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This paper addresses the problem of recognizing partially observed human actions. Videos of actions acquired in real world
often contain corrupt frames caused by various factors. These frames may appear irregularly, and make the actions only
partially observed. They change the appearance of actions and degrade the performance of pre-trained recognition systems.
In this paper, we propose an approach to address the corrupt-frame problem without knowing their locations and durations
in advance. The proposed approach includes two key components, outlier filtering and observation completion. The former
identifies and filters out unobserved frames, and the latter fills up the filtered parts by retrieving coherent alternatives from
training data. Hidden conditional random fields (HCRFs) are then used to recognize the filtered and completed actions. Our
approach has been evaluated on three datasets, which contain both fully observed actions and partially observed actions with
either real or synthetic corrupt frames. The experimental results show that our approach performs favorably against the other
state-of-the-art methods, especially when corrupt frames are present.
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1. INTRODUCTION
Human action recognition is essential to varied applications such as surveillance, health care, and
human-computer interaction. Many existing efforts such as [Andre 2013; Li et al. 2007; Lin et al.
2014; Lin et al. 2017; Tang et al. 2015; Vemulapalli et al. 2014; Zhang et al. 2011; Zhao et al. 2014;
Zhang et al. 2015] focus on recognizing human actions in fully-observed videos. Unfortunately, the
assumption of full observation may not be always held due to various factors including hardware
limitations (e.g., signal loss or noise [Oshin et al. 2011]), software limitations (e.g., skeleton esti-
mation errors [Chaaraoui et al. 2013]), and complex environments (e.g., partial occlusions [Ayvaci
et al. 2012; Wang et al. 2009]). We consider video frames where the above mentioned situations
happen as outliers, which make the actions partially unobserved. Note that by unobserved frames,
we do not mean that these frames are unobserved. Instead, we mean that the actions in these frames
are (partially) unobserved. Fig. 1 shows some examples of outlier frames. In this study, we present
an approach for recognizing human actions with outlier frames.

Since outlier frames are inconsistent with the training data, they often cause significant perfor-
mance degradation. Several studies [Shu et al. 2012; Wang et al. 2012; Shen et al. 2012; Weinland
et al. 2010; Cao et al. 2013] have attempted to recognize actions that are not fully observed. How-
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(a) (b) (c)

Fig. 1. Outlier frames caused by (a) noisy video signals, (b) skeleton inference errors, and (c) partial occlusions.

ever, they handle outlier frames by using extra domain knowledge or assume that the locations of
outlier frames are known in advance. Thus, they may be less practical in real-world applications.

We refer to the task as partially observed action recognition (POAR). Some difficulties have
arisen as follows. Firstly, we need to distinguish outlier frames in the video. Secondly, the observed
parts may carry insufficient evidences and result in unreliable action predictions. To address these
issues, we propose to divide the video of an action into observed and unobserved parts, and replace
the unobserved part with a coherent alternative.

Specifically, our approach performs outlier frame filtering and observation completion to carry
out POAR upon hidden-state conditional random fields (HCRFs) [Quattoni et al. 2007]. A video
frame of a test action is considered an outlier if it is not similar to any frame in the training set.
Although not all such frames are corrupt, they would cause performance degradation since they are
not covered by the training data. The process of outlier frame filtering detects and removes these
outliers.

After filtering out the outliers, the remaining frames of the action to be recognized are considered
as the observed part of that action. This part may be composed of temporally separated segments and
carries incomplete information for an accurate prediction. To handle the problems, extra knowledge
is borrowed from training data — We treat the observed part as a query to the training data, retrieve
training actions similar to the query, and replace the unobserved part with the alternative inferred
from the retrieved actions. It follows that the filtered and completed actions can serve as inputs to
HCRFs. In this way, our approach takes advantage of both information enrichment and temporal
coherence regularization to facilitate POAR.

Our approach is evaluated on two benchmarks, the UT-Interaction dataset [Ryoo and Aggarwal
2010] and the ArmGesture dataset [Quattoni et al. 2007]. In view of the fact that most existing
benchmarks are composed of fully observed actions without sufficient outliers, we collected a new
dataset containing daily activities of fifteen classes, where outlier frames are irregularly and natu-
rally present. The experimental results on the two benchmarks and the dataset we collected demon-
strate that our approach can effectively detect outlier frames, seek the high-quality alternatives to
the unobserved parts, and lead to a remarkable performance boost.

The main contribution of this work lies in that we develop a general approach to POAR. It in-
fers the outlier frames and predicts the actions. It makes no assumption about the number, temporal
locations, or durations of the outlier frames, and can work with various features such as those ex-
tracted from RGB images, depth maps, and skeleton structures. Two key components, outlier frame
filtering and observation completion, are tightly coupled in our approach. The former identifies and
removes the outlier frames. The latter borrows plausible alternatives to the filtered outliers. It turns
out that our approach can robustly predict partially observed actions.

2. RELATED WORK
The literature on human action recognition is extensive. Our review focuses on those that recognize
actions in videos because of their relevance to our approach. Owing to the advances in local descrip-
tors, representing an action in a video as a collection of local patches or spatio-temporal cubes e.g.,
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[Laptev 2005; Maji et al. 2011] has become popular for its robustness to deformations and partial
occlusions. However, the geometric and temporal layouts between local features are ignored.

To address this issue, several researches focus on modeling the spatial geometry and tempo-
ral coherence of the local features. Graph models such as factorial conditional random fields
(CRFs) [Wang and Suter 2007] and the hidden Markov model (HMM) [Chen and Aggarwal 2011]
are used for their expressive power of relationship modeling.

Instead of handcrafted features, using features learned by convolutional neural networks
(CNNs) [Krizhevsky et al. 2012] has demonstrated its effectiveness in various applications such
as object recognition [Li et al. 2017; Shih et al. 2017], human pose estimation [Cao et al. 2016;
Chu et al. 2016], tracking [Carneiro and Nascimento 2013], and person re-identification [Xiao et al.
2016]. The success of CNNs also sheds light on video-based computer vision problems. Recent
studies of action recognition, e.g., [Tran et al. 2015; Liu et al. 2016b; Donahue et al. 2015; Liu
et al. 2016a; Feichtenhofer et al. 2016; Gan et al. 2015], focus on using deep learning frameworks
for learning video representations. Gan et al. [Gan et al. 2015] proposed a CNNs-based method
for high-level video event detection and key-evidence localization. Li et al. [Li et al. 2016] pre-
sented a deep architecture for human action recognition, which is capable of incorporating multi-
granularity information extracted from videos. Simonyan and Zisserman [Simonyan and Zisserman
2014] adopted a two-steam ConvNet framework which learns a spatial sub-network and a tempo-
ral sub-network jointly, and achieved very promising performance. However, most of these methods
concentrate on recognizing fully-observed actions. They are typically sensitive to outlier frames and
suffer from performance degradation when outlier frames are present.

