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Abstract—Referring expression comprehension (REC) is a
cross-modal matching task that aims to localize the target
object in an image specified by a text description. Most exist-
ing approaches for this task focus on identifying only objects
whose categories are covered by training data. This restricts
their generalization to unseen categories and practical usage.
To address this issue, we propose a domain adaptive network
called CLIPREC for zero-shot REC, which integrates the Con-
trastive Language-Image Pretraining (CLIP) model for graph-
based REC. The proposed CLIPREC is composed of a graph
collaborative attention module with two directed graphs: one
for objects in an image and the other for their corresponding
categorical labels. To carry out zero-shot REC, we leverage the
strong common image-text feature space from the CLIP model to
correlate the two graphs. Furthermore, a multilayer perceptron is
introduced to enable feature alignment so that the CLIP model
is adapted to the expression representation from the language
parser, resulting in effective reasoning from expressions involving
both seen and unseen object categories. Extensive experimental
and ablation results on several widely-adopted benchmarks show
that the proposed approach performs favorably against state-of-
the-art approaches for zero-shot REC.

Index Terms—Referring expression comprehension, domain
adaptive network, zero-shot learning, CLIP

I. INTRODUCTION

BRIDGING human beings and machines for efficient
human-computer interaction in real-world applications

has become a research hotspot of artificial intelligence [1]. One
promising direction to realize this goal is through referring
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expression comprehension (REC) [2], [3], [4], which enables
machines to comprehend the natural language in text from
humans and find out the target object in an image. The core
of this task is multi-modal reasoning between the textual ex-
pression semantics and the visual target objects. For example,
for a given expression “a dog on the left of a cat”, this task
requires a machine to comprehend the expression and identify
the object “cat” in a given image, followed by locating the dog
indicated by the direction noun “left” and the object “cat” in
the image. Since object category and expression annotations in
our daily lives are extensive, it is almost infeasible to collect
and label all possible image-expression pairs manually. Thus,
zero-shot REC, as shown in Fig. 1, is more practical in the
real-world setting than the standard REC. However, it is a
more challenging task due to the requirement of figuring out
the underlying relationships between unseen target objects and
given expressions.

Most existing REC methods [5], [6], [7], [8], [9] are
supervised. Unsupervised or zero-shot REC, e.g., [10], was
rarely explored in the literature due to its difficulties. Ex-
isting approaches in zero-shot REC tend to primarily focus
on local content, resulting in inferior results when complex
expressions and global reasoning are required. On the other
hand, Wang et al. [11] proposed an unsupervised REC method
requiring neither training nor paired phrase localization anno-
tations. The method localizes the target object by leveraging
semantic similarities between the query expression and the
predicted concept labels of object candidates from various
visual detectors. However, this method does not utilize the
visual features of object candidates for matching. It thus results
in suboptimal performance when the detected concepts are
insufficient to differentiate the appearances of the target from
other similar objects in the image. In this work, we aim to
handle unseen objects during the inference time and focus on
zero-shot REC by leveraging the pre-trained CLIP model [12].
The CLIP model has shown superior performance on zero-
shot image classification because it is pre-trained contrastively
using 400 million image-text pairs. To better use the power
of CLIP, we adapt it to REC by using the training data of
the target dataset. Specifically, we propose a novel graph-
based domain adaptive network for zero-shot REC called
CLIPREC, that integrates the Contrastive Language-Image
Pretraining (CLIP) model [12] into a two-stage graph-based
algorithm. Graph structures can exploit both local and global
context information from detected objects, and is flexible to
work with additional modules. Through the common feature
space learned by CLIP, our graph-based method can infer the
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Fig. 1. Conceptual diagram of the proposed CLIPREC. It leverages the rich image-text information encoded in the CLIP (contrastive Language-Image
Pretraining) model to overcome the difficulties of zero-shot REC (referring expression comprehension) where the target object categories specified by a given
expression can be unseen during the training stage of the REC model.

corresponding categorical labels even for object candidates
whose categories are not covered in the training data.

