octree Anchor Formation
In large-scale casual video settings, memory efficiency and
scene adaptability are essential. Our Octree Anchor For-
mation dynamically adjusts spatial resolution based on ob-
served geometry, enabling scalable and redundant-free an-
chor management. LongSplat constructs structured anchors
from MASt3R’s per-frame dense point clouds using an adap-
tive octree (Fig. 3 (a)). Unlike Scaffold-GS, which relies
on a fixed-resolution grid, we progressively subdivide space
based on local point density. Each point cloud P = {pi}
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Figure 5. Detailed illustration of our camera pose estimation. (a)
PnP initialization: Given correspondences between the predicted
3D anchor points from frame Ti−1 and the 2D keypoints detected
in frame Ti we employ PnP with RANSAC to robustly estimate
an initial camera pose. (b) Pose refinement: The estimated pose
is further refined by rasterizing the 3DGS scene and iteratively
minimizing reprojection error to enhance pose accuracy. (c) Anchor
unprojection: Newly observed regions are detected via an occlusion
mask, computed by forward-warping the previous frame’s rendered
depth. These regions are unprojected into 3D and converted into
anchors via Octree Anchor Formation.

is voxelized into a sparse grid at resolution ϵ0. Voxels ex-
ceeding a density threshold τsplit split into 8 smaller voxels:

ϵl+1 =
1

2
ϵl. (6)

This process repeats up to a maximum level L. Low-density
voxels (density ρv < τprune) are removed to reduce redun-
dancy (Fig. 4).

Each anchor inherits a spatial scale proportional to its
voxel size, ensuring coarse anchors for sparsely observed
areas and finer anchors for detailed regions:

sv ∝ ϵv. (7)

To further prevent unnecessary duplication, newly gen-
erated anchors are compared to existing ones. If significant
spatial overlap exists, the new anchor is discarded. This
density-adaptive, duplication-free octree formation ensures
compact memory usage while preserving adaptive resolution
across scenes.

3.3. Pose Estimation module
Accurate and robust camera pose estimation is essential for
consistent reconstruction in unposed long video settings. We
estimate each pose using 2D-3D correspondences derived
from MASt3R, followed by photometric refinement against
the current 3D Gaussian scene to maintain coherence across
evolving 3D structures (Fig. 3 (c)).

For each new frame t, MASt3R provides 2D correspon-
dences {(xi, x

′
i)} between frame t and t− 1, allowing back-

projection of matched points xi to 3D via:

Xi = Dt−1(xi) ·K−1x̃i. (8)

These 2D-3D correspondences {(x′
i, Xi)} are used to solve

the initial pose Tt via PnP (Fig. 5 (a)), followed by photo-
metric refinement that minimizes (Fig. 5 (b)):
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Figure 6. Illustration of our Visibility-Adapted Local Window
strategy for local optimization. To ensure balanced training of
the 3D Gaussians, we dynamically define the optimization window
based on anchor visibility overlap. Specifically, we compute the
Intersection-over-Union (IoU) of visible anchors between consecu-
tive views. Suppose the visibility IoU is below a certain threshold
(a). In that case, the local optimization window is adjusted by re-
moving the earliest frame, iteratively repeating until a suitable
window with IoU above the threshold is found (b). This approach
ensures balanced training coverage and enhances local reconstruc-
tion details during optimization (c).

Lphoto =
∑
p∈Ω

∥It(p)− Ît(p)∥2, (9)

where It is the observed frame and Ît is the rendering using
the current 3DGS. This ensures the pose aligns with the
evolving scene.

