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1 Algorithm of Selecting Relatively Sharp Patches

In the Relatively-Sharp Detection Module (RSDM), we adopt an adaptive sharp-
ness threshold η(i) to ensure the number of relatively sharp patches extracted
from the video V (i) to reach a specified percentage of the number of total
frames in V (i). More precisely, we set η(i) to select the top r% relatively sharp
patches to serve as pseudo-sharp images. Here, we describe how to determine
the adaptive sharpness threshold η(i) in Algorithm 1 to select the top r% rela-
tively sharp patches. First, the target number of selected patches is calculated
as N = r% × |V (i)|, where |V (i)| is the number of total frames in V (i), and
the initial threshold is initialized as η(i) = 0.5. Next, we choose relatively sharp
patches based on the set threshold η(i) via RSDM (described in Algorithm 2).
If we select more patches than the specified limit N , we decrease η(i) by 0.01 to
choose fewer patches in the next iteration. On the other hand, if the number of
the patches is less than N , we increase η(i) by 0.01 to obtain more patches next
round. With the updated η(i), we iterate the above steps until the top r% rela-
tively sharp patches in V (i) are collected, where r is set to 20 in our work. In the
end, we obtain a set of relatively sharp patches, denoted as S(i) in Algorithm 1,
for reblurring.

2 Computational cost of our method

Table 1 presents the computational cost of each component of our method for
adapting the deblurring model, ESTRNN. The total runtime for processing 3, 000
images from the BSD testing dataset is 945 seconds, or 0.315 seconds per image
on average, on an NVIDIA 3090 GPU. Additionally, our adaptation is conducted
offline, allowing the adapted models to operate during inference without incur-
ring additional overhead.
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Algorithm 1 Selecting Top r% Relatively Sharp Patches

V (i): A blurred video
N ← r%× |(V (i)|: Target number of selected patches
η(i) ← 0.5: Adaptive sharpness threshold
P ← N : Number of selected patches in the previous iteration
while True do

S(i) ← RSDM(V (i), η(i)): RSDM returns the selected relatively sharp patches
N (i) ← |S(i)|: Number of selected relatively sharp patches
if N == N (i) then

return S(i)

else if N > N (i) then
η(i) = η(i) + 0.01
if N < P then

return S(i)

end if
else if N < N (i) then

η(i) = η(i) − 0.01
if N > P then

return S(i)

end if
end if
P ← N (i)

end while

Algorithm 2 Extracting the relatively sharp patches based on η(i) (RSDM)

η(i) : Adaptive sharpness threshold
V (i) : Blurred video
M (i) ← BME(V (i)): Blur magnitude map estimated by Blur Magnitude Estimator
Mask(i) ← Binarize(M (i), η(i)) : Blur magnitude map is binarized based on η(i)

S(i) ← [] : Selected relatively sharp patches
for t← 1 to |Mask(i)| do

s← regionprop(Mask
(i)
t ) : t-th sharp patch cropped by regionprop library [1]

if shape(s) ≥ (256, 256) then
Append s to S(i)

end if
end for
return S(i)
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Table 1: Runtime for each component of our method when adapting ESTRNN on
the BSD testing dataset (3000 frames). Note that the fine-tuning time will very across
differents deblrred models

RSDM DBCGM Reblurring Fine-tuning Total
291s 177s 171s 306s 945s

Table 2: Ablation studies on different strategies to set a domain-specific blur magni-
tude in the Magnitude Adaptation Process.

Method Baseline Method 1 Method 2 Ours
PSNR 25.57 28.70 28.74 29.44

3 Effects of Fusion Strategy on the Magnitude
Adaptation Process

In Table 2, we compare various strategies for setting a domain-specific blur mag-
nitude in the Magnitude Adaptation Process of the DBCGM. First, we average
the blur magnitudes across all the considered frames {V (i)

t−2, ..., V
(i)
t+2}) to obtain

the domain-specific blur magnitude (Method 1), namely

M̃
(i)
t = Avg(M (i)

t−2,M
(i)
t−1,M

(i)
t ,M

(i)
t+1,M

(i)
t+2). (1)

Second, we average the blur magnitudes excluding the center frame V (i)
t (Method

2), i.e.,
M̃

(i)
t = Avg(M (i)

t−2,M
(i)
t−1,M

(i)
t+1,M

(i)
t+2). (2)

Lastly, the proposed method (denoted as Ours) for determining the blur magni-
tude is depicted as follows

M̃
(i)
t = Norm(M

(i)
t ) · Avg(M (i)

t−2,M
(i)
t−1,M

(i)
t+1,M

(i)
t+2). (3)

The experimental results show that all the methods improve performance, where
the proposed method achieves the best results.