The CLIP model is mainly derived to extract features for
image-text matching instead of reasoning and exploring the
structure and semantics of the given images and expressions.
Namely, it is not optimized for REC. Before using CLIP for
zero-shot matching unseen objects, we propose performing
feature alignment (FA) to synchronize the CLIP features and
the expression representations obtained by the language parser.
The FA module in this work uses trainable MLP (multilayer
perceptron) over the CLIP features and projects all the features
to a common subspace.

The proposed domain-adaptive network contains a graph
collaborative attention module with two directed graphs, one
for the objects of a given image and the other for the categor-
ical labels of the objects. It leverages the CLIP features for
working with unseen object categories and is developed upon
GCN (graph convolutional networks) [13] for information
aggregation. Two additional trainable multilayer perceptrons
are appended after the image and text encoders of the pre-
trained CLIP model for feature alignment. The resultant visual
and textual features produced by the CLIP model can be better
aligned with the expression representation from the language
parser to improve performance further. Finally, the matching
can be done by finding the pair with the highest similarity
score between the expression and graph nodes.

In short, our contributions are two-fold: (1) we proposed a
novel model called CLIPREC, which effectively tackles the
challenging zero-shot REC problem by leveraging the CLIP
model, pre-trained on a rich collection of image-text pairs.
We utilize a graph-based multi-modal aggregation strategy
to adapt CLIP for the downstream REC task, effectively
aggregating CLIP features for visual objects and textual ex-
pressions. This strategy ensures that the CLIP features and
expression representations obtained from language processing
are synchronized, effectively bridging the domain gap. (2) our
extensive experimental results demonstrate that our CLIPREC
performs favorably against state-of-the-art methods for the
target REC task with unseen object categories in a zero-shot
manner.

II. RELATED WORK

The literature about referring expression comprehension
(REC) is quite extensive. In the following, we review the

research topics highly relevant to this work, including zero-
shot learning and graph-based REC.

A. Zero-Shot Learning with CLIP model

Zero-shot learning [14], [15], [16], [17], [18] has been
studied as a way of generalizing a trained model to unseen
object categories for different vision applications. Research
efforts have been made to develop effective approaches to
accomplish zero-shot learning. For example, Frome et al. [15]
improved the method presented in [16] and demonstrated
that after the trained model is fine-tuned on the ImageNet
dataset [19]. Li et al. [17] enabled zero-shot transfer to
several existing computer vision classification benchmarks
via exploiting natural language supervision. By fine-tuning
convolutional neural networks pre-trained on the ImageNet
dataset, their approach achieves promising performance in
predicting 30 million Flickr photos with a much wider set
of visual concepts in a zero-shot manner.

OpenAI released the CLIP model [12], which leverages
400 million image-text pairs collected from the Internet to
contrastively train the model and achieve powerful joint image-
text representations. The CLIP model achieves promising
results in the image classification task in the zero-shot setting.

Recently, some methods based on CLIP were proposed to
solve zero-shot tasks. For example, Gu et al. [20] proposed an
open-vocabulary object detector for zero-shot object detection
by exploiting CLIP, which leads to satisfactory performance.
Jia et al. [21] constructed a large-scale dataset by feeding
1.8B image-text pairs into the designed image-based and text-
based filtering. The constructed dataset was used to train their
proposed method, named ALIGN, which adopts contrastive
learning to cluster matched and non-matched image-text pairs
in each batch, respectively, for zero-shot classification. Re-
cently, the method proposed in [22] describes the textual events
of an expression by a series of prompt functions and identifies
the object candidates of an image. The resultant descriptions
and proposals are fed into the textual and visual encoders
of CLIP for matching. Li et al. [23] proposed BLIP (Boot-
strapping Language Image Pretraining) for extracting better
image-text representation. BLIP adopts a multimodal mixture
of encoder-decoder framework and leverages a captioner and a
filter to remove the noisy captions to create a better large-scale
image-text dataset for multi-task pre-training. BLIP improves
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the performance of zero-shot text-to-video retrieval and zero-
shot video question answering after fine-tuning the pre-trained
BLIP for each downstream task. As reported in [24], CLIP
lacks the sensitivity of spatial relationships of objects in
images and is thus not optimal for reasoning. To address
this issue, Subramanian et al. [24] proposed a zero-shot REC
method named ReCLIP, which takes the object candidates of
an image and noun chunks of an expression as input to the
visual and textual encoders of CLIP, respectively, for matching.
Although their method makes use of CLIP to facilitate zero-
shot REC, the CLIP model is adopted without any adaptation
and probably suffers from the domain gap between the data
used to pre-train the CLIP model and the data used for REC.

