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Abstract—In this paper, we present a clustering approach,
MK-SOM, that carries out cluster-dependent feature selection,
and partitions images with multiple feature representations into
clusters. This work is motivated by the observations that human
visual systems (HVS) can receive various kinds of visual cues for
interpreting the world. Images identified by HVS as the same
category are typically coherent to each other in certain crucial
visual cues, but the crucial cues vary from category to category.
To account for this observation and bridge the semantic gap, the
proposed MK-SOM integrates multiple kernel learning (MKL)
into the training process of self-organizing map (SOM), and as-
sociates each cluster with a learnable, ensemble kernel. Hence, it
can leverage information captured by various image descriptors,
and discoveries the cluster-specific characteristics via learning
the per-cluster ensemble kernels. Through the optimization iter-
ations, cluster structures are gradually revealed via the features
specified by the learned ensemble kernels, while the quality of
these ensemble kernels is progressively improved owing to the
coherent clusters by enforcing SOM. Besides, MK-SOM allows
the introduction of side information to improve performance, and
it hence provides a new perspective of applying MKL to address
both unsupervised and semi-supervised clustering tasks. Our
approach is comprehensively evaluated in the two applications.
The superior and promising results manifest its effectiveness.

Index Terms—Cluster-dependent feature selection, clustering,
image grouping, multiple kernel learning (MKL), object catego-
rization.

I. INTRODUCTION

ULTIMEDIA data clustering aims at partitioning data
into a set of groups (clusters) so that data residing in the
same cluster are coherent and similar to each other. It helps not
only to select a few representative data samples for the whole
dataset but also to identify the common properties of data within
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Bicycle Sunset

Jaguar

Fig. 1. Images from three different categories: sunset,bicycle and jaguar.
Color features are discriminative for separating images in category sunset
from the rest, while shape and texture features are discriminative for category
bicycle and jaguar, respectively. It shows the importance of using mul-
tiple features and indicates that the optimal features for clustering are often
cluster-dependent.

each cluster. As a fundamental component of multimedia con-
tent analysis, clustering is essential to widespread applications,
such as multimedia mining, summarization, retrieval, and un-
derstanding. A key ingredient of designing successful clustering
algorithms for multimedia content analysis is how to effectively
bridge the semantic gap between the low-level data representa-
tions and high-level semantic concepts. We aim at addressing
this issue in the work. Also, unless further specified, we focus
on image data. Nevertheless, the proposed approach is devel-
oped in a general way so that it can be also applied to other
kinds of multimedia data, such as music, videos, or webpages.

Although the development of image descriptors has gained
significant progress, the general conclusion is still that there is
no a single descriptor to well characterize the whole dataset in
most increasingly complex applications of clustering. We thus
focus on developing a clustering approach that allows the data
to be characterized by multiple descriptors. The generalization
is helpful for reducing the gap between the data similarities and
their semantic concepts.

This motivation is illustrated by considering images in Fig. 1.
The human visual system (HVS) can partition those images
without ambiguity into three categories, bicycle, sunset
and jaguar, because HVS can perceive and reason those
images with various visual cues. However, for an automatic
object/image categorization system, color related features are
required to separate the images in category sunset from the
others. Analogously, shape and texture based features are re-
spectively needed to identify categories bicycle and jaguar.
This example not only illustrates the importance of using mul-
tiple features but also points out that the optimal features for
clustering are often vary from cluster to cluster. Our approach
aims to boost clustering performance, and is developed by
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exploiting the two observations, the use of multiple descriptors
and cluster-dependent feature selection.

The key idea of our approach is to integrate multiple kernel
learning (MKL) [1]-[4] into the training process of self-orga-
nizing map (SOM) [5] in a cluster-specific manner. By cluster-
specific manner, it means that we associate each cluster with a
learnable, ensemble kernel. The rationale behind this idea is jus-
tified as follows. First, the recent advances in image descriptors
result in diverse feature representations of data, such as vectors
[6], bag-of-features[7], pyramids[8], and tensors [9]. We adopt
kernel matrices to serve as the unified feature presentation for
data captured by various descriptors. In this way, complemen-
tary information captured by heterogeneous descriptors can be
fused in the domain of kernel matrices. Second, to account for
that the optimal features for clustering are cluster-dependent,
each ensemble kernel is derived to select features for best in-
terpreting data in the corresponding clusters. Namely, data be-
longing to the cluster are coherent to each other and distinguish-
able from the rest. Third, we adapt MKL to address unsuper-
vised clustering by incorporating it into SOM. Namely, the opti-
mization of MKL, including kernel selection and model deriva-
tion, is performed with respect to the objective function of SOM.

Restricted by the unsupervised nature in clustering, per-
forming cluster-dependent feature selection suffers from a
cause-and-effect problem: learning the cluster-specific en-
semble kernels needs clustering results; clustering results are
derived according to the learned cluster-specific kernels. We
deal with the problem by integrating the two parts into a joint
optimization problem where cluster-specific ensemble kernels
as well as clustering results are derived in an alternate, iterative
manner, and an iterative procedure with gradient descent as the
optimization technique is used in SOM. Following this frame-
work, the proposed ideas are useful and applicable especially
when a clustering technique features such cause-and-effect
property, and it allows us to derive cluster-specific ensemble
kernels and clustering results in a progressive way. Besides,
SOM has been shown to be a useful optimization framework
for clustering complex data [10]. It has been applied to a
widespread applications. Generalizing SOM has the potential
for advancing the applications. These mentioned above are
the main reasons that we carry out cluster-dependent feature
selection based on SOM.

Specifically, we formulate the training of MKL and the clus-
tering procedure of SOM into a joint optimization problem.
Note that this philosophy on the surface is similar to many MKL
approaches like our previous work [11], which also involves
learning an ensemble kernel, but does not support cluster-de-
pendent feature selection. The key idea here is to tightly couple
the two stages instead of casting MKL as a preprocessing step.
We enable them to be mutually beneficial through the optimiza-
tion iterations, where cluster structures are gradually revealed
via the features specified by the corresponding ensemble ker-
nels, while the qualities of these kernels are progressively im-
proved owing to the more coherent clusters by enforcing SOM.
Therefore, they can work together, and lead to better clustering
results. We term our approach MK-SOM (Multi-kernel Self-or-
ganizing Map) to identify its two key components, MKL and
SOM. MK-SOM can distinguish itself with the following three
main contributions.
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First, MK-SOM generalizes SOM to deal with data in mul-
tiple feature representations, and to select features cross dif-
ferent feature spaces in a cluster-specific manner. On the other
hand, MK-SOM provides a new perspective of applying mul-
tiple kernel learning, which typically addresses supervised ap-
plications, to both unsupervised and semi-supervised clustering.
Besides, MK-SOM interpretably partitions data in the sense that
each learned ensemble kernel concretely specifies the discrimi-
nant features for the corresponding cluster. This property is pre-
cious in data analysis, descriptor design, complementary dis-
covery, etc.

