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Abstract

All-in-one adverse weather image restoration has attracted increasing attention due
to its potential to recover high-quality images with a single model. However, existing
methods often exhibit significant performance drops due to the domain gap between
training and testing weather conditions. Moreover, they typically achieve only average,
rather than optimal, performance across different weather conditions, when compared to
weather-specific approaches. To address these two issues, we propose a novel Weather
Transfer Network (WTNet), which fine-tunes all-in-one models to enhance their perfor-
mance during testing. Recognizing the unavailability of paired degraded-clean images
at test time, WTNet transfers degradation patterns from the testing images in an unseen
target domain to clean images in the source domain, thereby generating the fine-tuning
sets for enabling domain adaptation. Additionally, by leveraging the fine-tuning sets, all-
in-one models can be dynamically adapted to weather-specific or mixed weather models
based on the transferred degradation patterns observed during testing. Experimental re-
sults demonstrate that WTNet can significantly enhance state-of-the-art all-in-one mod-
els across real-world image deraining, desnowing, and dehazing benchmarks. The source
code is available at https://github.com/stellaahuang/WTNet.

1 Introduction
Adverse weather image restoration aims to remove undesirable artifacts caused by weather
conditions like rain, haze, and snow from a degraded image. With the advancement of deep
learning, significant progress has been made in addressing individual weather conditions,
such as deraining [6, 11, 12, 19, 20, 21, 24, 38, 40], dehazing [8, 9, 14, 26, 31, 33, 35,
42, 47, 50], and desnowing [2, 3, 27, 41, 49]. However, the inherent unpredictability and
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Figure 1: Quantitative comparison of different training strategies. Previous methods,
including PromptIR [30], AST [51], and AdaIR [7], exhibit significant performance gaps
between using weather-specific and all-in-one training strategies. In contrast, the proposed
WTNet substantially improves these all-in-one models, even outperforming their weather-
specific variants.

dynamic variations in weather pose a significant challenge, often limiting the generalization
ability of models tailored for individual weather conditions in real-world applications. As a
result, all-in-one image restoration approaches [4, 7, 23, 29, 30, 36], which address various
types of degradation within a unified model, have gained increasing attention in recent years.

Recent all-in-one restoration methods fall into two categories: approaches addressing
general degradations [7, 23, 29] and those tackling adverse weather conditions [4, 30, 36].
To handle diverse weather conditions, several studies have incorporated degradation-specific
features, such as weather-type queries [36], degradation-specific prompts [30], or multi-
teacher networks [4], into their unified models. While effective at addressing various degra-
dations within a single network, these all-in-one methods tend to exhibit balanced but poten-
tially lower performance across different degradations, compared to their weather-specific
variants, i.e., blue vs. green bars in Figure 1. Additionally, existing all-in-one models of-
ten suffer from significant performance drops due to the domain gap between training and
testing images. This issue is particularly pronounced in real-world scenarios where images
frequently exhibit complex degradations resulting from mixed weather conditions, rather
than a single type. These limitations hinder the potential of all-in-one models in diverse and
uncontrollable weather conditions.

In this paper, we propose a novel Weather Transfer Network (WTNet), which fine-tunes
all-in-one models to improve their performance during testing. Given that paired degraded-
clean images are unavailable during testing, WTNet generates domain-adaptive fine-tuning
sets, which encode the degradation patterns of the unseen target domain for effective domain
adaptation. Unlike previous restoration methods that recover high-quality content from de-
graded inputs, WTNet takes a different approach: predicting degradation patterns. This task
is generally simpler than content restoration because degradation patterns like rain, haze,
and snow are typically visible, consistent, and less textured. After predicting degradation
patterns, WTNet transfers them from unseen target domains to clean images in the source
domain, thereby constructing fine-tuning sets, i.e., degradation-transferred and clean source-
domain images, to adapt the restoration models during testing.

WTNet employs a physics-based model to disentangle and reassemble key weather com-
ponents, including snow masks, rain streaks, haze density, and atmospheric light. Thus,
WTNet can exploit the inherent inductive biases of weather formation, leading to more ac-
curate weather pattern prediction and transfer. WTNet generates fine-tuning sets for test-time
adaptation and offers two primary advantages. First, it effectively reduces the domain gap
between training and testing sets by transferring degradation patterns from the target domain
to the source domain. Second, it dynamically adapts all-in-one models to either weather-
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specific or mixed-weather scenarios, guided by the degradation patterns observed during
testing, thereby improving restoration performance, i.e., blue vs. orange bars in Figure 1.