Different from [24], our method integrates the CLIP model
into the proposed graph-based domain adaptive network. With
our CLIPREC, the CLIP features for visual objects and textual
expressions can be aggregated via the graph structure for
multi-modal reasoning and REC. Furthermore, we include a
feature alignment module for the CLIP model so that training
the network jointly can well adapt the CLIP model to the
downstream REC task. It turns out that our method makes
the most of both worlds of CLIP features for unseen objects
and the language parser for expression analysis. The proposed
method can also effectively exploit the correlation of the visual
information of object candidates and their corresponding cat-
egorical information in the zero-shot setting by leveraging the
rich, joint image-text representations after adapting the pre-
trained CLIP model.

B. Graph-based REC
In existing REC methods, graph-based methods can more

intuitively capture the relationship between objects in an
image and are more suitable for language-guided reasoning.
Reasoning is widely used in text-to-image tasks. For example,
Liang et al. [25] proposed a new task by introducing abductive
reasoning to computer vision. Existing methods for graph-
based REC typically employ two-stage pipelines because their
graphs are constructed based on object candidates. Some
graph-based REC methods [6], [26], [27], [28], [29], [30]
were proposed to learn the cross-modal correlation between
the vision and language domains. For example, the methods
proposed in Wang et al. [27] and Yang et al. [28] employ a
language parser to analyze linguistic structures for complex ex-
pressions, and construct an attention graph by jointly referring
to the textual features of expressions and the visual features
of objects. Under the guidance of expressions, the object, i.e.,
a node in the graph, with the highest score, is considered
as the target object instance that matches the expression.
Different from the aforementioned methods, He et al. [26],
Yang et al. [29], and Jing et al. [6] proposed to construct the
scene graph based on an expression. The scene graph is then
used to guide the construction of another graph, called the
appearance graph, for the objects in an image. The similarity
of the two graphs is computed and used to identify the target
object described by the expression.

Although these graph-based methods have achieved promis-
ing performances, they mainly use the visual features of an im-
age and textual features of expressions for matching, ignoring

the categorical features of the objects. Therefore, the results
can be further improved, especially when grounding using
complex referring expressions. Different from existing ap-
proaches, we jointly exploit the visual features and categorical
features of the objects in an image with our proposed graph-
based domain adaptive network. We find that jointly exploiting
both pieces of information helps improve the performance of
REC. More importantly, while existing methods for REC are
applicable to object categories covered by training data, our
method can accomplish the grounding task even for unseen
object categories in a zero-shot manner.

C. Text-guided object segmentation and detection
Text-guided video segmentation (TVS) aims to ex-

tract objects in a video based on a textual descrip-
tion. Liang et al.proposed two frameworks for TVS:
ClawCraneNet [31] and Local-Global Context Aware Trans-
former (LOCATER) [32]. ClawCraneNet locates the target
object among all candidate objects using the feature maps
of video frames, guided by the positional relation among
objects, textual relation of expressions, and inter-frame tem-
poral relation of the video. Meanwhile, LOCATER proposes
a memory consisting of two components: a global memory
and a local memory. The global memory gathers those frames
representing the global visual contents, and the local memory
gathers diverse temporal contexts of video based on the last
segmented frame and current local memory state. The encoded
expression, along with each frame of video, frames in the
global memory, and the local memory, are then fed into the
referring decoder to mask the target object.

Text-guided object detection (TOD), a related task to TVS,
also called open-vocabulary object detection, has attracted
increasingly more interest within the community. Open-
vocabulary object detection aims to locate unseen objects by
the learned knowledge from some seen objects. In particular,
Li et al. [33] presented the first work on open-vocabulary
object detection with textual descriptions. Their proposed
method encodes a series of noun-descriptions of unseen ob-
jects by an LSTM model and concatenates them to the RoI
pooling features of objects from the detector for matching.
Feng et al. [34] proposed a learnable prompt in front of
the pre-trained text encoder to embed the categorical labels.
Then, the embedded categorical labels are fed into the pre-
trained text encoder to guide the detector for classification and
bounding box regression. Gu et al. [24] proposed a knowledge
distillation system that guides the detector to locate unseen
objects in an image using CLIP’s encoded object proposals
and categorical labels.