There have been research efforts on action recognition with incomplete observation caused by
various issues such as partial occlusions [Shu et al. 2012; Wang et al. 2012], incorrect skeleton
estimation [Shen et al. 2012], view changes [Weinland et al. 2010], and missing frames [Cao et al.
2013]. These works use issue-specific domain knowledge and/or assume that the locations of outlier
frames are annotated. Thus, they would be impractical in complex environments or without manual
annotation.

Early prediction, e.g., [Chen et al. 2011; Davis and Tyagi 2006; Hoai and De la Torre 2014; Jiang
and Saxena 2014; Lan et al. 2014; Li and Fu 2014; Raptis and Sigal 2013; Ryoo 2011; Schindler
and Van Gool 2008; Yu et al. 2012; 2015], aims to predict an ongoing action by inferring its be-
ginning part. For example, Ryoo [Ryoo 2011] adopted both the integral and dynamic bag-of-words
to accomplish this task. Davis and Tyagi [Davis and Tyagi 2006] proposed an HMM-based proba-
bilistic reliable-inference approach for rapid human action detection. Chen et al. [Chen et al. 2011]
presented an approach to cluster human motion patterns (MPs) based on gait-trajectories, and pre-
dicted long-term future motion via matching current trajectories to classify MPs. Lan et al. [Lan
et al. 2014] introduced a new action representation, hierarchical movemes, to describe human move-
ment at multiple levels of temporal intervals, and developed a maximum-margin learning method
for predicting future actions. Hoai and De la Torre [Hoai and De la Torre 2014] presented a max-
margin early event detector that identifies the temporal location and duration of a certain action from
the video stream. On the other hand, Cao et al. [Cao et al. 2013] presented gap-filling to handle the
unobserved subsequence occurring in an action. They firstly estimated the action likelihood at each
observed subsequence and then inferred the global posterior of the whole activity. However, their
approach assumes that the periods of unobserved subsequences have been given manually. This
assumption makes the approach less practical for real-world applications.

Hidden-state conditional random fields (HCRFs) [Quattoni et al. 2007] are a powerful and dis-
criminative model. HCRFs employ latent variables to model the hidden structures of observations
and are effective for structured data prediction. HCRFs define the joint distribution over the class
label and latent state labels conditionally on the observed data. Recent studies such as [Zhang and
Gong 2010; Song et al. 2012; 2013; Wang et al. 2014] showed that HCRFs achieve more favorable
performance than HMM and CRFs for action recognition.

However, HCRFs cannot work with incomplete observations or data labels. Some studies have at-
tempted to tackle this limitation. Chang et al. [Chang et al. 2009] presented an incremental inference
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process to infer HCRFs, and achieved facial expression prediction with incomplete observations.
Chang et al. [Chang et al. 2014] integrated multiple instance learning into HCRFs for addressing
the uncertainty of data labels. Banerjee and Nevatia [Banerjee and Nevatia 2014] proposed a pose
filter based HCRFs (PF-HCRFs) model, which combines a detection filter for finding the key poses
in an action video, and a bag-of-words root filter for modeling the detected key poses. PF-HCRFs
can infer the temporal locations of the key-poses even when the video frames are not fully ob-
served. Both methods [Banerjee and Nevatia 2014; Chang et al. 2009] show the ability to work with
incomplete observation. Instead, we show how to complete the incomplete observation and further
improve the performance.

In this work, we address the problem of POAR. Regular (meaning fully observed here) action
recognition can be considered a special case of POAR, if no unobserved part exists. POAR is re-
duced to early prediction when an unobserved subsequence occurs at the end of an action. Further-
more, our approach supports the detection of unobserved parts, and makes no assumptions about the
temporal locations of outlier frames. Hence, it is general enough to carry out regular action recogni-
tion, early prediction, gap-filling, and even to recognize actions with arbitrary occurrence of outlier
frames.

3. THE PROPOSED APPROACH
Our approach is described in this section. Consider a training set consisting of N fully observed
actions, D = {(xi, yi)}Ni=1, where each action instance is divided into T equal-length temporal
segments or frames

xi = {xi,1, xi,2, ..., xi,T }, (1)

with yi ∈ Y being its class label. Y is the set of action classes. In the following, a brief review
of HCRFs is firstly provided. We then depict our two key components, outlier frame detection and
observation completion, as well as their integration into HCRFs.

3.1. Action recognition with HCRFs
Given an action x, the conditional random fields (CRFs) [Sutton and McCallum 2007] model the
conditional distribution of classes by P (y|x,θ), where θ is the set of model parameters. The poste-
rior distribution P (y|x,θ) of CRFs is a Gibbs distribution,

P (y|x,θ) =
1

Zx
exp (Ψ(y,x,θ)), (2)

where Ψ is the potential function that will be introduced later. Zx is the partition function making
P (y|x,θ) a probability, i.e.,

Zx =
∑
y′∈Y

exp (Ψ(y′,x,θ)). (3)

With the training set D = {(xi, yi)}Ni=1, the model parameter set θ can be estimated by maximizing
the log-likelihood, i.e.,

θ∗ = arg max
θ

N∑
i=1

logP (yi|xi,θ)− ‖θ‖
2

2ρ2
, (4)

where the first term is the log-likelihood of the training data, and the second term is added for
regularization. The value of ρ is set to 0.5 in the experiments.

Instead of CRFs, we carry out partially observed recognition on HCRFs [Quattoni et al. 2007].
Specifically for an action instance x, a set of hidden nodes, h = {h1, h2, ..., hT }, is created, one
hidden node for each time stamp. We adopt a chain structure to model the dependence between these
nodes as shown in the left-hand side of Fig. 2. The conditional probability P (y|x,θ) in HCRFs is
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Fig. 2. Our approach for action recognition from partially observed videos. The left-hand side shows an HCRFs model
trained by fully observed videos. Given a test video x, our system employs the outlier-frame-filtering method (Sec. 3.2) to
find the outlier frames (enclosed by red boundaries). The input video x is divided into an observed part xo and an unobserved
part xu. We then estimate xu by employing xo as queries to the training dataset. The estimated unobserved part x̃u and the
observed part xo are then combined. The HCRFs are used to determine the action class from the combined sequence.

given by

P (y|x,θ) =
∑
h

P (y,h|x,θ) =

∑
h exp(Ψ(y,h,x,θ))∑

y′,h′ exp(Ψ(y′,h′,x,θ))
. (5)

We follow the original work of HCRFs [Quattoni et al. 2007] and define the potential function as

Ψ (y,h,x,θ) =

T∑
j=1

φ (xj) · θ1 (hj) +

T∑
j=1

θ2 (y, hj) +

T−1∑
j=1

θ3 (y, hj , hj+1) , (6)

where φ(xj) ∈ Rd is the feature representation of action x at the jth time stamp. θ1(hj) ∈ Rd is the
parameter vector of the jth hidden variable. Inner product of φ(xj) ·θ1(hj) represents the consensus
between observation xj and hidden state hj . θ2(y, hj) ∈ R and θ3(y, hj , hj+1) ∈ R measure the
compatibility among the corresponding variables.

