
AuraFusion360: Augmented Unseen Region Alignment for Reference-based 360°
Unbounded Scene Inpainting

Chung-Ho Wu1 Yang-Jung Chen1 Ying-Huan Chen1 Jie-Ying Lee1

Bo-Hsu Ke1 Chun-Wei Tuan Mu1 Yi-Chuan Huang1 Chin-Yang Lin1

Min-Hung Chen2 Yen-Yu Lin1 Yu-Lun Liu1

1National Yang Ming Chiao Tung University 2NVIDIA

https://kkennethwu.github.io/aurafusion360/

Reference-based 
360 unbounded 
scene inpainting

Reference image
Input images

+ camera parameters

Object masks Novel viewsAuraFusion360Object-masked Gaussian Splatting

Figure 1. Overview of our reference-based 360° unbounded scene inpainting method. Given input images with camera parameters,
object masks, and a reference image, our AuraFusion360 approach generates an object-masked Gaussian Splatting representation. This
representation can then render novel views of the inpainted scene, effectively removing the masked objects while maintaining consistency
with the reference image.

Abstract

Three-dimensional scene inpainting is crucial for appli-
cations from virtual reality to architectural visualization,
yet existing methods struggle with view consistency and ge-
ometric accuracy in 360° unbounded scenes. We present
AuraFusion360, a novel reference-based method that en-
ables high-quality object removal and hole filling in 3D
scenes represented by Gaussian Splatting. Our approach
introduces (1) depth-aware unseen mask generation for ac-
curate occlusion identification, (2) Adaptive Guided Depth
Diffusion, a zero-shot method for accurate initial point place-
ment without requiring additional training, and (3) SDEdit-
based detail enhancement for multi-view coherence. We also
introduce 360-USID, the first comprehensive dataset for 360°
unbounded scene inpainting with ground truth. Extensive
experiments demonstrate that AuraFusion360 significantly
outperforms existing methods, achieving superior percep-
tual quality while maintaining geometric accuracy across
dramatic viewpoint changes.

1. Introduction

Three-dimensional scene reconstruction, driven by Neural
Radiance Fields [33] and 3D Gaussian Splatting [20], is
vital for VR/AR, robotics, and autonomous driving. A key
challenge is realistic object removal and hole filling, which is
essential for augmented reality and real estate visualization.
Inpainting 360° unbounded scenes remains difficult due to
the need for multi-view consistency, plausible unseen region
extrapolation, and geometric coherence across views.

Fig. 1 shows our reference-based 360° unbounded scene
inpainting approach. Given input images with camera param-
eters, object masks, and a reference image, our method gener-
ates an inpainted 3D scene using Gaussian Splatting [17, 20]
for novel view rendering. We exploit multi-view information
and generative models to fill unseen areas, ensuring coher-
ent and plausible results across views. Integrating Gaussian
Splatting’s explicit representation with 2D generative in-
painting, our method maintains multi-view consistency and
geometric accuracy under significant viewpoint changes.

Several critical challenges in 360° unbounded scene in-
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Figure 2. Comparison with different 3D inpainting approaches.
Existing methods such as SPin-NeRF [35] and GScream [60], de-
signed for forward-facing scenes, perform poorly in 360° scenarios.
Reference-based methods like Infusion [28] struggle with accurate
depth projection, causing fine-tuning artifacts. Gaussian Group-
ing [66] frequently misidentifies unseen regions, reducing inpaint-
ing quality. Our AuraFusion360 achieves precise unseen masks and
improved depth alignment via Adaptive Guided Depth Diffusion,
employing SDEdit [31] for diffusion-guided, multi-view consistent
RGB generation.

painting motivated our approach (Fig. 2). Existing meth-
ods [34–36, 60], effective for forward-facing scenes, struggle
with extreme viewpoint changes in 360° scenes, resulting in
inconsistencies and artifacts. Recent approaches like Gaus-
sian Grouping [66] effectively propagate semantic informa-
tion for object removal, but their reliance on a text-based
tracker [8] often causes misidentified unseen regions, leading
to inaccurate reconstructions.

To address these challenges, we propose a unified pipeline
for 360° unbounded scene inpainting using Gaussian Splat-
ting for object removal, depth-aware unseen region detec-
tion, and multi-view consistent inpainting. Inspired by Gaus-
sian Grouping [66], our method integrates object-masked
attributes into Gaussians for precise removal and reconstructs
unseen regions before applying reference-guided inpainting.
Unlike methods that directly apply inpainters, causing in-
consistencies, we develop Adaptive Guided Depth Diffusion
(AGDD) to unproject aligned points from the reference view
into unseen regions. These points (1) initialize Gaussians
and (2) guide inpainted RGB generation via SDEdit [31],
ensuring coherent, high-quality 360° scene restoration.

Integrating these improvements, our framework achieves
enhanced geometric accuracy and realism in 360° unbounded
scenes. To advance 3D inpainting, we propose a method that
improves consistency and provides a benchmark for future
research. Our contributions include:
• A depth-aware method leveraging multi-view information

to accurately generate unseen masks for 360° unbounded
scene inpainting.

• Integration of reference view unprojection with SDEdit to
produce consistent RGB guidance across views.

• A comprehensive framework with a new 360° dataset and
capture protocol, supporting high-quality novel view syn-
thesis and quantitative evaluation.