To correct MASt3R’s depth scale drift, we compute a
scale factor ŝt by comparing the rendered depth Dt−1 and
MASt3R’s aligned depth Dalign

t :

ŝt =
⟨Dt−1, D

align
t ⟩

⟨Dalign
t , Dalign

t ⟩
. (10)

This rescaled depth ensures consistent scale across frames.
As the camera moves, newly visible regions are detected

via an occlusion mask Mocc, derived by forward-warping
Dt−1 to frame t and comparing it to the rescaled depth
DMASt3R

t (Fig. 5 (c)). Newly visible pixels are unprojected
into 3D using:

pi = DMASt3R
t,ui

·K−1ui. (11)

These new points are converted into hierarchical octree
anchors using the Octree Anchor Formation described in
Sec. 3.2, with overlapping anchors removed to avoid redun-
dancy (Fig. 5 (c)). This process incrementally expands the
scene while maintaining structural regularity.

3.4. Incremental Joint Optimization
To handle casually captured long videos, LongSplat adopts
a progressive incremental optimization framework that al-
ternates between per-frame local reconstruction and cross-
frame global consistency refinement.
Initialization. We begin with a small set of initial frames.
Camera poses and dense point clouds for these frames are
estimated using MASt3R [27], followed by converting the
point cloud into an initial octree-anchored 3DGS using the

proposed Octree Anchor Formation (Fig. 3 (a). When cam-
era intrinsics are unavailable, we directly adopt MASt3R’s
predicted focal length.
Global Optimization. After initialization, we jointly opti-
mize all 3D Gaussian parameters and camera poses across
all processed frames (Fig. 3 (b)). This global optimization
ensures geometric consistency across the entire sequence,
reducing accumulated pose drift and local misalignments.
Frame Insertion and Pose Estimation. As new frames
arrive, we estimate their poses using the correspondence-
guided PnP initialization and refinement strategy described
in Sec. 3.3. If PnP fails due to insufficient feature correspon-
dences or poor initialization, we trigger a fallback mecha-
nism that re-optimizes all past frames globally before retry-
ing pose estimation. This iterative fallback enhances robust-
ness under challenging motion or weak texture (Fig. 3 (c)).
Local Optimization with Visibility-Adaptive Window.
Once the pose is estimated, we optimize only the Gaussians
visible in the new frame’s frustum, while constraining them
with observations from nearby frames in a dynamically se-
lected visibility-adapted local window (Fig. 6). Covisibility
between frames is measured by:

IoU(t, t′) =
|V(t) ∩ V(t′)|
|V(t) ∪ V(t′)| , (12)

where V(t) denotes the set of Gaussians visible in frame t.
Frames with covisibility below a threshold τ are excluded
from the window. This adaptive mechanism ensures local
Gaussians are consistently supervised by reliable multi-view
constraints, balancing efficiency and accuracy.
Final Global Refinement. In the final step, a final global
refinement jointly optimizes all Gaussians and camera poses
over the sequence. This final pass further improves both
rendering quality and long-range pose consistency.
Monocular Depth and Keypoint Losses. To provide addi-
tional supervision in newly revealed regions, where multi-
view observations are insufficient, we introduce two regular-
ization terms. A monocular depth loss encourages rendered
depth to match MASt3R’s scale-aligned depth prior:

Ldepth = ∥Drendered −DMASt3R∥2. (13)

Additionally, a keypoint reprojection loss enforces alignment
between projected 3D keypoints and their 2D observations:

Lreprojection =
∑
k

∥π(Xk)− uk∥2, (14)

where π(·) denotes projection using the current pose.
Total Loss. Throughout the entire incremental reconstruc-
tion pipeline, each processed frame is optimized using the
following objective:

Ltotal = Lphoto + λdepthLdepth + λreprojectionLreprojection, (15)

This combined loss applies to both local and global opti-
mization stages, ensuring coherent multi-view, robust pose
refinement, and stable geometry reconstruction across the
evolving scene.



Table 1. Quantitative comparison on the Free dataset [60] across various baseline methods. Methods such as CF-3DGS [14] frequently
encounter out-of-memory issues, denoted by “-”. Our method consistently outperforms all baselines across diverse scenes, delivering superior
rendering quality and robustness, especially in challenging environments characterized by complex camera trajectories and varied geometric
structures. “*”: Initialized with MASt3R poses, then jointly optimized.