The hidden variables in Eq. (6) are used to model the compatibility between the observations and
the class labels. The semantic meaning of a hidden state can be considered a key pose. Thus, the first
term in Eq. (6), φ(xj) · θ1(hj), can be interpreted as the consensus between frame xj and pose hj .
The second term in Eq. (6), θ2(y, hj), measures the compatibility between pose hj and action class
y. The third term in Eq. (6), θ3(y, hj , hj+1), measures the compatibility between the successive
poses and the action class. These hidden nodes are also used to enforce temporal smoothness.

With the training set D, the parameter set θ = {θ1, θ2, θ3} can be learned by optimizing Eq. (4).
Efficient solvers, such as L-BFGS, can be applied to the optimization [Quattoni et al. 2007]. After
learning, the HCRFs model θ∗ is obtained.
Feature extraction. In our work, φ(xj) ∈ Rd is the vector of the features extracted at time stamp j.
The adopted features can vary from dataset to dataset. For example, they can be those extracted by
applying the cuboid descriptor to RGB color images, or they can be the absolute 3D body joint loca-
tions extracted from a skeleton stream. The details of the features used in this work can be found in
Sec. 4.2. Each xj in this work is a set of successive frames within a small temporal window centered
at time stamp j. Hence, φ(xj) denote the features extracted from these frames. This implementa-
tion makes our approach tolerable to moderate misalignment or temporally non-uniform motions of
actions. We still term xj as a frame just for convenience in the following.
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3.2. Outlier frame filtering
When an action x is given in the test phase, its label y is then predicted via HCRFs by

y = arg max
y′∈Y

∑
h

P (y′,h|x,θ∗). (7)

However, as mentioned previously, outlier frames may occur in the test action x. The extracted
features {φ(xj)} from outlier frames cannot be properly handled by model θ∗ in the potential
function shown in Eq. (6). This issue needs to be addressed because it typically causes performance
degradation. Thus, our goal at this stage is to detect the outlier frames of action x by splitting it
into two disjointed subsets xo and xu, where xo ∪ xu = x and xo ∩ xu = ∅. The former subset
comprises the observed part, and the latter consists of the unobserved part.

In this work, we consider the video frames of a test action as outliers if they are not similar to any
frames in training set. By this definition, false alarms may occur when the training set does not cover
all the possible variations of actions. The learned HCRFs model does not work well on these unseen
frames in the training phase. No matter whether they are true outlier frames or not, removing such
frames before making the inference helps reduce the instability of the pre-learned HCRFs model.

To this end, consider all the frames S = {x} obtained in the training set D; With the adopted
feature representation {φ(x) ∈ Rd}, the k-means clustering algorithm [MacQueen 1967] is applied
to divide S into K disjointed groups, namely S = S1 ∪ S2 ∪ · · · ∪ SK . A multivariate Gaussian
density is then used to model the frames in each group. That is, the density that frame x belongs to
Sk is estimated by

p(x|Sk) = N (φ(x)|µk,Σk), (8)

where µk ∈ Rd and Σk ∈ Rd×d are the mean vector and covariance matrix of group Sk.
The cluster number K is set as the number of hidden states, which correspond to the key poses

of actions. The number of hidden states is determined by using cross validation in our experiments.
For a test action x = {xt}Tt=1, we frame-wise divide it into xo ∪ xu according to

xt ∈
{

xu, if maxk p(xt|Sk) < εk,

xo, otherwise,
(9)

where εk is the threshold.
Determining the values of the thresholds {εk}Kk=1 in Eq. (9) is nontrivial because they are usually

data-dependent, since outliers may be arbitrarily distributed. Outliers are those that are inconsistent
with training data. Therefore, we set the thresholds by referencing training data so that at least 80%
of the training frames are preserved. Test frames not covered by the training data are then treated as
outliers and will be filtered out before prediction.

3.3. Observation completion
Through outlier frame detection, action x is split into two parts, x = xo ∪ xu. To avoid the unfa-
vorable influence caused by the outlier part xu, the objective for inference is changed from Eq. (7)
to

y = arg max
y′∈Y

∑
h

P (y′,h|xo,θ∗), (10)

where the outlier frames have been removed at this point. A practical way to predict x via Eq. (10)
is to accordingly remove the part where xu involves, i.e.,

Ψ (y,h,xo,θ) =
∑
j∈O

φ (xj) · θ1 (hj) +
∑
j∈O

θ2 (y, hj) +
∑

j∈O,j+1∈O
θ3 (y, hj , hj+1) , (11)

with the index set O defined as {t|xt ∈ xo}.
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Despite the feasibility, two problems arise when inferring from incomplete observation via
Eq. (10) with the modified potential function in Eq. (11). First, the observed part xo may carry
insufficient evidence to make a reliable prediction. Second, the outlier frames may separate the
observed part xo into several isolated segments, making temporal consensus unavailable for the
regularization of action inference.

To address the two problems, we re-exploit the training data to compensate for the unobserved
part. Specifically, the observed part xo is considered the query to the training set D = {xi}Ni=1 that
serves as the gallery. We accordingly split the training actions {xi = (xo

i ,x
u
i )}Ni=1 based on O, the

index set of the observed frames in test action x. Then, the estimated unobserved part x̃u of action
x is determined by

φ(x̃u)←
N∑
i=1

λiφ(xu
i ), (12)

where

λi =
exp(−d2(φ(xo), φ(xo

i ))/σ2)∑N
j=1 exp(−d2(φ(xo), φ(xo

j ))/σ2)
, (13)

d(·, ·) is the used distance (or dissimilarity) function and σ is a positive constant. The value of σ is
empirically set to the average distance between training actions in the observed part. The rationale
behind Eq. (12) and Eq. (13) is that the similarity between two actions in one part implies their
similarity in another part. As can be seen in Eq. (13), if this test action is more similar to the ith
training sample in the observed part, the weight λi used in the composition is larger. The denomina-
tor of Eq. (13) is used for weight normalization. The employed distance function d(·, ·) is dependent
on the feature representations adopted — We use Kullback-Leibler divergence for histogram-based
features and Euclidean distance for the rest. The details of the used distance functions are given in
Sec. 4.2.