2. Related Work
NeRF. Neural Radiance Fields (NeRF)[33] revolutionized
novel view synthesis via differentiable volume rendering[15,
55] and positional encoding [13, 56]. NeRF models im-
proved in efficiency [7, 12, 26], rendering quality [2, 32, 72],
handling dynamic scenes [27], and data efficiency [22, 52,
59, 68]. Despite excelling at view synthesis, NeRF’s implicit
representation complicates scene editing. Recent work on
object manipulation [64], stylization [14, 57], and inpaint-
ing [24, 34, 35] struggles with 3D consistency and structural
priors, especially in unbounded scenes.

3D Gaussian Splatting. 3D Gaussian Splatting (3DGS) [20]
efficiently represents scenes with explicit 3D Gaussians,
enabling faster rendering, easier training, and flexible
editing[6]. Recent extensions like Scaffold-GS [29] en-
hance efficiency with dynamic anchors, while 2DGS [17]
refines multi-view geometry. 3DGS has also expanded to
dynamic scenes [11, 30, 63, 65] and semantic representa-
tions [42, 66], supporting advanced editing and novel view
synthesis [17, 43]. Gaussian-based methods thus offer strong
potential for explicit 3D inpainting.

Traditional and learning-based image inpainting. Early
image inpainting techniques, including PDE-based [4],
exemplar-based [9], and PatchMatch [1], were effective for
small regions but struggled with complex textures and large
gaps [18, 23]. Deep learning advanced the field significantly,
starting with Context Encoders [39] and GAN-based meth-
ods like DeepFill [70, 71], improving content synthesis and
coherence. Recent models such as LaMa [53] use Fourier
convolutional networks to address large masks. Diffusion
models [16], notably Stable Diffusion [45], introduced iter-
ative refinement capabilities, providing more flexible and
structurally consistent inpainting compared to GANs [10].

Diffusion models for image editing and inpainting. Be-
yond direct inpainting, diffusion models are widely used
for image editing. SDEdit [31] injects Gaussian noise and
iteratively denoises, enabling semantic edits while preserv-
ing global structure. Noise inversion techniques [37, 38],
such as DDIM Inversion [51], further improve editing fi-
delity by enabling precise latent inference through determin-
istic reverse diffusion. Inpainting-specific diffusion models
like SDXL-Inpainting [40] enhance image reconstruction by
fine-tuning Stable Diffusion. Reference-based methods [54],
such as LeftRefill [5], use diffusion models for reference-
guided synthesis but struggle in regions distant from refer-
ence views. Despite advancements, Stable Diffusion-based
inpainting [41] still suffers from inconsistent artifacts in
scene-dependent contexts, causing multi-view inconsisten-
cies problematic for 3D scenes [21]. This motivates our use
of SDEdit and DDIM Inversion to preserve structural infor-
mation and ensure multi-view coherence.

3D scene inpainting. Existing 3D inpainting methods for

2



𝑠, 𝛼, 𝑐, 𝑥, 𝑞
Mask: 𝑚

Gaussians
training

Gaussians 
removal

Background
Gaussians

(a) Depth-Aware Unseen Masks Generation

+

Depth-initialized
Gaussians

(b) Depth-Aligned Gaussian Initialization on Reference View

RGB + Object Masks Unseen Masks Incomplete RGBs

Unproject

Adaptive Guided Depth 
Diffusion (Sec. 3.2)

2D diffusion
Inpainting model

Rendered RGBs
w/ initialized GS RGB Guidance

(c) SDEdit-Based RGB Guidance for Detail Enhancement
Finetuning

Noise w/ 𝑠 strength
Incomplete Depth Unseen Mask

Reference RGB

Aligned Depth

Reference View as Condition

DDIM Inversion

Figure 3. Overview of our method. Our approach takes multi-view RGB images and corresponding object masks as input and outputs
a Gaussian representation with the masked objects removed. The pipeline consists of three main stages: (a) Depth-Aware Unseen Masks
Generation to identify truly occluded areas, referred to as the “unseen region”, (b) Depth-Aligned Gaussian Initialization on Reference View
to fill unseen regions with initialized Gaussian containing reference RGB information after object removal, and (c) SDEdit-Based RGB
Guidance for Detail Enhancement, which enhances fine details using an inpainting model while preserving reference view information.
Instead of applying SDEdit with random noise, we use DDIM Inversion on the rendered initial Gaussians to generate noise that retains the
structure of the reference view, ensuring multi-view consistency across all RGB Guidance.

NeRF [35, 50, 62, 67] typically adapt 2D models to NeRF’s
implicit representation. For instance, SPIn-NeRF [35] em-
ploys perceptual loss to improve multi-view consistency.
Reference-based methods [34, 36, 60] enhance consistency
using reference images but remain limited to small-angle
view rendering, restricting their use in 360° scenes. NeR-
Filler [61] iteratively refines consistency with grid prior but
struggles with fine-grained textures due to image downsam-
pling. InNeRF360 [58] handles 360° scenes via density hallu-
cination but has limited scene utilization. Gaussian Splatting-
based methods like Gaussian Grouping [66] inject semantic
information, while InFusion [28] employs depth completion
but requires manual view selection. GScream [29] integrates
Scaffold-GS but faces difficulties in unbounded 360° scenes.
Our method addresses these issues by enhancing multi-view
consistency and depth-aware inpainting in 360° scenarios
using Gaussian Splatting.

3. Method
Our method processes multi-view RGB images {In} and
object masks {Mn}, n ∈ [1..N ], to produce an inpainted
Gaussian representation with removed objects. Occluded re-
gions (unseen regions [66]) are consistently inpainted across
views. As shown in Fig. 3, the process includes training
a masked Gaussian using object masks, removing objects,
and applying (a) Depth-Aware Unseen Mask Generation
(Sec. 3.1), (b) Reference View Initial Gaussians Alignment

(Sec. 3.2), and (c) SDEdit for Detail Enhancement (Sec. 3.3).
This pipeline ensures consistent texture propagation in un-
bounded scenes, achieving high-quality 3D inpainting.