Our contributions are summarized as follows: First, we propose WTNet, a novel frame-
work that transfers degradation patterns from unseen target domains to source-domain clean
images. This process creates domain-adaptive fine-tuning sets that enhance the perfor-
mance of all-in-one models on unseen domains during testing. Second, WTNet enables
dynamic adaptation of all-in-one models to specific or mixed weather conditions during test-
ing, thereby unlocking their full potential and improving performance under uncontrollable
weather scenarios. Third, extensive experimental results demonstrate that WTNet signifi-
cantly boosts the performance of all-in-one restoration models across benchmark real-world
image deraining, desnowing, and dehazing datasets.

2 Related Works
2.1 All-in-One Image Restoration
All-in-one image restoration aims to tackle various types of degradation using a single, uni-
fied model. To this end, several studies [4, 7, 23, 29, 30, 36, 39] have explored incorporating
degradation-specific features into unified architectures to handle diverse degradations adap-
tively. For instance, Li et al. [23] use contrastive learning to extract degradation-specific
features, which are subsequently used to guide their all-in-one restoration model. Vala-
narasu et al. [36] utilize learnable weather-type queries to encode weather-specific infor-
mation within a Transformer framework. Potlapalli et al. [30] employ learnable prompts
to inject degradation-specific features into a unified restoration model. Cui et al. [7] adap-
tively restore degraded images by harnessing frequency-aware cues tailored to specific types
of degradation. Although these methods handle diverse degradations using a single model,
they often achieve a compromise in performance, resulting in balanced rather than optimal
results across different degradation types. Moreover, they frequently suffer from significant
performance drops due to the domain gap between training and testing images. This issue is
even exacerbated in real-world scenarios, where images often suffer from complex degrada-
tions caused by mixed weather conditions.

2.2 Domain Adaptation for Restoration
Domain adaptation seeks to reduce the discrepancy between source and target domains.
Since paired degraded-clean images are typically unavailable at test time, many studies em-
ploy generative models [18, 37] to synthesize pseudo training pairs for domain adaptation.
For example, Chen et al. [5] and Shao et al. [32] leverage generative adversarial networks
(GANs) [37] to synthesize paired training data from unpaired images for deraining and de-
hazing tasks, respectively. However, GAN-based methods may suffer from unstable opti-
mization [1, 13, 28] and mode collapse [34, 45]. As an alternative, some recent studies have
explored diffusion models to achieve domain adaptation. For instance, He et al. [15] pro-
pose a domain adaptation approach for video deblurring based on a diffusion-based blurring
model [43]. Although their method can generate domain-adaptive training pairs for deblur-
ring, the reliance on video motion flow limits its applicability to image restoration.

Despite the effectiveness, the aforementioned methods [5, 15, 32] focus on mitigating do-
main gaps for specific degradations, such as deraining, dehazing, or deblurring, while over-
looking the practicality and generalizability of all-in-one models for image restoration. In
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Figure 2: (a) WTNet Architecture: WTNet employs a Degradation Encoder (DE), Atmo-
spheric Light Decoder (ALD), Haze Density Decoder (HDD), and Mask Decoder (MD) to
parameterize weather-related features. These parameters are then transferred to the clean im-
age via the Physics-Guided Transfer Module (PGTM). (b) Test-Time Domain Adaptation:
WTNet transfers degradation patterns from target-domain images to source-domain clean
images, generating domain-adaptive fine-tuning sets for restoration model adaptation.

contrast, we propose WTNet, a weather-transfer-based adaptation method that fine-tunes all-
in-one adverse weather image restoration models during testing, enabling dynamic adapta-
tion to a wider range of adverse weather conditions, including deraining, dehazing, desnow-
ing, and even mixed-weather scenarios.

3 Proposed Method
This section introduces the proposed Weather Transfer Network (WTNet), a novel frame-
work designed to transfer degradation patterns from weather-degraded images in unseen tar-
get domains to clean images from the source domain. The generated clean-degraded image
pairs, embedded with target-domain degradation characteristics, are then used as domain-
adaptive fine-tuning data to adapt all-in-one restoration models for improved performance
on previously unseen target domains during testing. The remainder of this section provides
an overview of the proposed approach, details each module of WTNet, and outlines the as-
sociated loss functions and fine-tuning strategy.