Second, MK-SOM allows the introduction of side in-
formation, i.e., must-links and cannot-links, to enhance the
performance of clustering. This flexibility is important espe-
cially when the data to be partitioned become complex. The
additional side information is helpful in tackling the difficulties
of clustering caused by the unsupervised nature. To this end,
we employ the softmax activation function to give the differ-
entiable surrogate of the formulation in MK-SOM. Compared
with our prior work [12], [13], it can be verified that the re-
sulting formulation can be much more efficiently optimized by
only applying gradient decent methods.

Last but not least, MK-SOM is comprehensively evaluated
in two applications and compared with a set of existing clus-
tering algorithms. The superior and promising results manifest
the effectiveness of MK-SOM in accuracy, convergency speed,
transparent feature selection, and the exploitation of side infor-
mation.

II. RELATED WORK

The development of clustering methods has been leading to
an extensive literature. In the section, our survey emphasizes the
key concepts relevant to the proposed approach.

A. Unsupervised Clustering

Clustering stems from non-labeled data analysis, since it is
a core technique to uncover the underlying structure of data
without any prior knowledge. According to [10], [14], [15],
most unsupervised clustering methods can be divided into
two categories, i.e., hierarchical clustering and partitional
clustering. Methods of the former complete clustering by
hierarchically leveraging the linkage relationships among data,
such as single linkage, complete linkage and graph degree
linkage [14], while those of the latter category determine the
partitions by optimizing a certain objective function of clusters
and data, such as within-cluster sum of squared error. The
proposed framework belongs to the latter category.

Methods, such as k-means, affinity propagation[16] and
mean shift[17], have been applied to a broad range of image
clustering tasks. Similar to attributing the artificial neurons as
clusters on the SOM in the proposed framework, there also
exists other biologically inspired algorithms [15], [18] which
make use of artificial characters for finding the clustering
results. Though these approaches are designed with theoretic
merit, their performance critically depends on the feature
representation of data.

B. Clustering with Feature Selection

Features adopted to characterize data are closely related to
clustering tasks, since good features facilitate the discovery
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of data clusters. Therefore, a branch of research efforts has
been made to couple data clustering with feature selection. For
instance, methods in [19]-[21] impose the Gaussian mixture
models on data distributions, while methods in [19], [22], [23]
conduct discriminant analysis for subspace selection. In these
methods, feature selection and data clustering are considered
to be mutually beneficial, and the two steps are typically per-
formed alternately.

Feature selection can also be done cluster-wise. Methods
in [24], [25] learn a distance function for each cluster via
re-weighting feature dimensions. Grozavu et al. [26] integrate
feature selection into SOM by weighting the data samples
and the distance functions to yield better prototype vector
quantization. However, the aforementioned methods assume
that data are linearly separable, and are only applicable to
data in a single vector space. The restrictions may reduce the
overall effectiveness when the data of interest can be more
precisely characterized by considering multiple descriptors
and diverse forms. This restriction becomes even more evident
for image data clustering, because many powerful descriptors
are developed in various forms, e.g., bag-of-features [7], [27],
pyramids[8], [28], matrices or high order tensor [9], [29].

C. Multi-View Clustering

Multi-view clustering, e.g., [30]-[40], becomes an emerging
branch of clustering methods due to its ability to take different
views of data into account simultaneously. It also allows the
flexibility in view definition. For example, different views cor-
respond to different reference points in the data [39], or to di-
verse features that characterize the data [33], [34], [37], [40].
The seminal technique of cluster ensembles by Strehl and Ghosh
[30] provides a useful mechanism for combining multiple clus-
tering results. The ensemble partitioning is optimized such that
it shares as much information with each of the elementary ones
as possible. However, the obtained partitioning is optimized in a
global fashion, neglecting the fact the optimal features are often
cluster-dependent. Besides, many methods of multi-view clus-
tering are carried out with high computational complexity and
do not scale well.

D. Semi-Supervised Clustering

It is possible to deal with the unsupervised nature of clus-
tering by introducing a small amount of labeled data into the
procedure so that the quality of clustering results can be con-
siderably boosted, especially in complex tasks. The partially la-
beled data can activate discriminant learning. The additional in-
formation can be utilized in various ways to enhance clustering,
such as modifying the similarity matrix [41] and deriving a new
distance metric [42]-[44].

E. Multiple Kernel Learning

MKL refers to learning a kernel machine with multiple
kernel functions or kernel matrices. Recent advances in MKL,
e.g., [1]-[4], have shown that learning with multiple kernels
often increases the accuracy. In these MKL algorithms, an en-
semble kernel, a convex combination of the input base kernels,
is derived to fuse the information carried by the base kernels.
Built upon this powerful foundation, there are a number of
works, such as [37], [45]-[47], which achieve considerable
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improvement in the tasks of data clustering, where learning
a single ensemble kernel to characterize the whole dataset
is mainly focused on. However, the underlying structure of
data is often more than complex. Instead, our approach allows
learning cluster-dependent kernels to characterize data in a finer
fashion, which distinguishes this work from other MKL-based
clustering algorithms.

Specifically, our approach integrates MKL into the clustering
procedure in the manner that each cluster is associated with a
learnable ensemble kernel. Our approach combines information
captured by various data descriptors in the domain of kernel
matrices, and achieves cluster-specific feature selection via
learning the corresponding ensemble kernels. Furthermore, we
generalize our prior work [12] to exploit pairwise constraints
to lead to better clustering results. To this end, the softmax
activation function is introduced to give the differentiable
surrogate of the formulation in our approach. It follows that
the optimization can be effectively and efficiently achieved by
simply applying gradient decent methods.

III. PRELIMINARY

In this section, the notations used in this paper and the clus-
tering problem to be tackled are first specified. Then, we give
a brief review of the SOM, upon which our approach is devel-
oped.

A. Problem Statement

Given a dataset D = {x;}}',, we partition D into C' clus-
ters, i.e., D = |J<_, C, C # B, Ve, and C. (C. = B,Ve # ¢,
with the aim that samples belonging to the same cluster are sim-
ilar to each other, while those in different clusters are dissim-
ilar. In this work, the clusters are characterized by the corre-
sponding prototypes W = {w.}<_; . Like most partition-based
clustering methods, e.g., k-means, we focus on minimizing the
sum of squared error (SSE)

~
E(D) = ijn Ix; — wel||?

=1

)

where each sample x; is assigned to the nearest cluster.