The label of test action x is then inferred by Eq. (7) (with the potential function Eq. (6)) by
taking the augmented action x̃ = xo ∪ x̃u as input. In this way, feature enrichment and temporal
regularization are both attained, which is termed observation completion in our study. It makes the
pre-trained HCRFs model applicable to partially observed data and leads to remarkable performance
improvement in POAR. The proposed observation completion and the improved performance dis-
tinguish our approach from previous ones for recognizing partially observed actions such as [Cao
et al. 2013; Davis and Tyagi 2006; Raptis and Sigal 2013; Hoai and De la Torre 2014; Lan et al.
2014; Ryoo 2011; Chang et al. 2009; Banerjee and Nevatia 2014].

To conclude this section, we summarize how outlier frame filtering and observation completion
work by showing the procedure of predicting a given testing action x step by step: 1) The action
x is divided into the observed part xo and the unobserved part xu using outlier frame filtering via
Eq. (9); 2) The observed part xo serves as the query to the training data, and we seek x̃u which
is coherent to xo and can act as an alternative to xu via Eq. (12); 3) Then, the augmented action
x̃ = xo ∪ x̃u is available. The prediction of action x is accomplished by taking the augmented
action x̃ as the input to the learned HCRFs in Eq. (7).

4. EXPERIMENTAL SETUP
This section introduces our experimental settings. We first describe the datasets used for perfor-
mance evaluation, including two benchmarks for action recognition and the dataset we collected,
and afterward we discuss the adopted feature representation and the evaluation metric on each
dataset.

4.1. Datasets for performance evaluation
The performance of our approach is evaluated on three datasets including the UT-Interaction [Ryoo
and Aggarwal 2010] dataset, the ArmGesture [Quattoni et al. 2007] dataset, and our CITI-
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Fig. 3. The six categories of activities in the UT-Interaction dataset. From left to right, they are hand-shaking, hugging,
kicking, pointing, punching, and pushing.

Fig. 4. The six categories of arm gestures in the ArmGesture dataset. From left to right, they are flip back (FB), shrink
vertically (SV), expand vertically (EV), double back (DB), point and back (PB), and expand horizontally (EH).

Fig. 5. The CITI-DailyActivities3D dataset. The figure shows one example from each of the fifteen daily activities included
in this dataset. The eight categories from left to right in the first row are Walk, Sit down, Sit still, Use a TV remote, Stand up,
Stand still, Pick up books, and Carry books respectively. The seven categories from left to right in the second row are Put
down books, Carry a backpack, Drop a backpack, Make a phone call, Drink water, Wave hand, and Cap, respectively.

DailyActivities3D dataset 1. These datasets comprise videos of different modalities such as RGB
videos, depth maps, and 3D skeleton structures. They cover various activities ranging from single-
person actions to multi-person interactions. Actions in the first two datasets are clean, whereas
outlier frames are present in the CITI-DailyActivities3D dataset.

4.1.1. UT-Interaction dataset. It is a collection of human interaction videos of six activity cate-
gories: hand-shaking, hugging, kicking, pointing, punching, and pushing. It is divided into two sets
called UT-Interaction #1 and #2. Each has 60 videos with six types of human interactions and 10
videos per activity. Fig. 3 shows some examples. Both segmented and unsegmented versions of this
dataset are available. Following the setting in [Ryoo 2011], we use the segmented one for evaluation.

4.1.2. ArmGesture dataset. It contains six types of arm-gesture sequences, including flip back
(FB), shrink vertically (SV), expand vertically (EV), double back (DB), point and back (PB), and
expand horizontally (EH), as shown in Fig. 4. The video sequences were performed by 13 people
with 120 sample sequences per class on average.

1CITI-DailyActivities3D dataset is available at citidatabase.shihyaolin.com
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(a) (b) (c)

Fig. 6. Outlier frames in the skeleton streams caused by (a) self-occlusion, (b) object-occlusion, and (c) incorrect skeleton
estimation.

(a) (b) (c)

Fig. 7. An example of large intra-class variations. For the wave hand activity, the actors may wave their (a) left hands, (b)
right hands, or (c) both hands.

4.1.3. CITI-DailyActivities3D dataset. Most existing benchmarks such as MSR-ActionPair [Or-
eifej and Liu 2013], NATOPS [Song et al. 2013], UTKinect-Action [Xia and Aggarwal 2013],
MSRC-12 Kinect gesture [Fothergill et al. 2012], Cornell-Activity [Sung et al. 2012] comprise videos
with no or few corrupted frames. We collected this new dataset, where abundant outlier frames are
irregularly and naturally present. It contains fifteen daily activities: walk, sit down, sit still, use a TV
remote, stand up, stand still, pick up books, carry books, put down books, carry a backpack, drop a
backpack, make a phone call, drink water, wave hand, and clap, as shown in Fig. 5.

The dataset has 482 sequences. Among them, 182 sequences contain outlier frames presenting
in arbitrary locations and lasting for various durations. Ten actors, including eight males and two
females, were recruited for building this dataset, and one of them is left-handed. Each activity is
performed by each actor between two and five times. A Microsoft Kinect was used for the collec-
tion so that the RGB video, the depth maps, and the inferred skeletons of each activity sequence
are all available. The skeleton structures in this work were extracted by using the Kinect for
Windows SDK.

This dataset contains outlier frames, and several examples in the skeleton streams are shown in
Fig. 6, where the portions of the skeletons extracted with low confidence are drawn in yellow. It is
seen that outlier frames could be caused by various reasons such as self-occlusion, object-occlusion,
and incorrect skeleton estimation. This dataset has also large intra-class variations. Fig. 7 gives an
example of this case. For the wave hand activity, the actors may wave their left hands, right hands,
or both. It contains high inter-class similarity too. An example is displayed in Fig. 8, where the
skeletons of two activities make a phone call and drink water look very similar. In addition, unlike
most daily activity datasets (e.g., [Song et al. 2013; Sung et al. 2012; Oreifej and Liu 2013; Fothergill
et al. 2012]) where the actors are asked to face the camera, we did not include this requirement when
constructing the CITI-DailyActivities3D dataset. The setting is thus more realistic and increases the
difficulty owing to the perspective-projection variations. An example is given in Fig. 9.

4.2. Feature representation
These datasets were collected in diverse settings. The appropriate features to represent actions vary
from dataset to dataset. The adopted feature representations are described below.

4.2.1. UT-Interaction dataset. We follow the feature extraction setup in [Ryoo 2011], where the
spatial-temporal interest points (STIPs) are firstly detected for each action, and the cuboid descrip-
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(a) (b)

Fig. 8. An example of high inter-class similarity. The skeleton structures are from (a) the make a phone call activity
category and (b) the drink water activity category. These activities look very similar.