Scenes
COLMAP [50] COLMAP [50] MASt3R [27] MASt3R [27] CF-3DGS [14] NoPe-NeRF [5] LocalRF [39] Ours+ F2-NeRF [60] + Scaffold-GS [36] + Scaffold-GS [36] + Scaffold-GS [36]*

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Grass 23.44 0.58 0.45 26.75 0.82 0.20 22.65 0.61 0.34 25.06 0.79 0.21 - - - 16.39 0.27 0.81 18.84 0.35 0.60 26.16 0.80 0.22
Hydrant 23.75 0.74 0.28 26.66 0.86 0.12 23.22 0.71 0.21 25.68 0.83 0.12 - - - 17.94 0.43 0.66 19.19 0.48 0.48 24.69 0.79 0.18
Lab 24.34 0.83 0.26 28.27 0.92 0.10 20.66 0.74 0.25 22.42 0.80 0.18 - - - 17.42 0.52 0.63 17.22 0.55 0.47 27.11 0.87 0.15
Pillar 28.05 0.79 0.23 31.75 0.90 0.12 23.95 0.70 0.28 22.88 0.67 0.24 14.55 0.40 0.66 18.88 0.44 0.75 22.98 0.59 0.49 30.44 0.88 0.16
Road 26.03 0.80 0.27 30.45 0.92 0.10 24.23 0.73 0.25 25.05 0.78 0.27 - - - 17.48 0.44 0.79 20.68 0.54 0.56 27.73 0.84 0.20
Sky 25.10 0.86 0.24 28.34 0.92 0.12 23.26 0.80 0.22 25.37 0.88 0.14 - - - 16.18 0.51 0.65 18.76 0.60 0.46 28.07 0.91 0.13
Stair 28.14 0.84 0.22 32.13 0.93 0.10 23.35 0.71 0.30 24.46 0.79 0.28 13.41 0.41 0.63 19.14 0.47 0.69 23.55 0.66 0.38 31.00 0.89 0.16

Avg. 25.55 0.78 0.28 29.19 0.90 0.12 23.05 0.72 0.27 24.42 0.79 0.21 13.98 0.41 0.65 17.63 0.44 0.71 20.17 0.54 0.49 27.88 0.85 0.17

NoPe-NeRF LocalRF CF-3DGS MASt3R + Scaffold-GS* OursMASt3R + Scaffold-GS Ground-truth

Out of memory
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Figure 7. Qualitative comparison on the Free dataset [60]. We compare our method with state-of-the-art approaches including NoPe-
NeRF [5], LocalRF [39], CF-3DGS [14], and MASt3R [27] combined with Scaffold-GS [36]. CF-3DGS fails due to memory constraints
(OOM), and other baseline methods exhibit artifacts or blurry reconstructions. In contrast, our method produces results closest to the ground
truth, demonstrating clearer details, accurate geometry, and visually consistent rendering, particularly under challenging scene structures and
complex camera trajectories. “*”: Initialized with MASt3R poses, then jointly optimized.

4. Experiments

4.1. Experimental Setup

Datasets. We evaluate LongSplat on three challenging real-
world datasets with varying difficulty levels:
• Tanks and Temples [25] (Standard): Eight scenes with

smooth, forward-facing camera trajectories, evaluated at
full resolution. Every 8th frame is used for testing.

• Free Dataset [60] (Moderate): Seven handheld videos
featuring complex, unconstrained trajectories with multi-
ple foreground objects, evaluated at 1/2 resolution. Fre-
quent scene changes make memory-efficient 3D represen-
tation essential. Every 8th frame is tested.

• Hike Dataset [39] (Hard): Long videos with hundreds to
thousands of frames, complex trajectories, and detailed ge-
ometry, evaluated at 1/4 resolution. The scale and duration
demand adaptive memory management. Every 10th frame
is used for testing.