Zero-shot REC and TOD share some similarities, but there
are also important differences between them. Specifically,
in zero-shot REC, the task involves an entire sentence that
describes an unseen object, including both the noun phrases
and the relationships between them. This requires analyzing
the given sentence and identifying the object it describes in
an image, rather than simply locating an object related to the
subject of the sentence in the image, as in TOD. As a result,
the constraints on zero-shot REC are stronger than those on
TOD.
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Fig. 2. Proposed CLIPREC framework for zero-shot REC. First, the expression is represented by N + 1 representations, τ1 . . . τN and q, for N objects
of expression and the entire expression, respectively. The pretrained CLIP model is then employed to infer the categorical labels of object candidates, where
N + 1 expression representations with the adapted CLIP features of the object candidates and their corresponding category labels are used to construct two
attention graphs Ga and Gc. In each graph, the node weights represent the relationship between the proposal and the expression, and the edge weights represent
the relationship between the two connected nodes and the expression. Finally, the GCN-based multi-step reasoning is performed on the two attention graphs,
followed by matching the target object in the image specified by the given expression. Larger node sizes in the graph denote larger assigned weights for each
graph. Parameters in the green and yellow blocks are trainable and fixed, respectively.

III. PROPOSED METHOD

A. Overview

Fig. 2 illustrates the proposed CLIPREC framework that
integrates the CLIP model into the graph-based domain adap-
tive network for zero-shot REC. CLIPREC consists of four
modules: a language parsing module, a graph collaborative
attention module, a multi-step reasoning module, and a match-
ing module. The language parser encodes a given expression
into N feature vectors to summarize the expression’s N nouns
(entities). The graph attention module constructs two attention
graphs: one for objects in the input image and the other for
their corresponding labels with the expression where the visual
and categorical features are extracted using the pre-trained
CLIP model appended with trainable, multilayer perceptrons
for feature adaptation. The multi-step reasoning module con-
sists of a T -layer GCN (graph convolutional network) aiming
to aggregate information extracted from the two graphs, with
which the matching module infers the target object with the
highest similarity score between the given expression and the
resultant node features of the two graphs.

The pseudo-code listed in Algorithm 1 summarizes the
proposed CLIPREC, whose details are elaborated in the fol-
lowing subsections. Compared with existing graph-based REC
methods, the key novelties of CLIPREC lie in the following
aspects. First, we devise a new self-attention strategy to repre-
sent the noun chunks of an expression to improve presentation
accuracy (corresponding to Steps 6–7 in the pseudo-code).
Second, we propose a multi-modal graph construction strategy
(corresponding to Steps 8–11 in the pseudo-code) that utilizes
the zero-shot module of CLIP, the representation of noun
chunks, and a multilayer perceptron to construct both an
attention appearance graph and a categorical graph. The two

graphs are employed to better align the CLIP domain with the
language parser.

Algorithm 1 CLIPREC
1: Required symbol: visual graph Ga, categorical graph Gc,

visual graph after T reasoning steps Ga (T ), categorical
graph after T reasoning steps Gc (T )

2: Required variable: words of expression {hℓ}Lℓ=1, expres-
sion q, noun-phases of expression {τn}Nn=1, visual objects
{oi}Ki=1, positions of visual objects {bi}Ki=1, visual object
labels {ζi}

K
i=1, number of samples in each minibatch m

3: Required function: language parser LP, graph construc-
tion GC, mutli-step reasoning MR, matching M

4: for each minibatch do do
5: for iter = 1 to m do
6: Represent N nouns of expression (i.e., (1)–(3))
7: {τn}Nn=1 ← LP