(a) (b) (c)

Fig. 9. An example of variations caused by perspective difference. (a)∼ (c) Three actions of the walk category are captured
from different points of view.

tor [Dollár et al. 2005] is applied to describe each STIP. The Harris3D corner detector [Laptev
2005] is used for STIPs detection in this work. To produce a compact representation, actions are de-
scribed by using the bag-of-words model [Fei-Fei and Perona 2005], where the codebook is gener-
ated via k-means clustering with 800 codewords [Cao et al. 2013]. Each action is equally partitioned
into T = 20 temporal segments. The KL divergence is used as the distance measure.

4.2.2. ArmGesture dataset. The pre-compiled features are provided in this dataset, and are used
in our experiments. The 2D tracked joint angles and 3D joint coordinates of shoulders and elbows
are combined to form the feature representation. A 20-dimensional feature vector is used for char-
acterizing a temporal segment. Euclidean distance is used.

4.2.3. CITI-DailyActivities3D dataset. We use the absolute 3D body joint positions in the skeleton
streams as the feature representation. T = 30 skeletons are uniformly sampled for each action in
this dataset. To make the skeletons invariant to the absolute location, we perform the following
preprocessing to normalize each skeleton. For location normalization, we transform the skeletal
data from the world coordinate system to the person-centric coordinate system by setting the hip
center as the origin. For scale normalization, we select a skeleton in this dataset as the reference,
and normalize all the other skeletons so that their body part lengths are the same as that of the
reference skeleton. For being robust to the viewpoint changes, we rotate each skeleton such that the
ground plane projection of the vector from its left hip to its right hip is parallel to the global x-axis.
Euclidean distance is used for dissimilarity estimation.

4.3. Evaluation metric
For performance analysis and comparison, the evaluation metric for each dataset is described as
follows.

4.3.1. UT-Interaction dataset. We follow [Cao et al. 2013; Ryoo 2011; Banerjee and Nevatia
2014], and adopt leave-one-sequence-out cross-validation for performance evaluation.

4.3.2. ArmGesture dataset. We follow [Quattoni et al. 2007; Song et al. 2012; 2013] where five-
fold cross-validation is used as the performance measure.

4.3.3. CITIDailyActivities3D dataset. We conduct three evaluation tasks on this dataset. The eval-
uation task #1 aims at evaluating the performance of approaches on fully-observed videos. That is,
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Fig. 10. Results of early prediction on (a) the UT-Interaction dataset #1, (b) the UT-Interaction dataset #2, and (c) the
ArmGesture dataset.

neither the training nor the testing action videos contain outlier frames. The evaluation task #2 puts
emphasis on the tolerance of approaches to outlier frames. Namely, the model of the approach for
evaluation is learned on the clean training set, but tested on videos with outlier frames. Both the
training and testing sets in the evaluation task #3 contain mixtures of clean and outlier frames. We
will show that our approach can be further extended to address not only corrupt testing data but also
corrupt training data. The cross-subject test setting is used in all the tasks. We randomly split the ten
subjects into two equal-size groups. The actions of the subjects in one group serve as the training
data, while the remaining actions act as the testing data. We then switch the two subject groups. The
average performance is reported.

5. EXPERIMENTAL RESULTS
The proposed approach is evaluated in this section. Two sets of experiments are conducted. In the
first set of experiments, we assume that the locations of outlier frames are known in advance. The
outlier filtering mechanism of our approach is turned off for this set of experiments. We focus on
evaluating the advantages of the proposed observation completion over existing approaches that
work on actions with incomplete observation. Specifically, two settings, early prediction and gap-
filling, are considered. The former involves recognizing actions with missing frames at the end of
the sequences. The latter involves recognizing actions where the outlier (missing here) frames locate
in the middle and thus, the observed frames are separated into two segments. The first set of exper-
iments is conducted on the UT-Interaction and ArmGesture datasets. The CITI-DailyActivities3D
dataset consists of actions with arbitrarily presenting outlier frames. It is inconsistent with early
prediction and gap-filling.

In the second set of experiments, the locations of outlier frames are unknown. This setting is
more difficult and has not been considered in previous studies. The primary evaluation of interest
is to check whether the proposed components, outlier filtering and observation completion, jointly
work well. This set of experiments is conducted on two datasets. The outlier frames in the UT-
Interaction dataset manually synthetic, whereas those in CITI-DailyActivities3D dataset are real.
The ArmGesture dataset provides only the pre-compiled features instead of video frames. No outlier
frames can be added. It is hence not adopted in this set of experiments.

5.1. Early prediction
The positions of the unobserved frames in action videos are known before recognition in early
prediction. Outlier frame filtering introduced in Sec. 3.2 is hence turned off. Only observation com-
pletion introduced in Sec. 3.3 is applied to retrieve a plausible alternative to the unobserved part.
Below, we describe some of the representative approaches that can recognize actions with incom-
plete observation, and compare our approach with them.
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5.1.1. Approaches for comparison. For the UT-Interaction dataset, we chose the following state-
of-the-art methods for comparison. These methods include IntegrateBoWs [Ryoo 2011], Dynam-
icBoW [Ryoo 2011], max-margin early event detectors (MMED) [Hoai and De la Torre 2014],
sparse coding based method (SC) [Cao et al. 2013], mixture of segments sparse coding (MSSC) [Cao
et al. 2013], pose filter based hidden random conditional fields (PF-HCRFs) [Banerjee and Nevatia
2014], and hierarchical movemes representation (HMR) [Lan et al. 2014]. For the event detector
MMED, we follow the setting in [Cao et al. 2013] to evaluate its performance. All the above meth-
ods have reported their results on both UT-datasets #1 and #2 except that PF-HCRFs [Banerjee
and Nevatia 2014] provides the results on the UT-dataset #1 only. Motivated by the good perfor-
mance of CNNs-based approaches to action recognition, the proposed approach is applied to the
deep learning-based features (DF) extracted by using the two-stream architecture in [Feichtenhofer
et al. 2016]. The resultant approach is denoted by Ours +DF.

For the ArmGesture database, we compare our method with that in [Chang et al. 2009], which
infers partial observation upon hidden conditional random fields (PO-HCRFs). This scheme adopts
Eq. (11) to infer the action label when missing frames occur at the end of the actions. The competing
approach PO-HCRFs is implemented by us, because its performance on the ArmGesture dataset has
not been reported.

5.1.2. Results analysis. Fig. 10(a) and Fig. 10(b) summarize the performance of the competing
approaches and our approach on the UT-Interaction datasets #1 and #2, respectively. The recognition
rates of each approach with different fractions of the observed segments in videos, i.e., observation
ratios, are shown. Fig. 10(a) shows that the HCRFs-based approaches such as our approach and PF-
HCRFs [Banerjee and Nevatia 2014] perform better than the sparse coding based methods, e.g., SC
and MSSC, and bag-of-words approaches, e.g., DynamicBow and IntegralBow. This better perfor-
mance occurs mainly because HCRFs employ hidden states to better enforce the implicit temporal
coherence. Actions in the UT-Interaction dataset #2 are noisier than those in #1. In Fig. 10(b), the
sparse coding based methods, SC and MSSC, are robust to noises and achieve comparable perfor-
mance to HMR [Lan et al. 2014] on the UT-Interaction dataset #2. However, since the likelihood
at each action segment is estimated independently, SC or MSSC would neglect temporal coherence
among the observed parts. Our approach employs temporal coherence information of the observed
parts, and performs favorably against both SC and MSSC.