3.1 Overview
As illustrated in Figure 2, WTNet begins by employing a Degradation Encoder (DE) to ex-
tract degradation features from a target-domain weather-degraded image. These features
are then projected into a parametric space using multiple specialized decoders. Specifically,
the Atmospheric Light Decoder (ALD) and Haze Density Decoder (HDD) extract haze-
related parameters corresponding to atmospheric light and haze density, while the Mask
Decoder (MD) estimates occlusion masks caused by rain or snow. To transfer these weather-
degradation patterns to source-domain clean images, we introduce the Physics-Guided Trans-
fer Module (PGTM), inspired by the atmospheric scattering models [10, 16]. By leveraging
the inductive bias inherent in weather formation processes, PGTM enables effective and uni-
fied transfer of diverse weather patterns. During testing, WTNet facilitates adaptation of a
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restoration model by generating paired training samples—source-domain clean images and
their degraded counterparts with target-domain degradation characteristics—thus improving
generalization to unseen weather conditions.

3.2 Degradation Encoder and Parametric Decoders
Given a degraded image Id ∈ RH×W×3, WTNet employs the Degradation Encoder (DE)
to extract degradation features Fd ∈ R(H/32)×(W/32)×256. These features are subsequently
processed by three specialized parametric decoders: the Atmospheric Light Decoder (ALD),
Haze Density Decoder (HDD), and Mask Decoder (MD), which collectively parameterize
Fd as follows:

A = ALD(Fd), β = HDD(Fd), and M = MD(Fd), (1)

where A ∈ R and β ∈ R denote the atmospheric light and haze density, respectively, and
M ∈ RH×W×1 with values in [0,1] represents the occlusion mask induced by rain or snow.

In our implementation, DE consists of six convolutional blocks, each comprising two
residual blocks followed by a downsampling convolutional layer. Each of the three decoders,
ALD, HDD, and MD, is composed of five convolutional blocks, where each block includes
a bilinear upsampling layer followed by two residual blocks. To produce compact represen-
tations, a global average pooling layer is applied to the outputs of both ALD and HDD. To
guide the disentanglement of degradation features, we incorporate PGTM, which maps the
predicted parameters back to the degraded image space. This ensures that the parameteriza-
tion produced by ALD, HDD, and MD remains physically meaningful and interpretable.

3.3 Physics-Guided Transfer Module (PGTM)

After retrieving weather parameters, A, β , and M, WTNet employs PGTM to transfer these
parameters onto the clean image.. As the first step, the occlusion mask M is applied to
generate an initial degradation-transferred image Oini ∈ RH×W×3 as follows:

Oini(x) = Ic(x)(1−M(x))+S ·M(x), (2)

where Ic ∈ RH×W×3 denotes the clean image. x represents the pixel index, and S is a scalar
randomly sampled from the range [1.0,2.61] to control the intensity of the occlusion effect,
following the setting in [24].

WTNet then transfers the haze-related parameters A and β onto Oini to generate the final
weather-transferred image O ∈ RH×W×3 based on the atmospheric scattering model:

O(x) = Oini(x)T (x)+A(1−T (x)), (3)

where T (x) = e−βd(x) denotes the transmission map, which quantifies the proportion of scene
radiance that reaches the camera, as defined by the atmospheric scattering model [10, 16],
and d(x) = θ dep(Ic(x)) denotes the depth estimated from a pre-trained depth estimation net-
work θ dep [17].

By incorporating this physically grounded formulation, PGTM enables WTNet to sim-
ulate the formation process of adverse weather conditions, thereby facilitating the unified
transfer of diverse degradation types in a physically interpretable manner.
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Rain Snow Haze Average
Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

PromptIR [30] Baseline 17.09 0.524 15.73 0.465 16.42 0.383 16.41 0.457
+WTNet 24.12 (+7.03) 0.766 (+0.242) 22.10 (+6.37) 0.730 (+0.265) 19.81 (+3.39) 0.635 (+0.252) 22.01 (+5.60) 0.710 (+0.253)