(
{hℓ}Lℓ=1

)
8: Construct the appearance graph (i.e., (4)–(10))
9: Ga ← GC

(
{oi}Ki=1 , {bi}Ki=1 , {τn}Nn=1

)
10: Construct the categorical graph (i.e., (4)–(10))
11: Gc ← GC

(
{ζi}

K
i=1 , {bi}Ki=1 , {τn}Nn=1

)
12: Multi-step reasoning (i.e., (11)–(13))
13: Ga (T ) ,Gc (T )←MR (Ga,Gc,q)
14: Matching (i.e., (14)–(16))
15: prediction ←M (Ga (T ) ,Gc (T ) ,q)
16: end for
17: end for

B. Language Parser
Due to the excellent performance of self-attention-based bi-

direction LSTM (Bi-LSTM) [35] for language parsing [36],
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[27], [37], [38], we employ a Bi-LSTM language parser with
our proposed self-attention strategy for more precise attention.
Given an expression Q of L words, each word is embedded
into a vector by a non-linear mapping function, resulting in the
embedded vectors {e1, e2, ..., eL}. The parser encodes the em-
bedded vectors into a vector sequence H = {h1,h2, ....,hL}
by using Bi-LSTM, where hℓ is the concatenation of the
output of forward and backward Bi-LSTM at the ℓ-th word.
Meanwhile, the overall representation of the expression is
denoted by a feature vector q, which is the concatenation
of the last hidden states of both the forward and backward
LSTMs.

Let N denote the number of nouns (entities) in the ex-
pression. We represent the text embedding of N nouns as
{ep1

, ep2
, ..., epN

} where pn, for n = 1, ..., N , is the index
of the word corresponding to the n-th noun in the expression.
For our self-attention strategy, we derive N groups of weights,
one for each noun, to emphasize the object-related words in the
expression. Specifically, for the n-th noun, the corresponding
weight group αn = {αn,ℓ}Lℓ=1 consists of L weights for
highlighting the words related to this noun. We optimize a
learnable vector wn to derive the weight group αn by applying
wn to H = {h1, ....,hL} followed by the softmax function,
namely

αn,ℓ =
exp(hT

ℓ wn)∑L
t=1 exp(h

T
t wn)

, for 1 ≤ ℓ ≤ L. (1)

With the weight group αn, the expression representation of
the n-th noun can be represented by

τn =

L∑
ℓ=1

αn,ℓhℓ, (2)

which is a weighted combination of the word vectors with the
relevant words emphasized. By repeating the process for each
of the N nouns, we obtain their representations {τn}Nn=1. The
loss associated with the self-attention strategy is defined by

Le =
1

N

N∑
n=1

− log (⟨epn ,Weτn⟩), (3)

where We is the matrix of trainable parameters. Le is the
expression loss that aims to help each noun (entity) find other
related words (descriptions) in the expression. It models the
relationship of the n-th noun with other words in the expres-
sion through soft attention weights (i.e., αn = {αn,ℓ}Lℓ=1). In
other words, in the weight group of the n-th noun, αn, the
higher the correlation of a word to the n-th noun is, the larger
weight this word is assigned.

C. Graph Collaborative Attention Module

Once obtaining the expression representations, we proceed
to the next stage of constructing the graphs encoding the
relationships between the objects in the image and the entities
in the expression for the following reasoning and matching
procedures. For this purpose, we construct a pair of com-
plete graphs, the appearance graph Ga = (Va, Ea) and the
categorical graph Gc = (Vc, Ec), for appearance and semantic

encoding, respectively. The appearance graph Ga is built by
referring to the appearance of the object candidates and the
expression. The categorical graph Gc is constructed similarly
but replaces the appearance of the object candidates with their
categorical labels, where the label of each proposal is obtained
by leveraging the zero-shot, image-to-text matching capability
of the CLIP model.