Evaluation Metrics. We evaluate novel view synthesis qual-
ity using PSNR, SSIM [63], and LPIPS [75]. Pose accuracy
is measured with Absolute Trajectory Error (ATE) and Rel-
ative Pose Error (RPE), using COLMAP poses as ground
truth. We also report model size, training time, and FPS to
assess computational efficiency.

Table 2. Quantitative evaluation of camera pose estimation ac-
curacy on the Free dataset [60]. Our method achieves superior
performance across most scenes, significantly reducing pose er-
rors compared to state-of-the-art approaches. “*”: Initialized with
MASt3R poses, then jointly optimized.

Method RPEt↓ RPEr↓ ATE↓
MASt3R [27] + Scaffold-GS [36] 0.162 0.265 0.013
MASt3R [27] + Scaffold-GS [36]* 0.083 0.176 0.008
CF-3DGS [14] 0.234 3.442 0.022
NoPe-NeRF [5] 6.231 4.822 0.576
LocalRF [39] 0.754 7.086 0.035
Ours 0.028 0.103 0.004

Baselines. We compare LongSplat with COLMAP-based
methods (COLMAP [50]+F2-NeRF [60] / 3DGS [22] /
Scaffold-GS [36]) and unposed methods (NoPe-NeRF [5],
LocalRF [39], CF-3DGS [14]). Additionally, we evaluate a
naı̈ve baseline combining MASt3R’s [27] predicted point
cloud and poses with Scaffold-GS. During training, camera
poses are either fixed (MASt3R + Scaffold-GS) or jointly
optimized (MASt3R + Scaffold-GS*).

Implementation Details. We implement LongSplat based
on Scaffold-GS [36], using its learning rate schedule and
growing/pruning rules. Each anchor emits k Gaussians pre-
dicted by a lightweight 2-layer MLP. The initial sparse voxel
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Figure 8. Visualization of camera trajectories on Free
dataset [60]. CF-3DGS [14] encounters OOM and fails for long
sequences, whereas our method reliably estimates accurate, stable
trajectories, demonstrating superior robustness.

Table 3. Quantitative evaluation of novel view synthesis quality
on the Tanks and Temples dataset [25]. Our proposed LongSplat
consistently surpasses existing methods across multiple scenes.

Method PSNR↑ SSIM↑ LPIPS↓ RPEt↓ RPEr↓ ATE↓
COLMAP+3DGS [22] 30.21 0.92 0.10 – – –
MASt3R [27] + Scaffold-GS [36] 28.67 0.79 0.21 0.166 0.168 0.006
MASt3R [27] + Scaffold-GS [36]* 30.92 0.90 0.13 0.047 0.103 0.005
NoPe-NeRF [5] 26.34 0.74 0.39 0.080 0.038 0.006
CF-3DGS [14] 31.28 0.93 0.09 0.041 0.069 0.004
Ours 32.83 0.94 0.08 0.032 0.068 0.003

OursCF-3DGS Ground-truthNoPe-NeRF

Figure 9. Qualitative comparison on the Tanks and Temples
dataset [25]. NoPe-NeRF [5] produces visibly blurred results with
inaccurate geometries, while CF-3DGS [14], despite better sharp-
ness, fails to reconstruct fine details accurately. In contrast, our
LongSplat method achieves superior rendering quality, closely
matching the ground truth with sharper textures, more accurate
geometry, and consistent lighting.

grid size is 0.1. Camera poses are optimized via a differ-
entiable CUDA-accelerated rasterizer, parameterized with
quaternions and translation vectors. We use 200 local, 500
global, and 10,000 refinement iterations, starting with three
initial frames. The octree density thresholds for splitting
and removal start at 10 and 5, progressively increasing with
depth. Visibility IoU threshold is set to 0.2. All experiments
are conducted on a single NVIDIA RTX 4090.