In increasingly complex tasks of data or image clustering, it
is difficult to find a universal descriptor to well characterize the
whole dataset. We consider employing M kinds of data descrip-
tors to represent each sample x; € D. Thatis, X; = {X; ., €
X }M_| . Each descriptor is associated with a distance func-
tion d,,, : &, X &, — R to measure the dissimilarity between
data under this descriptor. Different descriptors may result in
diverse forms of feature representations for image data, such as
vectors [6], bags of features [48], or pyramids [8]. To avoid the
difficulties caused by working with these varieties, we represent
data under each descriptor by a kernel matrix. It totally leads to
M kernel matrices {K,, € RYXN 1M a5 well as the corre-
sponding kernel functions {k,, : X, x X, — R}M_,:

;g _dfn Xims Xj,m
Km({h]) = km(xi,mvxj,m) = €Xp ((—21)>
)

m
where o,, is a positive constant. As suggested in [49], 7, is set
as the average distance among data under the mth descriptor,
unless further specified.
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Our approach is developed with the requirement that data are
accessed by referencing only the M kernels defined in (2). One
advantage of so doing is that it uses these kernels as the unified
information bottleneck, and enjoys the convenience of working
with arbitrary descriptors and distance measures. The other ad-
vantage is that nonlinear data clustering can be activated, and
various features are fused in the domain of kernel matrices.
Specifically, we integrate multiple kernel learning into the clus-
tering procedure, and associate each cluster with an ensemble
kernel, a convex combination of the M base kernels in (2). It
carries out cluster-dependent feature selection in the sense that
each cluster is allowed to select the most plausible feature com-
bination by optimizing the associated ensemble kernel.

The performance of clustering is often restricted by the un-
supervised nature. To tackle this issue, our approach also sup-
ports the use of a few must-links and cannot-links, each of which
specifies either a pair of data samples must reside in the same
cluster or not. These links provide the additional constraints to
guide the clustering process.

B. Self-Organizing Map (SOM)

The SOM [5] can work with the objective function given in
(1) by associating a neuron with each cluster prototype ¢ and
parameterizing it by w.. The SOM is typically optimized by
gradient descent in an iterative manner. At iteration ¢, all data
in D are sequentially picked as input to update the neurons. With
input x,;, the nearest neuron, the so-called winner neuron, is first
determined by Euclidean distance. Suppose the winner neuron
is the cth neuron. It is updated by moving closer to x; with offset

Aw, = P’ N (x; — w.) 3)
where 1) is the learning rate and N} = exp(fllxlﬂ—w’”) is the
neighborhood kernel centered on the cth neuron.

The SOM adopts a coarse-to-fine strategy to better optimize
the neurons. Both the learning rate n* and the hyperparameter 2
in the neighborhood kernel decrease monotonically along opti-
mization procedure, and are updated iteratively by

'+t — pyt and R — vR? 4)

where ¢ and v are two positive constants. We set 1+ and 1 as 0.85
and 1 in all the experiments, respectively. The iterative proce-
dure is repeated until convergence or the number of maximum
iterations is reached.

The kernelized SOM (or kernel SOM) [50]-[52] has been de-
veloped and applied to nonlinear data clustering. We further
generalize SOM to work with multiple kernels. The proposed
approach integrates the cluster-specific multiple kernel learning
into the clustering procedure, and cast them as energy mini-
mization problem. Through the optimization iterations, discrim-
inant features for each cluster are gradually derived and se-
lected, while the cluster structure is revealed by these features.

IV. MK-SOM FRAMEWORK

The proposed MK-SOM framework is described in the sec-
tion. First, we show how MK-SOM generalizes kernel SOM to
perform cluster-dependent feature selection via multiple kernel
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learning. Subsequently, pairwise constraints are introduced into
MK-SOM to boost the clustering performances. Finally, we de-
tail the optimization of MK-SOM.

A. Learning SOM with Multiple Kernels

To leverage the rich information captured by various data de-
scriptors, we extend the SOM for coping with cluster-dependent
feature selection by multiple kernel learning.

To begin with, we consider kernel SOM. Let ¢ : X — F
denote the feature map induced by a kernel K. It transforms
data from input domain X to Reproduced Kernel Hilbert Space
(RKHS) F, i.e.,

x; — §(x;), fori=1,2,...,N. (5)

The objective function of kernel SOM is then expressed by

N

Exsom = ngn lp(xi) = wel[?. (©)

i=1
It can be proved by contradiction that the optimal w. in (6) must

lie in the span of the mapped data, i.c.,

N

= Z aa,nd)(xn) (7)
n=1

where {c. , }Y_; are the sample coefficients of neuron w,. It
follows that objective function (6) can be further expanded as

FExsom(D)
N 2
= Z min ||p(x;) Z e nP(Xn) ®)
n=1
N N
= Z min [¢Tp(xz)(p(xt)2 Z ac,n(/)Tp(xi)(/)(Xn)
i=1 ’ n=1

N N
+ Z Z (YCJ,,(MQT,,/(75Tp(xn)</)(xn’)‘| (9)

n=1n'=1
N

= E IIllIl

(i,i) — 2a] pK (,i) + o] pKa.]  (10)

where o, = [ac 1002 e n]T € RY and K(:,i) € RY is
the ith column of kernel matrix K.

Like most MKL approaches, such as [1]-[4], [11], we treat
an ensemble kernel as a convex combination of the M base
kernels. In this work, we propose to associate each cluster with
a learnable ensemble kernel. The ensemble kernel associated to
the cth cluster is

M

Z ,Bc,m Km

m=1

K©) = (11)

where { K, }}_, are the base kernels and {f3. ., }}/_, are the
learnable kernel weights. It follows that the discriminant fea-
tures for each cluster can be selected across different descriptors
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and merged to compose the ensemble kernel. Generalized from
(10), the objective function of MK-SOM is defined as follows:

Envk_som(D)
N

=> min[K(, i) - 20] K (1) + ] K9] (12)
=1

The resulting constrained optimization problem of MK-SOM
becomes

(13)

min  Fyk_som (D)
{e.,Bc }5:1

M
subjectto > Bem =1, forc=1,....,C (14)
m=1

/Hc,m 2 0/ vﬂc,‘rn' (15)

In constrained optimization problem (13), we optimize the
neurons {w,.}&_ |, where w, is parameterized by a sample coef-
ficient vector &, = [qe 1 - (XQN]T € RY and a kernel weight
vector B, = [fe1-- P, M]T € RM. For each cluster ¢, .
and (3. jointly specify how the ensemble kernel and the cluster
boundary are constructed. Hence, cluster-dependent feature se-
lection across heterogeneous descriptors is allowed in the for-
mulation (13). For the sake of clearness, the optimization of (13)
is described in Section IV-C.

B. Incorporating Pairwise Constraints in SOM

Suppose we are given a set of pairwise constraints, each of
which is either a must-link or a cannot-link. These constraints
are precious, since they can activate supervised learning in un-
supervised clustering tasks. Specifically, we propose an asso-
ciate-separate model to deal with each pairwise constraint. It
first associates each of the two samples in a link to the most
plausible neuron, and then separate the other neurons from the
sample.