Specifically, suppose that we are given an image I with
K detected object candidates as well as a predefined label set
consisting of all possible categorical labels, including the base
and unseen classes. The image and text encoders of the CLIP
model are employed to extract the features of each proposal in
the image and the features of each categorical label in the label
set, respectively. It follows that cross-modal matching can be
carried out for each proposal by finding its corresponding
target label with the highest cosine similarity to its appearance
features. Like the graph-based REC method [28], our method
also maintains an appearance graph Ga = (Va, Ea) and a
categorical graph Gc = (Vc, Ec) for representing the visual
appearance and categorical labels of the K object candidates,
respectively. Nevertheless, the node features, Va = {vai }Ki=1

and Vc = {vci }Ki=1, and the edge features, Ea = {eaij}Ki,j=1 and
Ec = {ecij}Ki,j=1, are developed based on CLIP for carrying out
zero-shot REC. They are elaborated as follows.

a) Node Features and Node Weights: Both the appear-
ance graph Ga and the categorical graph Gc have K nodes,
where K is the number of object candidates. A node in Ga
encodes the appearance of its corresponding proposal and
its matched noun in the expression, while a node in Gc
considers the categorical semantics of the proposal as well
as the matched noun. We first describe the node features of
the appearance graph Ga = (Va, Ea). For the i-th node in Ga,
its features vai ∈ Va are computed via multilayer perceptron
(MLP):

vai = MLPa

([
oi;bi; τπa

i

])
+ ϵa, (4)

where multilayer perceptron MLPa(·) is composed of the
fully-connected layers, and ϵa is a trainable bias. They are
derived to adapt the concatenated feature vector [oi;bi; τπa

i
]

for reasoning and matching.
In the input to MLPa(·), the first component oi is the

visual features of the i-th object candidate and is extracted
by the CLIP visual encoder. The second component bi =
Wb [xi, yi, wi, hi, wihi] contains the box features of the i-th
proposal, where Wb is a matrix of trainable parameters, (xi, yi)
is the normalized coordinates of the proposal center, and wi,
hi, and wihi are the normalized width, height, and area,
respectively. The third component τπa

i
contains the features of

the πa
i -th noun in the expression, where the noun features are

calculated via (2), and among the N nouns in the expression,
the πa

i -th noun best matches the i-th proposal. The following
describes how to find the best-match noun for the i-th proposal.

For the i-th proposal in the image and the n-th noun in the
expression, their degree of matching is defined by

sai,n = Wa,2 [tanh (Wa,1 [oi;bi] +Wττn)] , (5)

where Wa,1, Wa,2, and Wτ are three matrices of trainable
parameters. It follows that the best-match noun τπa

i
of the
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i-th proposal is identified by

πa
i = argmax

n
{sai,n|1 ≤ n ≤ N}, (6)

where N denotes the number of nouns in the expression.
The node features of the appearance graph, Va = {vai }Ki=1,

can be computed by repeating the procedure of (4) for each
proposal i. To emphasize the nodes that better match nouns in
the expression, we associate each node vai with an additional
weight wa

i . Specifically, the node weight is defined by

wa
i =

exp(sai,πa
i
)∑K

k=1 exp(s
a
k,πa

k
)
. (7)

In (4), (6), and (7), we have respectively computed the node
features vai , the index of the best-matched noun πa

i , and the
weight wa

i for each node i in the appearance graph Ga. For
each node i in the categorical graph Gc, its node features
vci , index of the best-match noun πc

i , and weight wc
i can be

computed in the same way, except the visual features oi which
are replaced by the textual features ζi obtained by applying
the CLIP textual encoder to the i-th object candidate.

b) Edge Features and Edge Weights: Both Ga and Gc
are fully-connected graphs initially. We first describe the edge
features eaij ∈ Ea in the appearance graph Ga = (Va, Ea).
Like [29], our method considers all features of the two nodes
that eaij connects when deriving its features, namely

eaij = W a
e [oi;oj ;bi;bj ; τπa

i
; τπa

j
], (8)

where W a
e is a matrix of trainable parameters.

Edges that are relevant to the expression need to be em-
phasized. The degree of relevance between edge eaij and the
expression q is estimated via

γa
ij = W a

q [tanh(Wqq+W a
e e

a
ij)], (9)

where W a
q , Wq and W a

e are the matrices of trainable parame-
ters. When aggregating features from the i-th node, the weights
of the edges linking this node are normalized and set to

wa
ij =

exp(γa
ij)∑K

k=1,i̸=k exp(γ
a
ik)
· 1[i ̸=j], (10)

where 1[·] is the indicator function.
Previous methods [28], [29] show that in two-stage methods,

the output of the first-stage procedure includes many irrelevant
object candidates that introduce a lot of noise. This unfavor-
able effect can be alleviated by setting the edge weight wa

ij to
0 if its original value is less than a pre-defined threshold. In
this work, we empirically set the threshold to 1/K.