4.2. Comparisons

Tanks and Temples. We evaluate LongSplat on the Tanks
and Temples dataset [25], a standard benchmark for novel
view synthesis. As shown in Tab. 3, LongSplat achieves
state-of-the-art rendering quality (avg. PSNR: 32.83 dB) and
superior camera pose estimation accuracy (lowest ATE and
RPE). Qualitative results in Fig. 9 confirm sharper textures,
accurate geometry, and better visual consistency compared
to baselines. Please refer to the supplementary material for
the full quantitative evaluation table for each scene.

Table 4. Quantitative evaluation on the Hike dataset [39]. Our
method consistently outperforms baselines across diverse scenes
with complex trajectories and extended sequences, highlighting
LongSplat’s robustness and superior scene representation capability.
CF-3DGS [14] encounters OOM in all scenes and is thus omitted.

Method PSNR↑ SSIM↑ LPIPS↓
MASt3R [27] + Scaffold-GS [36] 17.30 0.42 0.52
MASt3R [27] + Scaffold-GS [36]* 17.90 0.44 0.50
LocalRF [39] 23.56 0.68 0.29
Ours 25.39 0.81 0.19

Table 5. Ablation on training components. Removing pose es-
timation, global optimization, or local optimization significantly
degrades performance, highlighting each module’s importance. Our
full method achieves the best rendering quality and pose accuracy.

Method PSNR↑ SSIM↑ LPIPS↓ RPEt↓ RPEr↓ ATE↓
w/o Pose estimation 20.19 0.56 0.51 0.42 2.71 0.71
w/o Global optimization 20.50 0.58 0.41 0.12 0.50 0.01
w/o Local optimization 25.94 0.77 0.28 0.06 0.31 0.01
w/o Refinement 26.08 0.80 0.25 0.04 0.22 0.01
Ours 27.88 0.85 0.17 0.03 0.11 0.00

Table 6. Ablation on local window sizes. Fixed small windows
(e.g., 1-frame or 5-frame) or global optimization degrades recon-
struction quality and pose accuracy. Our visibility-adaptive window
dynamically selects optimal context, achieving the best balance of
local detail and global consistency.

Window size PSNR ↑ SSIM ↑ LPIPS ↓ RPEt↓ RPEr↓ ATE↓
1-frame (Minimum Window) 26.58 0.80 0.23 0.05 0.21 0.01
5-frame (Fixed Window) 26.90 0.82 0.22 0.04 0.18 0.01
All Frames (Global Optimize) 26.15 0.78 0.26 0.06 0.28 0.08
Ours (Visibility-Adaptive) 27.88 0.85 0.17 0.03 0.11 0.00

Free Dataset. We evaluate LongSplat on the challenging
Free dataset, achieving superior reconstruction quality (avg.
PSNR: 27.88 dB, SSIM: 0.85, LPIPS: 0.17) as shown
in Tab. 1 and Fig. 7. Competing methods like CF-3DGS
often face OOM issues, while LocalRF produces fragmented
geometry and pose drift. Our method also achieves consis-
tently lower pose errors (ATE, RPE) than baselines, as shown
quantitatively in Tab. 2 and visually in Fig. 8.
Hike Dataset. We evaluate LongSplat on the challenging
Hike dataset, achieving state-of-the-art reconstruction qual-
ity (avg. PSNR: 25.30 dB, SSIM: 0.81, LPIPS: 0.19) (Tab. 4).
Competing methods like CF-3DGS often fail (OOM),
while LocalRF produces lower-quality results (PSNR: 23.56
dB). Qualitative comparisons (Fig. 10) further highlight
LongSplat’s superior visual fidelity and robustness.

4.3. Ablation Studies
Training Components. To analyze the contribution of each
training component, we individually disable them and eval-
uate performance. As shown in Tab. 5, removing pose esti-
mation severely harms reconstruction quality and increases
pose errors (ATE: 0.71). Omitting global or local optimiza-
tion also reduces performance. Our full method achieves the
highest quality (PSNR: 27.88 dB, SSIM: 0.85, LPIPS: 0.17)
and minimal pose errors (ATE: 0.003).