Must-links: Suppose that a set of must-links, S = {(x;,x;)},
is given. For each must-link (x;,x;), the steps of association
and separation are depicted in the following.

On Association: Since samples x; and x; belong to the same
cluster, we conduct the cluster association by searching shared
cluster C, that is averagely closest to the two samples, i.e.,

2+ lo(x;) — wa, 2. (16)

Cr, = argmin [|¢(x;) — Wi,
4y

For the ease of expression, we simply letC,;, = Cy,.

On Separation. Note that C,, in (16) may not be the nearest
cluster to either x; or x;. Thus, discriminant learning can be ap-
plied to separate the rest clusters from the two samples. Specif-
ically, the following energy function is considered:

T30, Co, ) = (604 = W [2 = min [166x0) = v, 2 (17)

where k& € {i,7}. It is clear that J(xz,Cr,) < 0 ensures Xg
residing in C;,, . However, the min operation makes J (x4, Cx, )
non-differentiable, and is difficult to be incorporated into SOM,
which is optimized by gradient descent methods. To address
this issue, we introduce the softmax activation function (or the
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log-sum-exp trick). It gives the differentiable surrogate of min
operation by

min [|¢(xx) — w,|*
Fmp

1
~ = log | 3 en(=ll90xk) = W)
PETL

(18)

where the smoothness parameter v is a positive constant, and
is used to control the degree of precision in approximation. We
empirically set y= 2%, which gives sufficiently good approxi-
mation. By substituting (18) into (17), we have

I (%4, Cry) & J(Xk,Cr ) = [|(x1) = W, |17

1
+ - log > exp(—llp(xx) — w,l|) (19)

PFETR

The must-link (x;,x;) eventually induces a pair of the log-
loss functions

> log (1 + exp(J(x£,Cry))) -
Ke(ii}

Llnflnk (X1,X]) = (20)

Cannot-Links: The associate-separate model for a set of
cannot-links, 8" = {(xi,x;)}, is detailed in the following.

On Association. We first conduct the cluster association for a
cannot-link (x;,x;). As specified by the cannot-link, we asso-
ciate x; and x; to two different clusters by

.

@1
On Separation. Like the separation stage for dealing with must-
links, discriminant learning is activated such that each sample
in the link can reside in the associated cluster and be far apart
from the rest clusters. Similar to (20), the loss function for a
cannot-link (x;, x;) is defined as

Lc—lnk(xi'/xj) = Z 10%(1 + exp(,f(xk,ka))).
ke{ij}

(Cﬂwcﬂj) = arg min [|¢(x;) — wg, ||2 + llp(x;5) — W
T FET

(22)

Note that two distinct clusters are associated to samples in a
cannot-link, i.e., C;, # Cr,, while a common cluster is associ-
ated to samples in a must-link.

With the designed loss functions for must-links (20) and
cannot-links (22), the objective function pertaining to pairwise
constraints is given as follows:

Fixk (S, 5"
- Z melnk (Xia Xj) +

(xi.x;)€S

Z chln,k‘ (Xiv Xj)'
(xix;)eS’
(23)

By incorporating (23) into (13), the objective function of the
proposed approach becomes

Fuk-—sov(D) + AELxk (S, S")

min

24
fee B3y

M

Zﬂc,m:L forc=1,...,C

m=1

subject to (25)
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Beam 20, VBem (26)

where A is a positive constant.

C. Optimization Procedure

There are two cluster-dependent variables to be learned in
(24), including the sample coefﬁcient vectors {a.}<_; and the
kernel weight vectors {3.}<_;. Our approach inheriting from
SOM adopts an iterative optimization procedure. At each iter-
ation, these variables are sequentially updated with respect to
each data sample and each pairwise constraint. The iterative
procedure is repeated until convergence. Namely, the objective
function in (24) can not be further reduced. Owing to the com-
plication of (24), it is difficult to simultaneously solve {cx. } and
{3.}. We hence optimize one of the two variables by fixing the
other, and then switch their roles.

To start the iterative optimization procedure, {c.} are
randomly drawn from the uniform distribution on the interval
[-1/N,1/N], while {3.} are averagely distributed in initial-
ization such that the constraints (25) and (26) hold. We describe
how the two sets of variables are updated for each sample and
each pairwise constraint in the following.

Algorithm 1: The Training Procedure of MK-SOM

Input: Dataset D = {x;}}¥; in the form of M
kernel matrices { K, € RV*NIM_ (cf. (2));
Must-link set S = {(x;,%x;)};
Cannot-link set 8" = {(x;,x;)};
Number of clusters C;

Output: Sample coefficient vectors {a.}< ;; Kernel
weight vectors {3} ;;

Initialization:

{(kc,n}gz"jnzl are randomly drawn
on the 1nterval [-1/N,1/N];
15, m}t Allm , are setas 1/M;

while not converged do
for each data sample x; do
1. Determine the winner neuron ¢ by (27);
2. Update o by steepest gradient descent (cf. (29));
3. Update 3. by reduced gradient descent (cf. (33));
for each must-link (x;,x;) do

1 Associate samples x; and x; with a common cluster
Cr, by (16);

2. Update {a.}M | and {3.}*
and (37), respectively;

7 | with gradient in (35)

for each cannot-link (x;,x;) do
1. Associate samples x; and x; with clusters C., and
Cx, respectively by (16);

2. Update {a.}M | and {3.}*
and (37), respectively;

7 | with gradient in (35)

Check convergency;

Assign each data sample to the winner neuron to complete
clustering;
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Variable Update w.r.t. Data Samples: The parameters
{a.,B.}5., of the C neurons are updated with respect to
incoming data samples in the stage. For each sample x; € D,
it can be observed that only Eyik_som (D) in the objective
function (24) is relevant to a single sample x,. Hence, we first
find the winner neuron ¢ by

¢ = argmin ||w, — B(x;)]? (27)

= argmin K7, ) + 2] pK ) (1) + @[ pK Vex,
(28)

where K (), defined in (11), is the ensemble kernel associated
with the ¢th neuron. Then, the parameters c. and 3. in the con-
strained optimization problem (24) are updated w.r.t. x; as fol-
lows:

On Updating o.: By fixing 3., the steepest gradient
descent is applied to seek the element-wise update of

X = [ac,lac,Q t ac,N]T by
Qen € Qe — T/M (29)
d@c,n
where
a c = i 2 .
HW 0 ¢(X )H — —2[K(C)(’IL,Z) _ a:K(c)(:’n)]. (30)
Uen

On Updating B.: By fixing .., we update 3. with respect to
x,. The additional constraints in (25) and (26) cause that 3.
can no longer be optimized by steepest gradient descent. We
overcome this problem by employing the reduced gradient de-
scent[4], which is developed to cope with constraints in the pro-
cedure of gradient descent.