Our approach also outperforms the structural SVM-based approach MMED. The reason why
MMED does not perform well here could be that it was designed to detect the starting and ending
frames of the particular events. It is not fully consistent with our experimental setting where the
starting and ending frames are known. Compared to PF-HCRFs and HMR, our approach achieves a
higher performance in general (though is worse sometimes) as shown in Fig. 10(a) and Fig. 10(b).
We owe this to the reason that our approach recovers the unobserved part by referring to and bor-
rowing information from the training data. The unobserved part completed in our approach carries
richer and time-varying information. Then, by using both the observed part and the completed un-
observed part, temporal regularization becomes attainable. Hence, our approach achieves favorable
performance in comparison to other approaches. Note that when the observation ratio is low in
Fig. 10(a), the performance of our approach is lower than that of HMR because our approach uses
the observed part to complete the unobserved part. If the observed duration is short, the quality of
completed unobserved part is degraded. Our method with deep learning-based features (DF) per-
forms slightly better than with the ordinary cuboid descriptor-based BoWs features. However, the
performance gain is not significant. The reason may be that the two-stream network has the great
power of fitting training data, and so it is more sensitive to the outlier frames that are present in
testing.

Fig. 10(c) shows that our method outperforms the PO-HCRFs in [Chang et al. 2009] on the
ArmGesture dataset. Partial observation in PO-HCRFs is used for the inference via Eq. (11). Our
approach instead uses not only the partially observed part but also the completed unobserved part
for inference. Higher recognition rates are thus obtained.
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Fig. 11. Results of gap-filling on (a) the UT-Interaction dataset #1, (b) the UT-Interaction dataset #2, and (c) the ArmGes-
ture dataset.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Observation Ratio

P
ro

ba
bi

lit
y 

 

 

UT−Interaction #1
UT−Interaction #2

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Observation Ratio

P
ro

ba
bi

lit
y 

 

 

UT−Interaction #1
UT−Interaction #2

(b)

Fig. 12. Probabilities of correct observation completion on the UT-Interaction dataset for (a) early prediction and (b) gap-
filling.

5.2. Gap-filling
Unlike early-prediction which has been studied extensively, there are fewer results on the gap-filling
task, which was introduced by Cao et al. [Cao et al. 2013] and is addressed under the assumption
that the gap’s location and duration are given.

5.2.1. Approaches for comparison. Approaches including IntegralBow [Ryoo 2011], Dynam-
icBow [Ryoo 2011], SC [Cao et al. 2013], and MSSC [Cao et al. 2013] have been evaluated on
the UT-Interaction dataset and hence, are selected for comparison. Like early prediction, our ap-
proach is also compared to PO-HCRFs [Chang et al. 2009] on the ArmGesture dataset.

5.2.2. Results analysis. Fig. 11(a) and Fig. 11(b) report the performance of gap-filling by the
competing approaches and our approach on the UT-Interaction datasets #1 and #2, respectively.
In general, our approach works more favorably than those based on the sparse representation (SC
and MSSC) and those based on the bag-of-words representation (DynamicBow and IntegralBow).
However, similar to the case of early prediction, when the gap ratio is higher, the performance of
our approach drops owing to the same reason. Nevertheless, our method performs generally better
than the other methods for both early-prediction and gap-filling.

The results in Fig. 11(c) show that our method outperforms PO-HCRFs [Chang et al. 2009]
remarkably on the ArmGesture dataset. Our approach performs better on the ArmGesture dataset
than on the UT-Interaction dataset in the gap-filling scenario since the crucial gesture motions are
typically present near the end of the actions. The results confirm that the proposed observation
completion can effectively estimate the unobserved gap by using the earlier and end parts as the
query, and lead to considerable performance gains on both datasets.
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(a) (b) (c)

Fig. 13. Sample images of the outlier frames caused by (a) object occlusion, (b) camera occlusion, and (c) signal noise.
The ratios of the noisy areas to the whole images are 34.5%, 53.7% and 100% in the three cases, respectively.
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Fig. 14. Results of POAR with unknown, synthetic outlier frames on (a) the UT-Interaction dataset #1 and (b) the UT-
Interaction dataset #2. (c) ROC curves of outlier frame detection by using our outlier frame filtering algorithm.

To gain the insight into how observation completion improves the performance, we measure the
accuracy of observation completion. Specifically, we compute the probability for the case that the
retrieved alternative, i.e., x̃u in Eq. (12), is correct. We consider the alternative is correct if the
training action with the largest weight in Eq. (13) is of the same action category. Fig. 12(a) and
Fig. 12(b) show the probabilities of correct observation completion on the UT-Interaction dataset
for early prediction and gap-filling, respectively. It can be observed that more than 70% of the
unobserved parts are replaced by correct alternatives when the observation ratio is higher than 40%
in both tasks. It is the main reason why our approach still works well even when abundant outliers
are present.

5.3. POAR with synthetic outlier frames
We evaluate our approach to POAR where the number, locations, and durations of outlier frame
segments are unknown. This task has not been addressed by previous studies to the best of our
knowledge. We jointly use the proposed algorithms for outlier frame filtering and observation com-
pletion to address this problem.

Specifically, we consider two scenarios. First, our approach is evaluated on actions with synthetic
outlier frames. The outlier frames are artificially added to the testing actions in UT-Interaction
dataset. Second, we test our approach on our CITI-DailyActivities3D dataset, where the outlier
frames are real and occur naturally. The first scenario is explored below, while the second one is
discussed in the next section.

5.3.1. Synthetic outliers. For the first scenario, we randomly added outlier frames to action videos
in the UT-Interaction datasets #1 and #2. The positions of the outlier frames are arbitrarily generated
in the input videos. A wide range of outlier ratio, the proportion of outliers to all frames, ranging
from 0.1 to 0.9 is considered. The types of the added outlier frames include frame signal noise,
object occlusion, and camera occlusion. Fig. 13 shows the examples of these outlier frames that we
generated manually.
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5.3.2. Approaches for comparison. None of the previously adopted compared approaches is de-
signed to work with unknown outlier frames. We compare our method with two baselines. The
first baseline is HCRFs. Comparing our approach to this baseline measures the advantage of jointly
using outlier frame filtering and observation completion for POAR. The other baseline is a vari-
ant of PO-HCRFs [Chang et al. 2009], in which the outlier frames are detected and removed by
using our outlier-frame-filtering algorithm and then the action is inferred via Eq. (11). We can ex-
amine whether observation completion helps improve the performance of POAR by comparing our
approach with this baseline.