3.1. Depth-Aware Unseen Mask Generation
Accurate identification of inpainting regions is critical for
scene consistency and optimal use of background informa-
tion. To generate the unseen mask for a view, it is necessary
to differentiate between (1) the background visible across
multiple views and (2) the unseen region occluded in all
views, requiring inpainting.

A naive approach to detecting unseen masks with
SAM2 [44] involves manually selecting the first view and
propagating prompts across other views. However, SAM2
struggles to consistently detect unseen regions without re-
finement, often revealing parts of the background or inside
objects. To address this, our method employs depth warping
to generate bounding box prompts for each view (Fig. 4),
ensuring accurate, fully automated unseen region detection.
Depth warping for generating bbox prompt to SAM2. To
refine the unseen mask, we employ a depth-warping tech-
nique, as illustrated in Fig. 4. For each view n, we compute:

Ri→n = Wtraverse(Ri, D
incomplete
n , Tn→i), (1)

where Wtraverse includes forward warping from view n to i
and backward traversal to map the removal region back to
n. Ri is the removal region mask for view i, derived from
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Figure 4. Overview of the Unseen Mask Generation Process
using Depth Warping. To obtain the unseen mask for view n,
we calculate the pixel correspondences between the view n and all
other views i by using the rendered incomplete depth Dincomplete

n . For
each view i, the removal region Ri is backward traversal to view
n to align occlusions. We then aggregate the results from multiple
views, averaging and applying a threshold to produce the initial
contour of the unseen mask. This contour is subsequently converted
into a bounding box prompt for SAM2 [44], which refines the
unseen mask to its final version for view n.

depth differences. Dincomplete
n is the incomplete depth map

for view n, and Tn→i is the transformation from view n to i.
The unseen mask contour for view n is obtained by aggre-

gating warped removal regions and applying thresholding:

Cn = θ

(
1

K

K∑
i=1

Ri→n

)
∩Rn, (2)

where Cn is the contour of the unseen mask, K is the num-
ber of views, and θ is a thresholding function. A bounding
box bbox(Cn) is created as a prompt for SAM2 [44] to gen-
erate the final unseen mask:

Un = SAM2(bbox(Cn)). (3)

This mask Un guides the inpainting process, focusing on
areas needing reconstruction while preserving original scene
information.

3.2. Reference View Initial Gaussians Alignment
After performing object removal and generating the unseen
mask, similar to CorrFill [25], we select a reference view
called Vref, which can render an incomplete RGB image and
depth. We then apply RGB inpainting to the incomplete RGB
image of Vref and denote it as Iref. To maximize cross-view
consistency, we project the reference RGB image into 3D
space using depth estimates of Iref, which is obtained through
Adaptive Guided Depth Diffusion. This 3D projection serves
two critical purposes: It guides the SDEdit-based RGB detail
enhancement and initializes point positions for Gaussian fine-
tuning. Accurate depth alignment is, therefore, fundamental
to our pipeline, as it directly determines the precision of
these initial point positions.
Adaptive Guided Depth Diffusion (AGDD). Aligning es-
timated depth with existing depth is challenging due to

monocular depth estimation [19]’s scale ambiguity and non-
metric representation across coordinate systems. This chal-
lenge intensifies in 360° unbounded scenes, where large
viewpoint changes hinder alignment. Traditional scale-shift
optimization often yields suboptimal results, while depth-
completion models demand costly fine-tuning. Our AGDD
refines GDD [69] by addressing over-alignment issues, par-
ticularly where depth transitions from small to large values,
which exaggerates disparities in distant regions and inflates
loss values. To mitigate this, we introduce an adaptive loss
Ladaptive that balances alignment, preventing distant regions
from dominating and yielding more accurate depth estimates.

The framework is shown in Fig. 5. Following the stan-
dard denoising process of Marigold [19], we initialize with
a latent representation perturbed by full-strength Gaussian
noise, denoted as dt, and generate aligned depth Daligned =
Decoder(d0) using a VAE decoder, where the latent d0 is ob-
tained by recursive denoising step dt−1 = Denoise(dt, t, ϵ̂t).
The ϵ̂t is derived by updating the original noise through
the calculation of adaptive loss Ladaptive between the pre-
decoded estimated depth Dt−1 and the existing incomplete
depth Dincomplete. Note that Dt−1 is obtained by decoding
d

′

0, which is the model’s estimation of the fully denoised
latent at timestep 0 when predicted from the noisy state at
timestep t−1. This adaptive loss refines ϵ̂t to ensure that the
estimated depth aligns with the existing incomplete depth
during denoising. The optimization process is described as
follows:

dt−1 = Denoise(dt, t, ϵ̂t) (4)

ϵ̂t = UNet(dt, Iscene, t)− α · ∇Ladpative (5)

where α is the learning rate for the optimization. We define
a bounding box B around the unseen region and introduce
a threshold δ to downweight errors for distant points. The
adaptive loss Ladaptive between the pre-decoded estimated
depth Dt−1 and the incomplete depth Dincomplete is computed
as follows:

Mguide(x, y) =

{
1 if (x, y) ∈ B \ U
0 otherwise,

(6)

Ladaptive =
∑
(x,y)

Mguide(x, y) · L(Dt−1, Dincomplete)(x, y), (7)

L(d1, d2) =

{
1
2
(d1 − d2)