Like other gradient descent methods, the partial derivatives of

B =[Be1 - Be ]! inreduced gradient descent are computed
by

Alw. — d(x)|)?

W = Kpn(i,4) — QQIKm(;’ i)+ ol Kna,.

(31

The reduced gradient descent updates the optimization vari-

ables in a relative manner such that the equality constraints in

(25) can be satisfied. Suppose (3. ,, is the largest element in 3.
The reduced gradientt. = [req -+« 7¢ M]—r is calculated by

AMwe—ox)I®  dllwe—o(x;
o {Z“#“( ”Wo (x|l Ilwd B (x)|I* ),

dllwcfm(XL)H2
93

Pem

ifm=p

otherwise.
(32)

4 Ollwe— m(xzm
8. J

With the reduced gradient r.., 3. is updated by

Be — B+ Tr.. (33)

The equality constraints in (25) still hold after update because of
Z‘mf 1 Te,m = 0. On the other hand, the key to the satisfaction
ofthe 1nequa11ty constraints in (26) is the step size 7 € [0, Traz),
found by using line search, with the maximum step size

ﬁc,m

Te,m

min

34
{m|rem <0} ( )

Tmax =

Variable Update w.r.t. Pairwise Constraints: We alternately
update {e.} and {B.} for the incoming pairwise constraints
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by minimizing Fpxk(S.S’) in (24). It should be noted that
there is a major difference between the updates with respect
to a data sample and a pairwise constraint. For a pairwise con-
straint, either a must-link or a cannot-link, we perform discrimi-
nant learning over all the neurons, instead of the winner neuron.
Thus, {ex., 815 ; will be updated for each link.

Consider a pairwise constraint (x;,x;) € SUS.
It can be observed in (20) and (22) that all the link-
ages share an identical form of the loss function, i.e.,
L(x;) = log(l + exp(J(x;,Cx,))). Tt suffices to derive
the partial derivatives for sample x;, since those for x; can be
analogously inferred.

On Updating {«..}. The partial derivatives of L(x;) of vari-
ables {a.}S_; can be derived as follows:

exp(J(%;,Cx,)) o ey, s
14-exp(J(%:,Cxr; ) .X 2(K( )ac - K( )(7 L))

if ¢=my,

3

aL(Xi) exp(J(x:.Cx,)) - c i
aac = 1+cx1)(J(x7',C:ri)) X 72(K()ac - K()(,L))
exp(— VG, C)) , otherwise.
> prta, XD(=7V (i, p))
(35)
where

Vii.p) = [|$(xi) = w,
= K®(4,4) - QQIK(Z))(i, i)+ a;K(P)ap- (36)

Although the partial derivatives in (35) looks complicated,
they have intuitive justification. The first term %
controls the magnitude. Larger J(x;,Cx, ) in (19) implies that
x; tends not to belong to the associated cluster C, . Thus update
with larger magnitude is required. The second term (K e, —
K(®)(:,1)) specifies the direction. The associated cluster Cy,
is updated toward sample x;, while the rest clusters are kept

far away. The third term p:’ip(;g}_(:;)()w)) presents only for

clusters that are not associated with X;. It can be treated as the
normalized weight. As shown in (36), the clusters closer to x;
are given larger weights. With the partial derivative given in
(35), {a . }&_, are then updated.

On Updating {83.}: The partial derivatives of L(x;) of vari-
ables {B. = [Be1 - - Be,m] 1¢_, can be similarly derived as fol-
lows:

8L(xz) _
6ﬂc,m B
exp(J(x;,Cr, .. .
1+CZE)(J(X1,CZW)1,))) <K’m(7’7 1) - 2a(TKm( 7’) + a(TKmac):
if ¢= i,
exp(J(x;,Cr,; .. .
1+cl:<E)(L(I(x7‘,Cl,,r)i))) o (Km(b/ 1) - 2aIKm(:'/ Z) + QIKmac)
« __exp( 7V (i)
exp(—~V (i,p))’

otherwise.

PFET;

(37

The gradient derived in (37) has similar justification to that
in (35). We omit here owing to the similarity.

We summarize the training procedure of the proposed
MK-SOM in Algorithm 1. After initialization, optimization
variables {a.,3.}¢_, are sequentially updated with respect
to each data sample and each pairwise constraint. Since the
methods of gradient descent are employed in the optimization
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Fig. 2. Example objects selected from the 20 categories used in the experi-
ments.

procedure, the objective function (24) decreases monotonically.
That is, the iterative optimization procedure must converge. We
terminate optimization once the value of the objective function
can not be reduced further. The task of data clustering is then
completed by assigning data samples to the corresponding
winner neurons.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of MK-SOM
by applying it to two clustering tasks, including visual ob-
ject categorization and face image grouping. In visual object
categorization, the issues of initialization, convergence, and
heterogeneous feature fusion in MK-SOM are the focal points.
In face image grouping, we in addition demonstrate the effec-
tiveness and advantages of MK-SOM for cluster-dependent
feature selection. As the data used in the two tasks are more
challenging, we analyze the effect of introducing pairwise
constraints in MK-SOM.

For the configuration of SOM, because we aim to derive an
ensemble kernel for each cluster, and each ensemble kernel is
associated with a neuron, we consider a special case of SOM
where the number of neurons equals to that of clusters. How-
ever, our approach (summarized in Algorithm 1) can be directly
generalized to a fix map space, say 10 X 10 neurons. For the
performance evaluation, two criteria are adopted: clustering ac-
curacy (ACC) [22] and normalized mutual information (NMI)
[30]. The output domains of them are both [0, 1]. The larger the
values, the better the clustering results are. In all the experi-
ments, we set the number of clusters, i.e., C, to the number of
classes in ground truth.

A. Visual Object Categorization

In the second experiment, our approach is applied to object
categorization. The Caltech-101 dataset, which was collected
by Fei-Fei et al. [53], is used as the test bed. Clustering in
this dataset is very challenging due to the large and diverse
intra-class variations. Following the setting in [54], we select
the same 20 object categories from Caltech-101. We randomly
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TABLE I

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 8, DECEMBER 2014

THE PERFORMANCES IN FORM OF [ACC (%)/NMI] OF DIFFERENT CLUSTERING METHODS FOR OBJECT CATEGORIZATION

Single kernel k-means AP SC ours
GB 52.870.578 50.7 7 0.580 69.7/0.726 72.270.726
FH 34.0 / 0.390 45.5 1 0.503 54.8 / 0.578 53.4/0.571

GIST 36.3 / 0.430 49.2 7 0.515 54.8 / 0.592 57.8 / 0.596
PHOG 44.0 / 0.448 42.7 1 0.454 60.2 / 0.600 55.7 / 0.574
ss 46.5 / 0.526 55.5 / 0.572 63.8 / 0.655 63.9 / 0.654
AvgKernel 52.0 / 0.542 60.0 / 0.622 70.3 / 0.704 73.8 / 0.732
CE + k-means CE + AP CE + SC CoReg
55.370.554 52870545 71.570.705 66.270.695
BCE + k-means BCE + AP BCE + SC MKL-DR
All kernels 657 70.475 69.0 7 0.494 7387 0.652 64.270.720
Ours
81.1/0.822

pick 30 images from each category to form a set of 600 images.
Fig. 2 shows the 20 selected categories.