5.3.3. Results analysis. Fig. 14(a) and Fig. 14(b) show the performance of the two baselines
and our approach on the UT-Interaction dataset. Compared to the two baselines, the performance
of our method is more favorable in most cases. Our method and PO-HCRFs perform better than
HCRFs in general, since they both try to detect and remove the outlier frames before predicting
the actions. Compared to PO-HCRFs, our method achieves higher recognition rates in most cases.
This result demonstrates the advantage of using observation completion. In the cases where the
fractions of outlier frames are large, inference with the completed observation does not always lead
to better results, because the inferred unobserved part may be incorrect. Our approach on average is
remarkably superior to HCRFs and PO-HCRFs.

To individually evaluate the effectiveness of outlier filtering, Fig. 14(c) demonstrates the ROC
curves for the three types of outlier frames: object occlusion, camera occlusion, and signal noise.
As shown in Fig. 14(c), our outlier frame filtering algorithm achieves the true positive rates of 0.8
with false positive rates below 0.2 for all types of outlier frames.

5.4. POAR with real outlier frames
Our approach here is evaluated on the CITI-DailyActivities3D dataset where the outlier frames are
real and appear irregularly and naturally in the action sequences. Three tasks are conducted for
evaluation on this dataset. In task #1, both training and testing actions are clean, i.e., they have no
outliers. Instead, task #2 and task #3 put emphasis on the tolerance of outliers. In task #2, the
training actions are clean and the same as those in task #1, whereas testing actions are corrupted by
outliers. In task #3, both the training and testing sets contain clean and corrupt actions. To deal with
corrupted training data, we apply outlier filtering and observation completion to each training video
in the same way of applying them to a testing video, except that this training video is temporarily
removed from the training set when observation completion is performed. This avoids completing a
training video by borrowing frames from itself.

In task #1, we check if our approach with extra components for outlier handling still performs
well for clean actions. More importantly, we are interested in investigating the performance differ-
ences between the first task and the other two tasks, which reveal the robustness of an approach
against outliers.

Note that the value of K in k-means clustering in Eq. (8) is set to the number of hidden states in
HCRFs, because both of them correspond to the key poses of actions. We conduct an experiment
to evaluate the sensitivity of our approach to the number of hidden states in HCRFs. Fig. 15 shows
the performance of our approach with different numbers of hidden states on all the three tasks. The
results point out that a few hidden states suffice for getting stable performance.

5.4.1. Approaches for comparison. We select twelve existing approaches for comparison, includ-
ing the nearest neighbor classifier (NN), k-nearest neighbor (kNN) [Devanne et al. 2015], deci-
sion tree (DT), naı̈ve Bayes classifier (NBC) [Chen et al. 2013], single-hidden layer feedforward
neural networks (SLFNs) [Iosifidis et al. 2013], recurrent neural networks (RNNs) [Martens and
Sutskever 2011], hidden Markov model (HMM) [Lv and Nevatia 2006; Piyathilaka and Kodagoda
2013], action graph (AG) [Li et al. 2008], hidden-CRFs (HCRFs) [Quattoni et al. 2007], hidden-
state conditional neural fields (HCNFs) [Song et al. 2013], hierarchical sequence summarization
model (HSS) [Song et al. 2013], and the state-of-the-art approach by Gowayye et al. [Gowayyed
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Fig. 15. The performance of our approach with different numbers of hidden states in HCRFs on all the three tasks.

et al. 2013], where HCNFs are the conditional neural fields (CNF) [Peng et al. 2009] with latent
variables.

We are particularly interested in the comparison between our approach and the competing ap-
proach HCRFs [Quattoni et al. 2007]. Both the two approaches adopt hidden CRFs for classification.
Their main difference is that HCRFs predict a given test action directly, whereas ours predicts that
test action after it is processed by the proposed outlier frame filtering and observation completion.
The performance gain of our approach over HCRFs [Quattoni et al. 2007] reveal its advantages.

Except for the approach in [Gowayyed et al. 2013], all the approaches for comparison and ours
adopt the 3D joint positions (JP) of skeletal data as the feature representation. Note that the feature
representation is not the one used in the original paper of each competing method. Nevertheless, us-
ing the same feature representation helps single out the effect of applying our approach to partially
observed action recognition when comparing it with other methods. For graphical model-based clas-
sifiers, e.g., HMM, HCRFs, and ours, the feature vector JP at each frame serves as the input to the
corresponding observation node. For classifiers working on data in holistic representations, e.g.,
NN, DT, and NBC, we concatenate the JP features extracted from all the frames. The approach by
Gowayye et al. [Gowayyed et al. 2013] adopts a scale- and speed-invariant body-joint-trajectory
descriptor, namely a histogram of oriented displacement (HOD), for feature extraction. Further-
more, the feature representation is compiled by using the Fourier temporal pyramid (FTP) to handle
possible temporal misalignment and noisy observation.

5.4.2. Results on Task #1. Table I reports the accuracy rates of our approach and the twelve
compared approaches on task #1, where all the training and testing videos are without corrupted
frames. The accuracy of the NN classifier is 73.3%, while that of the kNN classifier is 69.6%
with k = 5. The decision tree and Naı̈ve Bayes classifier give recognition rates of 55.6% and
73.3%, respectively. When we set the number of neurons in the hidden layer as 20, methods SFLNs
and RNNs achieve performances of 74.3% and 77.3%, respectively. The graphical model-based
approaches including HMM, AG, HCRFs, HCNFs, and HSS give accuracies of 73.3%, 71.5%,
80.3%, 81.3%, and 82.3%, respectively. It can be observed that the accuracy of methods with hidden
variables, such as RNNs, HMM, HCRFs, and HSS, achieve better performance. The reason may be
that the hidden variables can better express the possible temporal variations. Thus, methods based on
hidden variables are more robust to temporal misalignment. The state-of-the-art method [Gowayyed
et al. 2013] achieves an accuracy of 83.6%.

Our approach achieves a recognition rate of 80.3%, which is superior or comparable to most
competing approaches. It is worth noting that our approach and HCRFs give the same recognition
rate on this task with the clean testing data. This result indicates that the additional steps, outlier
frame filtering and observation completion, of our approach do not cause a drop in performance,
even though they are designed to deal with outlier frames.