AST [51] Baseline 18.23 0.592 16.64 0.542 14.80 0.405 16.56 0.513
+WTNet 24.27 (+6.04) 0.762 (+0.170) 21.29 (+4.65) 0.698 (+0.156) 17.68 (+2.88) 0.575 (+0.170) 21.08 (+4.52) 0.678 (+0.165)

AdaIR [7] Baseline 19.39 0.614 16.43 0.546 16.93 0.398 17.58 0.519
+WTNet 23.21 (+3.82) 0.752 (+0.138) 22.11 (+5.68) 0.724 (+0.178) 19.49 (+2.56) 0.650 (+0.252) 21.60 (+4.02) 0.709 (+0.190)

Average Gain +5.63 +0.183 +5.57 +0.200 +2.94 +0.225 +4.71 +0.203

Table 1: Quantitative comparison of image restoration performance under three real-world
weather types: Rain, Snow, and Haze. Results are reported in PSNR (dB) and SSIM. WTNet
consistently improves performance across all backbone models and weather conditions.

3.4 Loss Function
WTNet is trained on synthetic datasets of degraded-clean pairs {Id

i , I
c
i }N

i=1. We supervise the
network in both the parametric and image spaces with the objective function:

L = ||Ai −AGT
i ||1 + ||βi −β

GT
i ||1 + ||Mi −MGT

i ||1 + ||Oi − Id
i ||1, (4)

where (Ai, AGT
i ), (βi, β GT

i ), (Mi, MGT
i ), and (Oi, Id

i ) denote the estimated results in (1) and
(3) and their corresponding ground-truth.

3.5 Domain-Adaptive Fine-Tuning Strategy
After training WTNet, we use it to transfer degradation patterns from target-domain degraded
images {Îd

i }N
i=1 to source-domain clean images {Ic

i }N
i=1, where we select N clean images

randomly from the source domain. This process yields a domain-adaptive fine-tuning set
{Ôi, Ic

i }N
i=1, where Ôi = WTNet(Îd

i , I
c
i ) denotes the weather-transferred image with degrada-

tion patterns from Îd
i and scene content from Ic

i . We then fine-tune the all-in-one restoration
model using this synthesized dataset, as illustrated in Figure 2(b). To ensure adaptation
efficiency in test time, we fine-tune each restoration model for only a single epoch.

4 Experiments
4.1 Experiment Settings
Datasets. We train WTNet and restoration models using synthetic datasets: Rain100H [46]
for deraining, Snow100K [27] for desnowing, and RESIDE [22] for dehazing. Specifically,
Rain100H and Snow100K provide paired degraded-clean images along with their corre-
sponding rain and snow masks, which serve as ground-truth occlusion masks for supervising
WTNet’s occlusion modeling. For dehazing, we synthesize hazy images from the clean
images in RESIDE following the procedure described in [44], allowing us to generate hazy-
clean image pairs with known atmospheric light and haze density. These datasets provide the
necessary supervision signals—occlusion masks, atmospheric light, and haze density—for
training WTNet to disentangle and transfer weather-related degradation parameters.

During training, we select 1,800 paired samples from each dataset, resulting in a to-
tal of 5,400 paired degraded-clean images for training WTNet and the restoration models.
To demonstrate the generalizability of WTNet, we adopt the real-world dataset Weather-
Stream [48] during testing, which contains 3,000 rainy, 4,500 hazy, and 3,960 snowy im-
ages, along with their corresponding clean images captured by fixed webcams. Notably,
WeatherStream presents additional challenges due to the presence of mixed-weather con-
ditions, such as haze co-occurring with rain or snow, making it a suitable benchmark for
assessing the robustness of domain adaptation and weather-specific restoration performance.
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Figure 3: Qualitative results of weather-transferred images. We transfer degradation patterns
presented in the target-domain dataset WeatherStream [48] to the clean images in source
domain datasets: Rain100H [46], Snow100K [27], and RESIDE [22].

Implementation details. We optimize WTNet for 300 epochs with a batch size of 8 using
the AdamW optimizer and a learning rate of 5×10−4. During training and testing, all input
images to WTNet are resized to 256×256. WTNet contains 16 million parameters and has
an inference time of 30 milliseconds (ms) to generate a weather-transferred image on an
NVIDIA 2080Ti GPU.