2 if |d1 − d2| < δ

δ · |d1 − d2| − 1
2
δ2 otherwise,

(8)

where Mguide(x, y) is a mask function indicating if a pixel
(x, y) is within the bounding box B but not in the unseen
mask U. At each denoising step, we update the noise over N
iterations. Instead of directly optimizing the noise using L2
loss [69], this loss ensures that the updated noise input to the
denoiser enables it to generate an estimated depth that aligns
with the incomplete guided depth. This enables the AGDD
output to achieve accurate alignment in regions adjacent to
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Figure 5. Overview of Adaptive Guided Depth Diffusion
(AGDD). The framework takes image latent, incomplete depth,
and unseen mask as inputs to generate aligned depth estimates.
(a) The guided region is identified by dilating the unseen mask
and subtracting the original mask. (b) At each timestep t, adaptive
loss Ladaptive is computed between the pre-decoded and incomplete
depth to update the noise input ϵ̂t. This repeats N times before
advancing to the next denoising step, ensuring the estimated depth
aligns with the incomplete depth distribution in the guided region.

unseen areas, which is more appropriate for depth inpainting
scenarios while also operating in a zero-shot manner.
Initializing Gaussians in unseen regions. With the aligned
depth Dref

aligned of the reference view, we proceed to initialize
new Gaussians in the unseen regions. First, we unproject
the inpainted RGB of the reference view with Dref

aligned to
3D space, focusing on the unseen regions identified by the
unseen mask. This unprojection takes into account the cam-
era’s intrinsic parameters. For each pixel (u, v) in the unseen
region where Ufinal(u, v) = 1, we compute the 3D point
P = (X,Y, Z) as Z = Dref

aligned(u, v), X = (u− cx) ·Z/fx,
Y = (v − cy) · Z/fy,, where (fx, fy) are the focal lengths
in pixels and (cx, cy) are the principal point offsets. This
process gives us a set of initial 3D points P . These points
are then used to initialize new Gaussians in the unseen re-
gions, inheriting color from the reference view. Existing
background Gaussians, unaffected by object removal, re-
main fixed during initialization and optimization. These ini-
tialized Gaussians are crucial for the subsequent process of
generating guided inpaint RGB images and optimization.

3.3. SDEdit for Detail Enhancement
After initializing Gaussians in unseen regions, we aim to
obtain the inpainted RGB guidance with fine details while
ensuring multi-view consistency, which further refines our
initial Gaussians during fine-tuning. Inspired by SDEdit [31],
we refine the rendered initial Gaussians by adding scaled
noise proportional to a strength factor s, ensuring that the
inpainting model retains structural information from the ref-
erence view while allowing for detail refinement across mul-
tiple perspectives. We further find that instead of injecting
random Gaussian noise, applying DDIM Inversion [51] to
the rendered initial Gaussians better preserves their structural

information during the denoising process. This approach al-
lows the diffusion inpainting model to reconstruct missing
details while maintaining alignment with the reference view,
ensuring that inpainted regions integrate seamlessly into the
scene (see Fig. 11).

Specifically, given a rendered training view Iinit, we first
obtain its corresponding noise representation via DDIM In-
version, capturing the essential structure of the reference
view in the latent space. Instead of inverting fully to t0, we
compute an intermediate timestep tinv based on the noise
strength s:

tinv = T (1− s), (9)

where T is the total number of timesteps in the diffusion
process, and s controls the noise strength. We then perform
DDIM Inversion to obtain the noise representation at tinv:

ϵinv = DDIM-Invert(Iinit, tinv). (10)

Next, we denoise this noise using a 2D diffusion inpaint-
ing model, conditioned on the reference view Iref, ensuring
that the reconstructed details align with the global scene
while maintaining consistency across views:

Iguided = Denoise(ϵinv, condition = Iref, tinv→0). (11)

By inverting to a noise level corresponding to strength s,
this step ensures that the inpainting model refines details
while maintaining geometric consistency with the reference
view. Unlike traditional SDEdit, which applies random noise
addition before denoising, our approach leverages DDIM
Inversion to obtain structured noise that aligns with the scene,
preventing hallucinated details that could disrupt multi-view
coherence.

The resulting guided inpainted RGBs are then used as
supervision for Gaussian fine-tuning, updating only the un-
projected Gaussians from Sec. 3.2. The final reconstruction is
optimized using a combination of L1, SSIM, and LPIPS [73]
losses:

L = (1− λSSIM)L1 + λSSIMLSSIM + λLPIPSLLPIPS. (12)

3.4. Implementation Details
We use the 2D Gaussian Splatting [17] codebase for Gaus-
sian representation to obtain accurate rendered depth, with
SAM2 generating object masks on the first frame for each
training view. Masked Gaussians enable effective object
removal due to their explicit representation. We set the
aggregation threshold of θ to 0.6 in unseen mask genera-
tion. In AGDD, incomplete depth are normalized to match
Marigold’s [19] depth. With N set to 8, the denoised result is
then unnormalized back to its original scale. The entire infer-
ence process takes approximately 1 minute on an RTX 4090
GPU. The noise strength of SDEdit s = 0.85 balances initial
point retention, as shown in our ablation study. We condition
the generation on the reference view using LeftRefill [5].
During Gaussian fine-tuning, we run 10,000 iterations with
λSSIM = 0.8 and LLPIPS = 0.5.
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Figure 6. Overview of the 360-USID dataset. Sample images from each scene, including five outdoor scenes (Carton, Cone, Newcone,
Skateboard, Plant) and two indoor scenes (Cookie, Sunflower). (Bottom right) The table shows statistics for each scene, including the number
of training views and ground truth (GT) novel views. The dataset provides a diverse range of environments for evaluating 3D inpainting
methods in both indoor and outdoor settings.