Descriptors and Base Kernels: Five different image descrip-
tors are used for object feature extraction. They respectively re-
sult in the following five kernels.

* GB: For an object image, we randomly sample 400 edge
pixels and characterize them using geometric blur de-
scriptor [27]. We construct the dissimilarity-based kernel
based on the distance function suggested in equation (2)
of the work by Zhang et al. [48].

» FH: Mutch and Lowe [6] have proposed a set of features
which emulate the mechanism of human visual system.
These biologically inspired features are adopted to estab-
lish an RBF kernel.

* GIST: Images are resized to 128 x 128 pixels prior to
applying the GIST descriptor [55]. Then, an RBF kernel
is constructed.

* PHOG: The PHOG descriptor [28] is employed to capture
image features. Together with the x? distance, the kernel
is built.

* SS: The self-similarity descriptor [56] is considered over
an evenly sampled grid of each image, and then we use
k-means clustering to generate visual words from the
resulting local features of all images. Subsequently, the
kernel is obtained by matching spatial pyramids as intro-
duced in [8].

Baselines: We compare our approach, MK-SOM, with sev-
eral powerful clustering algorithms. MK-SOM can work with
one kernel and multiple kernels. For comparison in the cases
where a single kernel is considered, k-means, spectral clus-
tering (SC) [57], [58], and affinity propagation (AP) [16] are
used. Specifically, we use the kernelized variant of k-means,
i.e., kernel k-means. Thus, SC, kernel k-means and our ap-
proach take a kernel matrix as input. AP detects clusters by
considering similarities among data. We set the pairwise sim-
ilarities as the corresponding elements of the kernel matrix. For
comparison in the cases where multiple kernels are jointly con-
sidered, cluster ensembles (CE) [30] and Bayesian cluster en-
semble are adopted. Both CE and BCE aim at merging a number
of clustering results to yield a better one. In addition, a multi-
view clustering algorithm [37], called co-regularized multi-view
spectral clustering (CoReg for short), is included in the exper-
iments for comparison. It looks for clusterings that are consis-
tent across data views. We adopted centroid based CoReg owing

to its good performance. Furthermore, we also observe how
MK-SOM could be distinguished from traditional MKL-based
clustering method without cluster-dependent feature selection.
We compare it with MKL-DR [11], where MKL-LPP is used
that projects data in forms of kernels into a low-dimensional
space based on the objective function of LPP. Clustering is then
achieved by applying k-means to the projected data. In the ex-
periments, the target numbers of clusters in all the clustering
methods are set as the number of clusters in ground truth for
fair comparison. Note that the number of clusters in AP is deter-
mined by the preference value, which is tuned with a bisection
method so that the number of the yielded clusters is the same as
that in ground truth.

Quantitative Results.: In this experiment, we compare our ap-
proach with the state-of-the-art clustering algorithms for object
categorization, and report the clustering performance in Table 1.
When each of the five kernels is individually used, it can be
observed that the kernels critically determine the performance.
Shape is a discriminant characteristic for object description. The
kernel GB is developed to capture the shape features of objects,
and gives the best performance. The clustering results by our ap-
proach are consistently better or equivalent to those by k-means,
AP, and SC.

As for the cases where multiple kernels are considered
jointly, our approach achieves remarkable improvement of
8.9%(= 81.1% — 72.2%) in ACC and 0.096(= 0.822 — 0.726)
in NMI over the best result obtained with the kernel GB. On
the other hand, CE and BCE fuse multiple clustering results in
a global manner without exploring cluster-specific properties.
The quantitative results show that our method can make the
most of multiple kernels, and outperforms CE, BCE, CoReg
and MKL-DR.

Initialization and Convergency: Initialization and Conver-
gency are two important issues for an alternate optimization pro-
cedure. We here test our method with different initializations,
and check whether it converges and the performance variation
with those initializations. Different initializations are generated
in two ways. First, we give different sample coefficient vectors
{a} in initialization in the first way. In the other way, we set
the winner neuron of each data sample at the first iteration ac-
cording to the outcome of k-means, AP, and SC. They are de-
tailed as follows:

Coefficients: As depicted in Algorithm 1, our method begins
with the randomly generated sample coefficient vectors {ex.}



TSAl et al.: PER-CLUSTER ENSEMBLE KERNEL LEARNING

90
sot-E= = o.8f- r/;l,
% 70 0.7]
< 501 I —random coeff. s / —random coeff.
8 [ —uniform coeff. 2 06 / —uniform coeff.
< 59 —random part. 05! —random part.
l —k-means part. I —k-means part.
40) ap. part. 0.4] ap. part.
I ——spec. part. ——spec. part.
3% 15 20 %% 20

10 10 15
optimization iteration optimization iteration
Fig. 3. With different initializations, the clustering accuracy (left) and normal-
ized mutual information (right) of our approach along the iterative optimization
on object categorization.
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Fig. 4. Performance of MK-SOM with different numbers of pairwise con-
straints in object categorization.

on the interval [-1/N, 1/N]. We denote this setting as random-
coeff., and it is run five times to compute the average perfor-
mance. In addition, we also have uniform coeff., in which each
element in {c.;} is assigned to 1/N in initialization.

Partitions: In addition to different initial coefficients, we also
examine whether initial data partitions are crucial in the pro-
posed approach because this is the issue in many partitional
clustering methods. To this end, we consider several initial data
partitions, including the clustering results by £-means (k-means
part.), AP (ap part.), SC (spec. part.), and five random data par-
titions (random part.). Our approach works with each partition
by setting the winner neurons of data samples as those indicated
by the partition at the first iteration. The winner neuron is found
in the original manner since the second iteration. Note that the
sample coefficients in the cases are set uniformly, i.e., 1/N, to
fairly investigate the effects caused by initial partitions.

The clustering performances through the iterative optimiza-
tion procedure are plotted in Fig. 3. It can be observed that the
proposed optimization algorithm is quite efficient and robust: It
converges within a few, about five, iterations and yields similar
performance with diverse initializations, especially when NMI
is the performance measure.