Restoration Models. To assess the effectiveness of WTNet for test-time adaptation, we
conduct experiments using three state-of-the-art restoration models: PromptIR [30], AST [51],
and AdaIR [7], which serve as the evaluation backbones for domain adaptation performance.
PromptIR and AdaIR are all-in-one frameworks capable of handling multiple degradation
types within a single unified network, while AST is a degradation-specific model applied
individually to each degradation type. All models are trained in an all-in-one fashion using
a mixed set of 5,400 synthetic image pairs, following their default training configurations.
During testing, each model is fine-tuned for one epoch using the domain-adaptive fine-tuning
sets generated by WTNet, enabling adaptation to unseen target-domain degradations.

4.2 Experimental Results
Quantitative Comparison. We compare the restoration performances of three baseline
models and their WTNet-enhanced counterparts in Table 1, where “Baseline” refers to mod-
els trained without WTNet, and “+WTNet” denotes models fine-tuned using the proposed
WTNet framework. As shown in Table 1, WTNet consistently and significantly improves the
performance of all three SoTA restoration models: PromptIR [30], AST [51], and AdaIR [7].
In particular, WTNet boosts the average PSNR of PromptIR, AST, and AdaIR by 5.59 dB,
4.15 dB, and 3.95 dB, respectively, on WeatherStram. Task-wise, WTNet also yields sub-
stantial performance gains, achieving average improvements of 5.91 dB for deraining, 4.97
dB for desnowing, and 2.79 dB for dehazing. In Figure 1, we further compare restora-
tion performance across three training strategies: (i) weather-specific training, (ii) all-in-
one training, and (iii) all-in-one training with WTNet. Models enhanced with WTNet not
only outperform conventional all-in-one models but also approach, or in some cases surpass,
the performance of weather-specific models. These results demonstrate WTNet’s effective-
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Figure 4: Qualitative results of PromptIR [30] on WeatherStream [48].

Figure 5: Qualitative results of AST [51] on the WeatherStream [48] dataset.

ness in narrowing the performance gap between general-purpose and task-specific restoration
strategies.
Qualitative Comparison. We present qualitative results of the weather-transferred images
in Figure 3. As shown, degradation patterns from WeatherStream [48] are faithfully trans-
ferred onto clean images from Rain100H [46], Snow100K [27], and RESIDE [22]. WT-
Net effectively disentangles weather-related degradations from scene content, enabling clean
degradation transfer without introducing semantic distortion. Notably, real-world degraded
images often exhibit mixed-weather conditions, such as haze co-occurring with rain or snow.
WTNet successfully captures and transfers these compound degradations to clean images,
thereby generating domain-adaptive fine-tuning sets that accurately reflect the degradation
distributions present in the target domain.

We present qualitative de-weathering results on WeatherStream for three baseline mod-
els and their corresponding WTNet-enhanced versions. The baseline results are denoted as
“Baseline,” while the WTNet-enhanced outputs are denoted as “+WTNet.” The comparisons
are shown for PromptIR in Figure 4, AST in Figure 5, and AdaIR 6. Across these visual-
izations, the baseline models reveal several common limitations. In rain and snow scenarios,
they often fail to fully remove degradations, resulting in residual artifacts and mild color
distortions. In hazy scenes, they tend to struggle with recovering background structures, fre-
quently producing overly smoothed or faded outputs. By contrast, WTNet-enhanced models
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Figure 6: Qualitative results of AdaIR [7] on the WeatherStream [48] dataset.

TM Depth HDD ALD MD Rain Snow Haze Avg.
Net1 17.09 15.73 16.42 16.41
Net2 ✓ 18.90 17.43 16.00 17.44
Net3 ✓ ✓ 21.71 16.21 17.53 18.48
Net4 ✓ ✓ ✓ 20.29 18.16 16.77 18.41
Net5 ✓ ✓ ✓ 22.25 16.23 16.52 18.33
Net6 ✓ ✓ ✓ ✓ 24.24 21.71 20.04 22.00

Table 2: Component analysis of WTNet for restoration performance of PromptIR [30] in
PSNR (dB) on WeatherStream [48].

generate significantly improved results with sharper edges, clearer textures, and better struc-
tural preservation. These qualitative results highlight WTNet’s superior generalization and
restoration capability across a variety of challenging real-world weather conditions.