Training views

(a) Capturing training views

Tripod

(b) Capturing the reference view (with object)

Novel views

(c) Capturing novel views

Figure 7. Illustration of the data capture process for the 360-
USID dataset. (a) Capturing training views: Multiple images are
taken around the object in the scene. (b) Capturing the reference
view: A camera is mounted on a tripod to capture a fixed reference
view (with an object). (c) Capturing novel views: After removing
the object, additional images are taken from various viewpoints,
including one from the same tripod position as the reference image.

4. 360◦ Unbounded Scenes Inpainting Dataset

To address the lack of reference-based 360° inpainting
datasets, we introduce the 360° Unbounded Scenes Inpaint-
ing Dataset (360-USID), consisting of seven scenes with
training views (RGB images and object masks), novel test-
ing views (inpainting ground truth), and a reference view
(without objects) for evaluating with other reference-based
methods.

Dataset collection protocol. We developed a protocol using
a standard camera to create this dataset, as simultaneously
capturing multi-view photos with and without objects typ-
ically requires specialized equipment. Our protocol, illus-
trated in Fig. 7, consists of:
1. Positioning an object (e.g. a vase) on a textured surface

within a 360° unbounded scene. Training views are cap-
tured in two complete circular trajectories around the
object - the first focuses primarily on the object, while
the second maximizes background coverage to ensure
comprehensive scene capture.

2. Securing the camera on a tripod and capturing a reference
view from a fixed position and orientation.

3. After object removal, capturing novel views from both
the fixed tripod position and additional positions distinct
from training trajectories for ground truth evaluation.

To ensure high-quality captures, we record video at 4K
60fps with stabilized camera settings and extract the sharpest
frames using the variance of the Laplacian method. Each
scene comprises 180∼200 training views and approximately
30 testing views for quantitative evaluations. Consistent light-

ing is maintained throughout to minimize shadow variations
between reference and testing images

Data preprocessing and pose estimation. Our processing
pipeline begins with using COLMAP [48, 49] or similar SfM
pipelines like hloc [46, 47] to compute a shared 3D coordi-
nate space for both training and novel views. We then gen-
erate object masks for training views using SAM2 [44] and
mask out object regions in COLMAP reconstruction. After
obtaining camera poses, we process the training images with
NeRF/3DGS inpainting methods and render novel views for
comparison against ground truth. Finally, we refine testing
views by training a masked-3DGS model and selecting opti-
mal frames based on PSNR scores computed outside object
regions, yielding approximately 30 high-quality test views
per scene. The resulting dataset provides a comprehensive
benchmark for evaluating 360° inpainting methods across
diverse scenes and viewpoints, with particular attention to
view consistency and geometric accuracy.

Scene descriptions. Our 360-USID dataset, shown in Fig. 6,
contains seven diverse scenes: five outdoor (Carton, Cone,
Newcone, Plant, Skateboard) and two indoor (Cookie, Sun-
flower). Each scene includes 180-200 training images at
3840×2160 resolution (Plant at 1920×1440), 30 ground
truth testing images, and one reference image without ob-
jects. Scenes are downscaled to 960×540 for evaluation, pro-
viding a comprehensive benchmark for testing 3D inpainting
methods across varied real-world environments.

5. Experiments

5.1. Experimental setup

Datasets. We evaluate on two 360° unbounded scene
datasets: (1) 360-USID (Ours): A new dataset of 7 scenes (3
indoor, 4 outdoor) for evaluating 360° inpainting, with 200-
300 training views containing objects, around 30 test views
without objects, and 1 reference. All images are processed at
960px width to preserve details for quantitative evaluation.
(2) Other-360 [3] We collect additional 6 standard 360° un-
bounded scene datasets from NeRF[33], MipNeRF-360[3]
and Instruct-NeRF2NeRF[14] for qualitative evaluation at
1/4 resolution, with frame 0 as reference for all methods.

Metrics. We evaluate our method using two complementary
metrics: LPIPS (Learned Perceptual Image Patch Similar-
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Table 1. Quantitative comparison of 360° inpainting methods on the 360-USID dataset. Red text indicates the best, and blue text
indicates the second-best performing method.

PSNR ↑ / LPIPS ↓ Carton Cone Cookie Newcone Plant Skateboard Sunflower Average

SPIn-NeRF [35] 16.659 / 0.539 15.438 / 0.389 11.879 / 0.521 17.131 / 0.519 16.850 / 0.401 15.645 / 0.675 23.538 / 0.206 16.734 / 0.464
2DGS [17] + LaMa [53] 16.433 / 0.499 15.591 / 0.351 11.711 / 0.538 16.598 / 0.670 14.491 / 0.564 15.520 / 0.639 23.024 / 0.194 16.195 / 0.494
2DGS [17] + LeftRefill [5] 15.157 / 0.567 16.143 / 0.372 12.458 / 0.526 16.717 / 0.677 12.856 / 0.666 16.429 / 0.634 24.216 / 0.181 16.282 / 0.518
LeftRefill [5] 14.667 / 0.560 14.933 / 0.380 11.148 / 0.519 16.264 / 0.448 16.183 / 0.463 14.912 / 0.572 18.851 / 0.331 15.280 / 0.468
Gaussian Grouping [66] 16.695 / 0.502 14.549 / 0.366 11.564 / 0.731 16.745 / 0.533 16.175 / 0.440 16.002 / 0.577 20.787 / 0.209 16.074 / 0.480
GScream [60] 14.609 / 0.587 14.655 / 0.476 12.733 / 0.429 13.662 / 0.605 16.238 / 0.437 12.941 / 0.626 18.470 / 0.436 14.758 / 0.514
Infusion [28] 14.191 / 0.555 14.163 / 0.439 12.051 / 0.486 9.562 / 0.624 16.127 / 0.406 13.624 / 0.638 21.195 / 0.238 14.416 / 0.484
AuraFusion360 (Ours) w/o SDEdit 13.731 / 0.477 14.260 / 0.390 12.332 / 0.445 16.646 / 0.460 17.609 / 0.319 15.107 / 0.580 24.884 / 0.170 16.367 / 0.406
AuraFusion360 (Ours) 17.675 / 0.473 15.626 / 0.332 12.841 / 0.434 17.536 / 0.426 18.001 / 0.322 17.007 / 0.559 24.943 / 0.173 17.661 / 0.388