4 Domain-adaptive Reblurred Results on Real-world
Datasets

We demonstrate reblurred results obtained using ID-Blau [8] based on the domain-
specific blur conditions generated by our Domain-adaptive Blur Condition Gen-
eration Module (DBCGM) on several datasets, including BSD-1ms8ms [9] in Fig-
ure 1, BSD-2ms16ms [9] in Figure 2, BSD-3ms24ms [9] in Figure 3, RBVD [2] in
Figure 4, and RealBlur [6] in Figure 5. These results show that we can generate
blurred images consistent with blur patterns present in test videos.
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5 Domain-adaptive Deblurred Results on Real-world
Datasets

We provide additional qualitative results for deblurring models using our do-
main adaptation scheme, denoted as Ours, compared to those without using
the scheme, denoted as Baseline, in Figures 6 ∼ 25. These deblurring models are
trained on the GOPRO [4] dataset, and tested on the RealBlur [6], RBVD [2], and
three versions of BSD [9] datasets. We demonstrate the qualitative comparisons
based on four state-of-the-art video deblurring models, including DSTNet [5] in
Figures 6 ∼ 10, ESTRNN [9] in Figures 11 ∼ 15, MMP-RNN [7] in Figures 16
∼ 20, and Shift-Net [3] in Figures 21 ∼ 25.

6 Limitations

6.1 Limitation for single-image deblurring

Our proposed method requires consecutive frames from a video to accurately
compile blur conditions. This requirement inherently limits the applicability of
our approach to scenarios where video data is available, and consecutive frames
can be processed. Consequently, our method is not suitable for single-image
deblurring models, which aim to restore sharpness in individual frames without
the context provided by adjacent frames.
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Input Sequence Reblurred Result

Fig. 1: Qualitative reblurred results of our scheme on BSD-1ms8ms [9].
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Input Sequence Reblurred Result

Fig. 2: Qualitative reblurred results of our scheme on BSD-2ms16ms [9].
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Input Sequence Reblurred Result

Fig. 3: Qualitative reblurred results of our scheme on BSD-3ms24ms [9].
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Input Sequence Reblurred Result

Fig. 4: Qualitative reblurred results of our scheme on RBVD [2].
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Input Sequence Reblurred Result

Fig. 5: Qualitative reblurred results of our scheme on RealBlur [6].
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Fig. 6: Qualitative results of DSTNet [5] on the BSD-1ms8ms [9] dataset.
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Fig. 7: Qualitative results of DSTNet [5] on the BSD-2ms16ms [9] dataset.
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Fig. 8: Qualitative results of DSTNet [5] on the BSD-3ms24ms [9] dataset.
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Fig. 9: Qualitative results of DSTNet [5] on the RealBlur [6] dataset.
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Fig. 10: Qualitative results of DSTNet [5] on the RBVD [2] dataset.
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Fig. 11: Qualitative results of ESTRNN [9] on the BSD-1ms8ms [9] dataset.
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Fig. 12: Qualitative results of ESTRNN [9] on the BSD-2ms16ms [9] dataset.
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Fig. 13: Qualitative results of ESTRNN [9] on the BSD-3ms24ms [9] dataset.
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Fig. 14: Qualitative results of ESTRNN [9] on the RealBlur [6] dataset.
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Fig. 15: Qualitative results of ESTRNN [9] on the RBVD [2] dataset.
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Fig. 16: Qualitative results of MMP-RNN [7] on the BSD-1ms8ms [9] dataset.
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Fig. 17: Qualitative results of MMP-RNN [7] on the BSD-2ms16ms [9] dataset.



22 J.-T. He et al.

B
lu

rr
y 

Im
ag

e
B

as
el

in
e

O
ur

s

Fig. 18: Qualitative results of MMP-RNN [7] on the BSD-3ms24ms [9] dataset.
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Fig. 19: Qualitative results of MMP-RNN [7] on the RealBlur [6] dataset.
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Fig. 20: Qualitative results of MMP-RNN [7] on the RBVD [2] dataset.
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Fig. 21: Qualitative results of Shift-Net [3] on the BSD-1ms8ms [9] dataset.
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Fig. 22: Qualitative results of Shift-Net [3] on the BSD-2ms16ms [9] dataset.



Domain-adaptive Video Deblurring via Test-time Blurring 27

B
lu

rr
y 

Im
ag

e
B

as
el

in
e

O
ur

s

Fig. 23: Qualitative results of Shift-Net [3] on the BSD-3ms24ms [9] dataset.
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Fig. 24: Qualitative results of Shift-Net [3] on the RealBlur [6] dataset.
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Fig. 25: Qualitative results of Shift-Net [3] on the RBVD [2] dataset.
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