Clustering with Pairwise Constraints: We randomly gen-
erate £ musk-links and & cannot-links for each object category,
and adopt three experiment settings, in which must-links,
cannot-links, and both of them are used respectively. We
evaluate the performance by setting & = 1 ~ 3 respectively.
Each setting is repeated five times with different randomly
sampled links, and the average performance is computed. Fig. 4
summarizes the performance in terms of the mean and the stan-
dard deviation. Apparently, a few pairwise constraints benefit
our approach. It suggests that our formulation can effectively
exploit the information carried by the pairwise constraints,
and leads to remarkable improvement. It is also worth to note
that must-links are more informative than cannot-links, since
the candidates of cannot-links are abundant. Nevertheless,
cannot-links are helpful to discover inter-cluster variations.
Therefore, using must-links as well as cannot-links results in
larger improvement.
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Fig. 5. Four kinds of intraclass variations caused by: (a) different lighting
conditions; (b) in-plane rotations; (c) partial occlusions; and (d) out-of-plane
rotations.

Fig. 6. Images obtained by applying the delighting algorithm [60] to the five
images in Fig. 5(a). Clearly, variations caused by different lighting conditions
are alleviated.

B. Face Image Grouping

In the last experiment, we apply MK-SOM to face image
grouping, where the cluster-dependent feature selection is the
focal point. The CMU PIE dataset [59], which consists of face
images of 68 subjects, is adopted in the experiment. We divide
them into 4 disjoint groups of equal size. Each group includes
face images of 17 subjects and is attributed as a certain kind
of variations. An overview can be found in Fig. 5. Specifically,
for each subject in the first group, we consider only the images
of the frontal pose (C27) taken in varying lighting conditions
(those under the directory “lights”). For subjects in the second
and third groups, the images with near frontal poses (C05, C07,
C09, C27, and C29) under the directory “expression” are used.
While each image from the second group is rotated by a ran-
domly sampled angle within [—45°, 45°], each from the third
group is instead occluded by a nonface patch whose area is about
10% of the face region. Finally, for subjects in the fourth group,
the images with out-of-plane rotations are selected under the di-
rectory “expression” and with the poses (C05, C11, C27, C29,
and C37). All images are cropped and resized to 51 x 51 pixels.
We term the four groups by the corresponding variations, i.e.,
lighting, rotation, occlusion, and profile, respectively.

Descriptors and Base Kernels: Compared to the clustering
task performed on the Caltech-101 dataset, it becomes more
challenging on the CMU PIE dataset, since different types of
intra-class variations are involved. We hence need distinctive
descriptors to handle the unfavorable variations. Although
designing more powerful image descriptors gain significant
progress in the field of computer vision, there is still no a
universal descriptor to overcome all the four types of varia-
tions. Thus, multiple descriptors are required, and each of them
addresses one or a few types of variations. Group-dependent,
or even sub-dependent, feature selection in this dataset is
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TABLE II

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 8, DECEMBER 2014

CLUSTERING PERFORMANCE IN FORM OF [ACC (%)/NMI] oN CMU PIE DATASET

dataset (number of classes)
method kernel(s) ATl (68) [ Lighting (17) | Rotation (17) | Occlusion (17) | Profile (17)
DeLight 44.5 / 0.643 100.0 / 1.000 23.5/0.401 27.8 /1 0.501 26.7 7/ 0.463
LBP 53.8/0.714 82.4 / 0.886 46.7 / 0.604 54.5 /1 0.661 31.8/0.527
Ours RsLTS 46.7 /1 0.697 63.1/0.744 31.0/ 0.468 67.5/0.772 25.1/0.514
RsL2 36.5/0.613 73.3 /1 0.822 25.1 /7 0.407 20.4 / 0.315 27.1/0.489
AvgKernel 51.3/0.708 89.0/0.911 28.2 1 0.448 61.6 / 0.675 26.3 / 0.520
Ours + CE All 52.3/0.717 96.9 / 0.967 29.0 7/ 0.478 52.5/0.677 30.6 / 0.529
Ours + BCE All 43.8 /1 0.651 83.1/0.925 27.1/70.431 51.0/0.613 14.1 /7 0.419
CoReg All 43.0 / 0.682 73.7710.871 24.3 1 0.423 45.9 / 0.586 28.2/0.485
MKL-DR All 38.1/ 0.680 50.2 7/ 0.789 30.2 / 0.461 45.1/ 0.564 27.1/0.482
Ours All 62.5/0.783 | 100.0/1.000 | 50.6 / 0.584 61.6 / 0.690 38.0/ 0.593
¢ 70 0.8 -
e - I//—l
g 50, —random coeff. s / —random coeff.
3 / —uniform coeff. || = 0-6 —— uniform coeff.
] < 40 / —‘r(andom part. j —random part.
——k-means part. 5 —kK art.
30| 1 ap. part.dp 09 I ap. part. pan
Fig. 7. Each image is divided into 96 regions. The distance between the two 205 =P 20 0.45 3 19 sf:c' e 20

images is obtained when circularly shifting causes %’ to be the new starting
radial axis.

particularly important, since the optimal descriptor varies from
group to group. With the dataset, we design and adopt a set of

visual features, and establish the following four kernels. sf o
* DeLight: The data representation is yielded based on the gh 085
delighting algorithm [60], and the corresponding distance §7G — E 08 F— —
function is set as 1 — cos ¢/, where £ is the angle between a 85t -1 ’ —Cok
data pair. Some delighting results are given in Fig. 6. It can 60 0.75

be seen that variations caused by different lighting condi-
tions or illuminations are significantly alleviated under the
representation.

* LBP: As illustrated in Fig. 7, we divide each face image
into 96 = 24 x 4 regions, and use a rotation-invariant local
binary pattern (LBP) operator [61] (with operator setting
LBngf"Q) to detect 10 distinct binary patterns. Thus, an
image can be represented by a 960-dimensional vector,
where each dimension records the number of occurrences
that a specific pattern is detected in the corresponding
region. To achieve rotation invariant, the distance between
two such vectors, say x; and x;, is the minimal one
among the 24 values computed from the distance function
1 — sum(min(x;, x;))/sum(max(x;,x;)) by circularly
shifting the staring radial axis for x;. Clearly, the base
kernel is constructed to cope with variations caused by
rotations.

* RsL2: Each sample is represented by its pixel intensities in
raster scan order. The Euclidean (L) distance is adopted.

* RsLTS: This base kernel is similar to RsL2, except that
the distance function here is based on the least trimmed
squares (LTS) with 20% outliers allowed. It aims to take
account of the partial occlusions in face images.

Quantitative Results: We first evaluate MK-SOM by ap-

plying it to CMU PIE dataset using each of the four base
kernels and the AvgKernel individually, and report the results
in Table II. The obtained performance in ACC ranges from
36.5% to 53.8%. To gain insight into the quantitative results,

10
optimization iteration optimization iteration

Fig. 8. With different initializations, the clustering accuracy (left) and normal-
ized mutual information (right) of our approach along the iterative optimization
on face image grouping.