GT Infusion (Ours)Gaussian Grouping2DGS + LefteRefillw/ object

Figure 8. Visual Comparison on our 360-USID dataset. We compare our method against state-of-the-art approaches including Gaussian
Grouping [66], 2DGS + LeftRefill, and Infusion [28]. While Gaussian Grouping struggles with misidentifying unseen regions, leading
to floating artifacts, and 2DGS + LeftRefill faces view consistency issues, our method successfully maintains geometric consistency and
preserves fine details across different viewpoints. Ground truth (GT) is shown for reference, and the original scene with an object is provided
in the first row for comparison.

ity) [73] for perceptual quality and PSNR (Peak Signal-to-
Noise Ratio) for reconstruction accuracy. Following SPIn-
NeRF [35], we compute these metrics only within object
masks to focus on inpainting quality. While both metrics are
used for 360-USID, which has ground truth, only qualitative
assessment is possible for Other-360. Additional evaluation
results are provided in supplementary materials.

5.2. Comparisons with State-of-the-Art Methods
Quantitative comparisons. We evaluate AuraFusion360
against state-of-the-art approaches on the 360-USID dataset.
Tab. 1 shows PSNR and LPIPS scores across different
scenes. Our method consistently outperforms existing ap-
proaches. SPIn-NeRF [35]1and Infusion [28] struggle with
360° consistency, while Gaussian Grouping [66] misidenti-
fies the unseen region, causing significant floating artifacts.
GScream [60] fails to properly remove objects, and LeftRe-
fill [5] improves but still falls short in 360° environments.
2DGS + LaMa [53] and 2DGS + LeftRefill outperform 2D

methods but face view consistency challenges. Our method
achieves the highest PSNR score and the lowest average
LPIPS, indicating superior perceptual quality and better sim-
ilarity to the ground truth. The performance gap is espe-
cially noticeable in scenes with complex geometry or large
removed objects, demonstrating our method’s ability to lever-
age multi-view information and maintain 360° consistency.
The code for InNeRF360 [58] could not be successfully exe-
cuted, and [34] did not provide code, so we were unable to
compare our method with theirs.

Qualitative visual comparisons. Fig. 8 compares our Au-
raFusion360 method against state-of-the-art approaches on
challenging scenes from the 360-USID dataset. Our method
excels in maintaining view consistency and preserving fine
details in 360° unbounded environments. Additional qual-
itative results on other 360 datasets and failure cases are

1We implement SPin-NeRF’s method on the 2D Gaussian Splatting code-
base to extend its capabilities to 360° unbounded scenes.

7



Table 2. Ablation study of our AuraFusion360.

Depth init. SDEdit strength PSNR ↑ LPIPS ↓
(Sec. 3.2) (Sec. 3.3)

0.85 16.638 0.456
✓ 0.5 17.646 0.393
✓ 1.0 17.512 0.391
✓ 0.85 17.661 0.388
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Figure 9. Visual comparison of unseen mask generation method.
Our method enables SAM2 [44] to generate more accurate pre-
dictions for each view without the need for manually provided
prompts, as the bounding box prompts are automatically generated
through depth warping.

provided in the supplementary material.

5.3. Ablation Studies
To evaluate the effectiveness of each component in our Au-
raFusion360 method, we conduct a series of ablation studies.
Tab. 2 presents the quantitative results of these studies.
Unseen mask generation. We compared our unseen mask
generation method with SAM2 [44] and Gaussian Group-
ing [66] tracker in Fig. 9 and Fig. 10. Our approach sig-
nificantly improves inpainting quality, particularly in areas
occluded from multiple views. The unseen masks identify
truly occluded regions, leading to more accurate and consis-
tent inpainting results. This is especially noticeable in scenes
with complex geometries, where object masks alone may not
capture all necessary information for effective inpainting.
Effect of reference view initial Gaussians alignment.
Tab. 2 and Fig. 11 show that our depth-aware 3DGS initial-
ization accurately estimates aligned depth while maintaining
geometric consistency in the inpainted regions. Compared
to random initialization, our method produces more struc-
turally coherent results, particularly in areas with significant
depth variations. This is especially evident in scenes where
the inpainted geometry needs to blend seamlessly with the
existing scene structure.

6. Conclusion
We presented AuraFusion360, a novel reference-based 360°
inpainting method for 3D scenes in unbounded environments.