LocalRF Ours Ground-truthMASt3R + Scaffold-GS*MASt3R + Scaffold-GS

Figure 10. Qualitative results on the Hike dataset [39]. Compared to existing methods such as LocalRF [39] and MASt3R [27]+Scaffold-
GS [36], our approach significantly improves visual clarity and reconstruction fidelity, accurately capturing complex details and textures in
challenging scenes captured during long, casual outdoor trajectories. Notably, our method better preserves structural details and reduces
artifacts, demonstrating enhanced robustness and visual quality. “*”: Initialized with MASt3R poses, then jointly optimized.

Table 7. Ablation on anchor unprojection strategies. Our Adap-
tive Octree method achieves the best rendering quality and lowest
perceptual errors, significantly reducing memory usage (7.92×
compression) compared to baselines.

Method PSNR↑ SSIM↑ LPIPS↓ Size (MB)↓ Compress↑
Per-pixel Unprojection (Dense) 22.47 0.69 0.35 799 1.00x
Fixed-size Voxel Unprojection 26.99 0.81 0.18 591 1.35x
Naive Densification 25.73 0.75 0.31 63 12.66x
Ours (Adaptive Octree) 27.88 0.85 0.17 101 7.92x

Table 8. Comparison of training efficiency on the Free dataset.
Our method significantly reduces training time and achieves dramat-
ically higher throughput (FPS) while simultaneously maintaining a
compact model size compared to state-of-the-art approaches.

Method FPS ↑ Training time ↓ Size (MB) ↓

NoPe-NeRF [5] 0.29 36 hr 7
LocalRF [39] 1.17 14 hr 1080
CF-3DGS [14] 9.81 2 hr 1966
Ours 281.71 1 hr 101

Local Window Sizes. We analyze the effect of local win-
dow size on reconstruction and pose accuracy ( Tab. 6).
Small fixed-size windows (e.g., 1 frame) lack sufficient
constraints, causing fragmentation and higher errors. Our
visibility-adapted window achieves the best balance, yield-
ing the highest reconstruction quality (PSNR: 27.88 dB) and
lowest pose drift (ATE: 0.003).
Anchor Unprojection Strategies. We compare our adaptive
octree anchor formation to (1) per-pixel initialization, (2)
fixed-resolution voxels, and (3) naı̈ve densification (Tab. 7).
Our method achieves superior reconstruction quality with
significantly reduced memory usage (7.92× compression).
Training Efficiency. We evaluate the computational effi-
ciency of LongSplat (Tab. 8), which achieves 281.71 FPS
and trains in just 1 hour on an NVIDIA RTX 4090, nearly
30× faster than LocalRF. Our method also significantly re-
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Figure 11. Robustness analysis on camera pose estimation (Free
dataset [60]). We plot cumulative error distributions for ATE, RPE
translation, and rotation. Our method consistently achieves lower
errors compared to existing methods, demonstrating superior ro-
bustness and reduced pose drift.

duces the model size to approximately 101 MB.
Robustness Analysis of Camera Pose Estimation. We fur-
ther analyze robustness by comparing cumulative error distri-
butions for ATE and RPE (translation and rotation) in Fig. 11.
LongSplat achieves consistently lower errors than baselines,
effectively minimizing drift and maintaining stable trajecto-
ries, highlighting the advantage of our incremental optimiza-
tion and robust tracking.

5. Conclusion

We present LongSplat, a robust unposed 3D Gaussian Splat-
ting framework for casual long videos. It integrates incremen-
tal joint optimization, a robust tracking module, and adap-
tive octree anchors, significantly improving pose accuracy,
reconstruction quality, and memory efficiency. Extensive ex-
periments confirm that LongSplat consistently outperforms
state-of-the-art approaches. Future work includes handling
dynamic scenes and enhancing pose estimation robustness.
Limitations. LongSplat shares common limitations of un-
posed reconstruction methods, assuming static scenes and
fixed intrinsics, making it unsuitable for dynamic objects or
varying focal lengths.
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