4.3 Ablation Studies
Component Analysis. In Table 2, we conduct an ablation study using PromptIR as the
backbone model to evaluate each component in WTNet. Net1 represents the baseline model
trained without WTNet. We first compare two strategies for generating transmission maps
(TM): direct estimation (Net2) versus reconstruction using the Haze Density Decoder (HDD)
and a pre-trained depth estimator (Depth) (Net3). The latter (Net3) outperforms direct esti-
mation (Net2) and improves upon the baseline (Net1) by 2.07 dB on average.

Next, we assess the individual impact of the Atmospheric Light Decoder (ALD) and the
Mask Decoder (MD) by incorporating them into Net3, forming Net4 and Net5, respectively.
While neither component alone yields significant improvements over Net3, their combina-
tion in Net6 leads to a substantial average performance gain of 3.52 dB. Given that real-world
adverse weather often involves compound degradations (e.g., haze with rain or snow), Net6,
the final version of WTNet, integrates all weather-related parameters in a unified framework.
This comprehensive design enables WTNet to robustly handle diverse degradation types,
resulting in the best all-in-one performance across adverse weather restoration tasks.

Representation Analysis of A and β . To assess how different representations of atmo-
spheric light A and haze density β affect restoration, we compare their scalar and spatial
map forms in Table 3. Net1 and Net2 use mixed forms (scalar A with map β , and vice
versa) and yield similar performance, suggesting limited individual impact. While using
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A: Map A: Scalar β : Map β : Scalar Rain Snow Haze Avg.
Net1 ✓ ✓ 22.15 21.34 18.65 20.71
Net2 ✓ ✓ 22.62 21.24 18.49 20.78
Net3 ✓ ✓ 23.22 21.58 18.64 21.15
Net4 ✓ ✓ 24.12 22.10 19.81 22.01

Table 3: Representation analysis of atmospheric light A and haze density β , comparing
spatial map and scalar forms, for restoration performance of PromptIR [30] in PSNR (dB)
on WeatherStream [48].

maps for both parameters (Net3) improves results, scalar forms for both (Net4) achieve the
best PSNR. This suggests that although spatial maps offer flexibility, scalar representations
may generalize better on WeatherStream [48] due to their simplicity and robustness.

Method Rain Snow Haze Average
Baseline 19.31 17.31 12.37 16.33

+Noise-DA 19.63 (+0.32) 18.15 (+0.84) 13.48 (+1.11) 17.09 (+0.76)
+WTNet 25.32 (+6.01) 23.04 (+5.73) 19.01 (+6.64) 22.46 (+6.13)

Table 4: Quantitative comparison of domain adaptation methods, WTNet (ours) and Noise-
DA [25], in terms of PSNR (dB) on WeatherStream [48], using the restoration backbone
from Noise-DA as the baseline.

Comparison with other domain adaptation methods. We compare WTNet with Noise-
DA [25], a training-time domain adaptation method, using the restoration backbone adopted
in the original Noise-DA. As shown in Table 4, Noise-DA improves the baseline by only
0.76 dB, showing limited adaptation under complex weather conditions. In contrast, WTNet
conducts test-time adaptation and enhances PSNR by 6.13 dB on average by transferring
degradation patterns and constructing domain-adaptive fine-tuning sets.

Limitations. WTNet is designed to address adverse weather conditions by leveraging the
inductive biases of weather formation. However, it may not directly apply to other types of
degradation, such as blur, low-light, or noise, which remain open for future research.

5 Conclusion
This paper introduces Weather Transfer Network (WTNet), a domain adaptation framework
that enhances all-in-one image restoration under adverse weather conditions at test time.
WTNet transfers degradation patterns from target-domain images to source-domain clean
images to construct domain-adaptive fine-tuning sets for test-time adaptation. It explicitly
disentangles and reassembles key weather components—including snow masks, rain streaks,
haze density, and atmospheric light—leveraging the inductive biases of weather formation
for accurate degradation transfer. By utilizing these adaptive fine-tuning sets, WTNet dy-
namically adapts restoration models to both weather-specific and mixed-weather scenarios,
improving generalization and performance. Experiments on real-world deraining, desnow-
ing, and dehazing benchmarks show that WTNet consistently enhances restoration quality
and outperforms state-of-the-art methods, validating its effectiveness and practicality for
real-world adverse weather image restoration.
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