Ou
rs

(a) Gaussian Grouping 
Incomplete RGB

(b) Gaussian Grouping 
Unseen Mask

(d) Ours
Unseen Mask

(c) Ours
Incomplete RGB

Figure 10. Compared Unseen Mask w/ Gaussian Grouping.
Gaussian Grouping [66] uses a video tracker [8] and the “black
blurry hole” prompt for DEVA [8] to track the unseen region. How-
ever, this can result in tracking errors, affecting inpainting. In con-
trast, our geometry-based approach uses depth warping to estimate
the unseen region’s contour, reducing segmentation errors.
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(a) Infusion (d) Guided Depth Diffusion (e) AGDD (Ours)(c) Poisson Depth Blending(b) Align Scale & Shift

Al
ig

ne
d

de
pt

h
at

 re
fe

re
nc

e 
vi

ew

Re
nd

er
ed

 
in

iti
al

 G
S

at
 

re
fe

re
nc

e 
vi

ew

Re
nd

er
ed

 
in

iti
al

 G
S

at
 

no
ve

l v
ie

w

Figure 11. Compared to other depth completion methods. The
depth completion model in Infusion [28] (a) performs better at
depth alignment compared to traditional methods (b) and (c), but
it produces noisy depth in unseen regions. Similarly, (d) Guided
Depth Diffusion [69] struggles to achieve precise alignment, as the
background regions amplify the loss, leading to misalignment. In
contrast, (e) Our AGDD effectively addresses these issues.

Our approach effectively addresses the challenges of object
removal and hole filling in complex 3D scenes. Key contri-
butions include leveraging multi-view information through
improved unseen mask generation, integrating reference-
guided 3D inpainting with diffusion priors, and introducing
the 360-USID dataset for comprehensive evaluation. Ex-
perimental results demonstrate AuraFusion360’s superior
performance over existing methods, particularly in complex
geometries and large view variations. While this work repre-
sents a significant advancement in 3D scene editing, future
work will focus on computational efficiency, dynamic scenes,
and language-guided editing capabilities.
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A. Overview
This supplementary material provides additional details and
results to support the main manuscript. We first describe the
training process for masked Gaussians and object removal
in Section B, followed by an explanation of depth warping
for bounding box generation in SAM2 [44] and its role in
identifying unseen region contours in Section C. Next, we
present ablations on different depth inpainting methods in
Section D and a comparison of captured and inpainted refer-
ences in Section E. We then outline the experimental setup
in Section F and discuss the limitations of our approach in
Section G. Finally, we provide additional visual comparisons
in Fig. 15 for the 360-UISD dataset and in Fig. 16 for the
other collected 360 dataset [3].

B. Training Masked GS for Object Removal
During the training of masked Gaussians, we use 2DGS [17]
as our codebase and introduce a masked attribute, ranging
between 0 and 1, for each Gaussian. The L1 loss is computed
between the object mask obtained via SAM2 [44] and the ras-
terized object mask for each training view. Additionally, we
incorporate the Grouping Loss proposed by Gaussian Group-
ing [66], ensuring that neighboring Gaussians have similar
masked attributes. This ensures that our Gaussian model
retains accurate object mask information and is capable of
rendering precise object masks for subsequent applications.

Thanks to the explicit nature of Gaussian Splatting, we
can directly remove Gaussians with a masked attribute
greater than a threshold τ during the removal stage, effec-
tively achieving object removal. In our implementation, τ is
set to 0.6.

C. Depth Warping for Unseen Contours
Following Sec. 3.2 and Fig. 4 of the main paper, we explain
in detail how depth warping allows us to identify the con-
tours of the unseen region, as illustrated in Fig. 12. Without
loss of generality, to find the unseen region contour at view
n, and for each pair of views n and i, we first compute the
removal region for view i by identifying pixels that differ
between the rendered depth and the incomplete depth of
view i rather than using object masks. This approach better
captures geometric changes and prevents misalignment ar-
tifacts, leading to improved SAM2[44] prompts and more
precise unseen masks (Fig. 13).

Next, we establish pixel correspondences between view
n and view i using the incomplete depth of view n. The
removal region of view i is then backward-traversed to view
n based on these correspondences. During this backward
traversal, it is important to note that pixels outside the unseen
region in view i will correspond to the background areas in
view n, while pixels belonging to the unseen region remain
in the unseen region. By aggregating contributions from all

(c) Removal region 𝑅!	(𝑖 ≠ 𝑛	)

(d) Unseen region obtained from view 𝑖 at view 𝑛

(e) Aggregated unseen region (f) Final contour of unseen region 𝐶" 

(b) Removal region 𝑅"(a) RGB image at view 𝑛

Figure 12. Intermediate Results of Depth Warping for Unseen
Region Detection. This figure illustrates the intermediate results
generated during the depth warping process. (a) and (b) show the
RGB image and the corresponding removal region at view n, re-
spectively. (c) displays the removal regions obtained from view i
(i ̸= n). (d) shows the unseen region obtained from view i through
backward traversal. The intersections are concentrated near the
unseen region. Note that the pixels within the unseen region, but
with a value of zero, are due to the absence of Gaussians in that
area, preventing depth rendering and thus making it impossible to
establish pixel correspondences between view n and view i. (e)
presents the aggregation of all unseen regions obtained from view
i at view n. A threshold is applied to this result, and it is then
intersected with the removal region at view n to obtain the final
result in (f).

views i (i ̸= n), we project non-unseen regions from each
view i into different areas of view n, while consolidating the
unseen regions. This allows us to identify the contours of the
unseen region in view n. These contours can then be used
as the bounding box prompt for SAM2, resulting in a more
accurate unseen mask.

D. Comparison of Depth Completion Methods

In addition to Fig. 11 of the main paper, we compare
scale–shift alignment, LaMa [53], InFusion [28], GDD [69],
and AGDD for depth completion. As shown in Tab. 3, we
evaluate the mean absolute difference (MAD) in object mask
areas in 30 test views, using pseudo-GT depth from a 2DGS
trained on 200 removal images, as mentioned in Sec. 4.