1 2 3 2 3
number of pairwise constraint per class number of pairwise constraint per class

Fig. 9. Performance of MK-SOM with different numbers of pairwise con-
straints in face image grouping.

we further compute the performance for the four groups. Note
that no additional clustering is performed. We just compute
the clustering performance with respect to data in each of the
four groups separately. Apparently, each of the four kernels
in general can lead to satisfactory performance regarding a
specific type of intra-class variations. For instance, the kernel
DeLight can perfectly handle the varied lighting conditions
in the lighting group, while LBP and RsLTS yield acceptable
outcomes respectively in the Rotation and Occlusion groups.
Yet none of them is effective for dealing with the whole dataset.
The results reveal that these kernels are complementary in
the sense that they are respectively discriminant for different
subsets of data. However, combining these kernels globally
may not be a good strategy, since the kernels are corrupt for
data with intra-class variations that they are not designed to
deal with. It can be seen that the AvgKernel neither outperforms
LBP in the whole dataset nor gets superior results to those of
other kernels in the corresponding groups.

As for the cases where all the four kernels are simultane-
ously taken into account, it can be observed in Table II that
the proposed approach achieves remarkable improvement, i.e.,
8.7% in ACC and 0.069 in NMI, over the best result obtained
from using a single kernel (LBP). Furthermore, it significantly
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Fig. 10. Average learned kernel weights over subjects of each group. (a) Without pairwise constraints. (b) With pairwise constraints.

outperforms CE and BCE, which merge the four clustering re-
sults derived by applying our approach to the four base kernels
respectively. It highlights the importance of cluster-dependent
feature selection for the dataset. Unlike CE and BCE that carry
out information fusion in a global fashion, our approach derives
a learnable ensemble kernel to reveal the local structure of each
cluster. CoReg is one of the state-of-the-art multi-view clus-
tering algorithms, and also leverages multiple kernel learning in
the learning procedure. MKL-DR takes multiple kernel learning
as a preprocessing step where the most discriminative features
are selected for being adopted in clustering. One main difference
among CoReg, MKL-DR, and our approach is that the former
two approaches focus on adaptively learning a single ensemble
kernel to characterize the whole dataset, while ours aims to per-
form cluster-specific kernel learning to facilitate the uniqueness
of different categories of data. Hence, substantial performance
gain is achieved by our approach.

For an in-depth analysis of MK-SOM in cluster-dependent
feature selection, we explore the learned kernel weights { 3.} of
clusters (i.e., subjects in the application) in each group. This can
be accomplished by the bipartite matching between the yielded
clusters and the subjects in ground truth, like the method for
computing ACC [22]. In Fig. 10(a), the learned kernel weights
of subjects in each of the four groups are plotted in terms of the
mean and the standard deviation. It can be seen that kernel De-
light dominates in the lighting group. Kernels LBP and RsLTS
contribute the most in the rotation and the occlusion groups re-
spectively. Although the kernel weights are not precisely in pro-
portion to the individual performance of the base kernels, dis-
criminant kernels are appropriately selected by our approach to
overcome the unfavorable variations of each group.

Running Time: The running time of our approach and other
baselines that consider multiple features is reported in Table III.
All the methods in the table are implemented in MATLAB,
except CE is implemented in part in C. The running time is
measured on a modern PC with Intel Core i173.4 GHz CPU.
Since most of the methods start with random initialization, we
run each method ten times, and report the average running time.
Both CE and BCE are fast algorithms for fusing individual
clusterings. Their running time is mostly dependent on the
methods used for compiling individual clusterings. It is worth
mentioning that a step of high complexity, i.e., solving an
eigenvalue problem, is needed in SC, but SC is still more effi-

TABLE III
RUNNING TIME (SEC) OF VARIOUS METHODS ON THE DATASETS OF OBJECT
CATEGORIZATION AND FACE IMAGE GROUPING

dataset

method object face
k-means + CE 20.6 137.1
AP + CE 211.4 572.9
SC + CE 1.1 4.9
k-means + BCE 21.2 138.4
AP + BCE 211.9 573.5
SC + BCE 2.3 6.8
CoReg 3.4 26.4
MKL-DR 4.8 13.3
Ours 105.3 446.4

cient than k-means owing to the sizes of the two datasets. Our
approach is not as efficient as the comparative baselines. Most
computation cost is induced for carrying out cluster-dependent
feature selection, since we adopt an iterative and alternate
optimization procedure to tackle the problem caused by the
mutual dependence between cluster-specific ensemble kernels
and clustering results. It takes our approach a few minutes to
cluster the two medium-scale datasets, i.e., (N, C) = (600, 20)
in the object dataset and (N,C) = (1020,68) in the face
dataset, where N and (' are the numbers of data and clusters,
respectively.

Initialization and Convergency: We check whether our
method converges in the application to face image grouping.
Similar to the setups used in Fig. 3, the performance of our
method along the iterative procedure of optimization is shown
in Fig. 8. It can be observed that our method is stable, since it
converges to similar NMI and ACC with diverse initializations.

Clustering with Pairwise Constraints: We assess MK-SOM
with the introduction of pairwise constraints for face image
grouping, and give the obtained performance with different
numbers of pairwise constraints in Fig. 9. Similar to object
categorization, pairwise constraints also boost the performance
in face image grouping. The degree of improvement is even
higher, since the CMU PIE dataset is much more complex:
more clusters and various types of intra-cluster variations.
We show the learned kernel weights with the aid of pairwise
constraints in Fig. 10(b). Compared to those in Fig. 10(a),
the learned kernel weights with pairwise constraints are more
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closely related to their contributions to the clustering tasks
for the corresponding groups. Furthermore, the standard de-
viations of the kernel weights are considerably reduced. It
indicates that these constraints facilitate the desirable stability
in optimization.

VI. CONCLUSION

We have presented an approach to clustering data in mul-
tiple feature representations. Its main feature lies in the ability
of efficient cluster-dependent feature selection, which is moti-
vated by the observation that the optimal data descriptors often
vary from cluster to cluster. With the idea of associating each
cluster with a learnable ensemble kernel, we integrate mul-
tiple kernel learning into the clustering procedure, and cast it
as a joint optimization problem. Besides, it is shown that the
problem can be solved efficiently by gradient descent with the
introduction of softmax activation function. The cluster-spe-
cific structure is then gradually revealed by the learned en-
semble kernels through the optimization iterations. The pro-
posed approach is comprehensively evaluated in two clustering
tasks as well as the associated datasets, including visual object
categorization and face image grouping. The promising results
in accuracy and convergency speed manifest the effectiveness
of our approach.

The introduced formulation of MK-SOM provides a new way
of extending the MKL framework to work in a cluster-specific
manner. Besides, it generalizes MKL to address not only unsu-
pervised but also semi-supervised learning tasks. These aspects
of generalization introduce a new frontier in applying MKL to
solving increasingly complex clustering tasks. This property is
precious especially for unsupervised and semi-supervised mul-
timedia content analysis, since MKL has been a wisely used way
for handling the varieties of multi-modal data in multimedia
research.
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