5.4.3. Results on Task #2. Table II reports the recognition results of our approach and the twelve
approaches for comparison in the evaluation task #2. The difference between the two tasks is that the
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Table I. Accuracy rates of different approaches on CITI-DailyActivities3D Task 1

Method Accuracy (%)
NN Classifier 73.3
k-NN Classifier (k=5) [Devanne et al. 2015] 69.6
Decision Tree 55.6
Naı̈ve Bayes Classifier [Chen et al. 2013] 73.3
SLFNs (20 neurons) [Iosifidis et al. 2013] 74.3
Recurrent Neural Networks [Martens and Sutskever 2011] 77.3
Hidden Markov Model [Lv and Nevatia 2006; Piyathilaka and Kodagoda 2013] 73.3
Action Graph [Li et al. 2008] 71.5
Hidden-State CRFs [Quattoni et al. 2007] 80.3
Hidden-State Conditional Neural Fields [Song et al. 2013] 81.3
Hierarchical Sequence Summarization Model [Song et al. 2013] 82.3
Approach by Gowayyed et al. [Gowayyed et al. 2013] (16 Bins, 1 Level) 83.6
Approach by Gowayyed et al. [Gowayyed et al. 2013] (8 Bins, 3 Levels) 83.0

Ours 80.3

Table II. Accuracy rates of different approaches on CITI-DailyActivities3D Task 2

Method Accuracy (%)
NN Classifier 57.6
k-NN Classifier (k=5) [Devanne et al. 2015] 56.4
Decision Tree 47.8
Naı̈ve Bayes Classifier [Chen et al. 2013] 64.8
SLFNs (20 neurons) [Iosifidis et al. 2013] 66.4
Recurrent Neural Networks [Martens and Sutskever 2011] 68.1
Hidden Markov Model [Lv and Nevatia 2006; Piyathilaka and Kodagoda 2013] 51.6
Action Graph [Li et al. 2008] 51.1
Hidden-State CRFs [Quattoni et al. 2007] 64.2
Hidden-State Conditional Neural Fields [Song et al. 2013] 62.6
Hierarchical Sequence Summarization Model [Song et al. 2013] 61.5
Approach by Gowayyed et al. [Gowayyed et al. 2013] (16 Bins, 1 Level) 66.1
Approach by Gowayyed et al. [Gowayyed et al. 2013] (8 Bins, 3 Levels) 69.9

Ours 76.3

testing actions in task #2 contain outlier frames that occur arbitrarily with various temporal lengths.
Note that the testing sets in the two tasks are different, and so the recognition rates in the two tasks
cannot be compared. Nevertheless, the relative performance drops between the two tasks of different
approaches can be compared. By comparing the results in Table I and Table II, all the twelve com-
peting approaches suffer from substantial performance drops ranging from 7.8% (= 55.6%−47.8%
in approach DT) to 21.7% (= 73.3% − 51.6% in approach HMM). We also observe that the prob-
lem of performance drop is even more dramatic in graphical model-based approaches such as HMM
and HCRFs. These approaches are more expressive for temporal consistence modeling, and hence
are more sensitive to noisy data accordingly. The Fourier temporal pyramid skeletal features used
in [Gowayyed et al. 2013] still show strong performance in this challenging task because the ap-
proach in [Gowayyed et al. 2013] gives 69.9% recognition rate and outperforms the other competing
approaches.

Our approach, with the developed outlier frame filtering and observation completion, can effec-
tively address the recognition difficulties caused by outlier frames. It filters out the outlier frames,
and retrieves alternative inlier frames from the training data to facilitate action prediction. It turns
out that the performance drop is only 4.0% (= 80.3%− 76.3%), even if our approach is established
upon graphical models. The achieved accuracy of 76.3% by our approach is significantly better than
all the twelve competing approaches.

5.4.4. Results on Task #3. Table III reports the recognition results of our approach and the com-
peting approaches on the evaluation of task #3. The major difference between this task and the other
two tasks is that some of training actions in this task are corrupted. The recognition rate of our ap-
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Table III. Accuracy rates of different approaches on CITI-DailyActivities3D Task 3

Method Accuracy (%)
NN Classifier 63.0
k-NN Classifier (k=5) [Devanne et al. 2015] 59.7
Decision Tree 45.1
Naı̈ve Bayes Classifier [Chen et al. 2013] 62.8
SLFNs (20 neurons) [Iosifidis et al. 2013] 69.2
Recurrent Neural Networks [Martens and Sutskever 2011] 71.7
Hidden Markov Model [Lv and Nevatia 2006; Piyathilaka and Kodagoda 2013] 71.3
Action Graph [Li et al. 2008] 58.3
Hidden-State CRFs [Quattoni et al. 2007] 68.8
Hidden-State Conditional Neural Fields [Song et al. 2013] 66.3
Hierarchical Sequence Summarization Model [Song et al. 2013] 66.3
Approach by Gowayyed et al. [Gowayyed et al. 2013] 74.6

Ours 78.5

proach on task #3 is higher than on task #2, because task #3 contains more training data including
both clean and corrupt actions. The training and testing sets of this task are different from those
of the other two tasks. Thus, the recognition rates of these approaches cannot be compared across
tasks. Nevertheless, the performance rankings of all the approaches can be compared in the indi-
vidual tasks. As shown in Table III, all the twelve competing approaches suffer from performance
degradation. The outlier frames in both training and testing data cause only a minor performance
drop of our approach. Besides, the achieved accuracy of 78.5% by our approach remarkably out-
performs all the twelve competing approaches. It is worth mentioning that some methods perform
better on task #3 than task #2. The main reason is that similar outliers in the test actions have been
included in the training actions.

6. SUMMARY AND CONCLUSION
This paper presents an integrated action recognition approach that can both filter out outlier frames
and infer the action label from a partially observed video. We first argue that the conventional
HCRFs model has not provided a proper model to handle the case of corrupt frames, and it is diffi-
cult to reset the potential functions of the hidden and observation nodes without going back to the
training data. We then introduce an outlier-frame-filtering approach to uncover the outlier frames,
as well as the procedure of observation completion, which borrows plausible alternatives to the fil-
tered outliers. Instead of re-training the HCRFs, we merely use the training data for feature-level
temporal complementation. This is a simple but useful way to solve the problem. We also propose
an inference algorithm to tackle the action recognition problem with incomplete observations based
on the HCRFs model.

The partially observed problem considered in this paper is general, which includes many prob-
lems as its special cases, e.g., early prediction and gap-filling. Various practical issues could cause
frames to be unreliable for inference (e.g., partial occlusion in a fraction of RGB videos and wrong
axes extraction in depth videos), and this paper presents a method handling the general problem
setting of frame-level outliers. The proposed method is all-purpose because it does not try to iden-
tify the individual reasons but simply replaces the unreliable frames with those recalled from the
training data. Our approach has been comprehensively evaluated on two benchmark datasets and
one self-collected dataset where the outlier frames can be either synthetic or real, and the positions
of these outliers can be either known or unknown. The promising experimental results show that our
approach can achieve more favorable performance than existing approaches.
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