12



Co
nt

ou
r

(b) Depth Difference as Removal Region (Ours)Ge
ne

ra
te

d 
U

ns
ee

n 
M

as
k

(a) Object Mask as Removal Region

Figure 13. Ablation Study on Removal Region Definition. Com-
parison of (a) object masks vs. (b) depth difference for defining
removal regions. Object masks fail to capture geometric changes,
leading to less accurate unseen masks. Depth difference better
preserves scene structure, improving SAM2 prompts and unseen
region segmentation.

Aligning scale-shift misaligns boundaries in 360° scenes,
while LaMa provides reasonable depth completion but does
not fully resolve alignment issues. AGDD achieves the low-
est MAD and better handles complex geometry.

Table 3. MAD values for different depth completion methods.

Depth completion method MAD ↓

Scale-shift align 0.063
LaMa depth inpainting 0.077
InFuion 0.047
GDD 0.065
AGDD 0.045

E. Reference Images in Real-World Use

Our 360-USID dataset provides real-world captured refer-
ence images. However, this does not mean that our method
requires extra input. In practical scenarios, reference images
can be captured post-removal for real-world use. We also en-
sure a fair evaluation by avoiding hallucinated textures, even
if the inpainting is consistent. Additionally, reference guid-
ance helps reduce multi-view inconsistency with minimal
extra input. As shown in Tab. 4, while LaMa-based refer-
ences slightly degrade the results, they still outperform other
reference-based methods, such as GScream. Even when us-
ing an inpainted image as a reference, our approach still
achieves good results.

Table 4. Comparison of Captured and Inpainted Reference.

Reference method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

GScream 14.758 0.955 0.514 152.295
LaMa-reference 17.102 0.960 0.407 69.874
Captured-reference 17.661 0.961 0.388 62.173
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Figure 14. Failure Cases. The figure illustrates failure cases of
inpainting results. These examples highlight the challenges of 3D
inpainting when significant occlusions are present near the regions
requiring inpainting. For instance, (b) and (c) demonstrate diffi-
culties in achieving satisfactory guided inpainted RGB images in
the training views, while (d) and (e) show errors resulting from
incorrect pixel unprojections. These observations indicate that this
issue is not effectively addressed by any of the compared methods,
suggesting a potential avenue for further exploration and improve-
ment.

F. Experimetal Setup
F.1. LeftRefill [5]
We use the same reference image as in our method, along
with the rendered object masks of each novel testing view
generated by our masked Gaussians, as input to LeftRefill
and directly perform reference-based inpainting on each
testing novel view.

F.2. 2DGS [17] + LaMa [53]
We provide the same reference image and training view
object masks as in our method and use LaMa [53] to obtain
per-frame inpainting results for each training view to train
the 2DGS.

F.3. 2DGS [17] + LeftRefill [5]
We provide the same reference image and training view
object masks as in our method and use LeftRefill to obtain
per-frame inpainting results for each training view to train
the 2DGS.

F.4. SPIn-NeRF [35]
The original SPIn-NeRF [35] codebase is designed for
forward-facing scenes; however, we adapt it for comparison
on 360° scenes by implementing its approach on 2DGS [17].
We first obtain the depth for each training view by training a
2DGS model. Next, we generate inpainted RGB and depth
maps using LaMa [53], which are then used to train the
inpainted 2DGS model. During training, we follow SPIn-
NeRF’s methodology by incorporating patch-based RGB-
LPIPS loss and using the Pearson correlation coefficient to
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Figure 15. Visual Comparison on our 360-USID dataset.

compute a scale- and shift-invariant depth loss.

F.5. Gscream [60]
We follow the original GScream [60] pipeline as a baseline
for comparison. We provide the same reference image and
training view object masks as our method to ensure con-
sistency. Following their pipeline, we use Marigold [19] to
generate estimated depths for all training images, meeting
GScream’s input data requirements.

F.6. Gaussian Grouping [60]
We utilize the original Gaussian Grouping [66] codebase as
a baseline for comparison. First, it generates segmentation
IDs, from which we select the IDs corresponding to objects
that require inpainting. These selected IDs are then used in
the removal process. Following the original workflow, the
unseen regions are identified, subsequently inpainted, and
used for their fine-tuning process.

Notably, after removing objects from the scene, Gaussian
Grouping relies on TrackingAnything-DEVA [8] to iden-
tify unseen regions requiring further inpainting through the
”black blurry hole” prompt. However, DEVA occasionally
fails to accurately identify unseen regions in certain scenes,

leading to incorrect inpainting and suboptimal results. Ad-
ditionally, in some scenes, such as the bonsai scene from
the Mip-NeRF-360 [3] dataset and the plant scene from the
360-UISD dataset, the object tracker misidentifies objects,
resulting in incorrect object removal and further degrading
the inpainting quality.

F.7. InFusion [28]
We use the original InFusion [28] codebase as a baseline for
comparison. We provide the same reference image used in
our method as the input RGB for its depth completion model.
This reference image is also used in its fine-tuning process.

G. Limitations
Our method successfully addresses complex, unbounded
360° scene inpainting. However, rendering the unprojected
initial Gaussians and applying SDEdit [31] to enhance the
guided inpainted RGB images can be time-consuming, par-
ticularly for high-resolution or large-scale scenes, which
poses challenges for real-time applications. Furthermore,
our analysis Fig. 14 shows that the method may produce
incorrect pixel unprojections in cases with significant oc-
clusions near the object requiring inpainting, resulting in
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Figure 16. Visual Comparison on Other-360 dataset.

floaters in the final inpainted outputs. This limitation is simi-
larly observed across all compared methods, underscoring a
valuable direction for future research and improvement.
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