For the appearance graph Ga, we have described the compu-
tation of the edge features eaij in (8) and the edge weight wa

ij

in (10). For the categorical graph Gc, the features ecij and the
weight wc

ij of each edge can be computed in the same way,
except for all involved visual features which are replaced by
the corresponding textual features extracted by using the CLIP
textual encoder.

D. Multi-step Reasoning Module

There exist contextual relationships among the entities of
a complex expression. Those relationships can be leveraged
to more precisely locate the target object described by the
expression. With the aid of graph-based structures, those
relationships can be effectively explored through multiple
message-passing steps among the nodes of the graph.

Specifically, once the graphs are constructed, we perform
multi-step reasoning by using a T -layer GCN (graph convo-
lutional network) where T corresponds to the number of the
reasoning steps on Ga and Gc for information aggregation.
In the following, We first describe the reasoning details on
the appearance graph Ga. The node features, node weights,
edge features, and edge weights on Ga at the t-th reasoning
step are denoted by {vai (t)}Ki=1, {wa

i (t)}Ki=1, {eaij(t)}Ki,j=1,
and {wa

ij(t)}Ki=1, respectively. In the beginning i.e., t = 0, we
initialize them to what we compute in (4), (7), ( 8), and (10),
respectively. That is, vai (0) = vai , wa

i (0) = wa
i , eaij(0) = eaij ,

and wa
ij(0) = wa

ij .
We adopt a similar message passing strategy to [29] on Ga,

where the i-th node feature of Ga at the t-th reasoning step is
calculated by

vai (t) = Wt (ṽ
a
i (t) + v̂ai (t) + θt) + vai (t− 1), (11)

where Wt is a matrix of trainable parameters and θt is a vector
of trainable parameters, and ṽai (t) and v̂ai (t) are the aggregated
node features from the connected neighboring nodes and the
transformed features for the self-loop of the i-th node at the
(t− 1)-th reasoning step, respectively. More Specifically,

ṽai (t) =

K∑
j=1,j ̸=i

wa
ij(t− 1)

(
W̃tw

a
j (t− 1)vaj (t− 1) + θ̃t

)
,

v̂ai (t) = Ŵtw
a
i (t− 1)vai (t− 1) + θ̂t,

(12)
where W̃t and Ŵt are two matrices of trainable parameters,
and θ̃t and θ̂t are vectors of trainable parameters.

After a forward pass of a layer of graph convolutions, each
compound node of Ga aggregates the information from other
nodes where a compound node that is more relevant to the
expression should be assigned a larger weight. Accordingly,
the node and edge weights of Ga (i.e., wa

i (t) and wa
ij(t)) are

updated as follows to take the expression representation q into
consideration as well:

sai (t) = W
(t)
a,2

[
tanh

(
Wqq+W

(t)
a,1v

a
i (t)

)]
,

γa
ij(t) = W

(t)
e,2

[
tanh

(
Wqq+W

(t)
e,1

[
vai (t); v

a
j (t); e

a
ij

])]
,

(13)
where W

(t)
a,2, W (t)

a,1, W (t)
e,1 , and W

(t)
e,2 are trainable matrices of

parameters. sai (t) and γa
ij(t) are the relevance scores of nodes

and edges of Ga at the t-th reasoning step, respectively. When
performing the feature aggregation of the i-th node at the
(t + 1)-th step, the node weight and the corresponding edge
weights of the i-th node are further normalized by the scores of
all nodes, and all edges connecting the i-th node, respectively,
i.e., similar to (7) and (10).

The aforementioned process is repeated T times for the T -
step reasoning. The node features, node weights, edge features,
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and edge weights of the categorical graph Gc can be obtained
in the same way as Ga, except the visual features which are
replaced by the corresponding textual features extracted by
using the CLIP textual encoder.

E. Loss Function and Matching Module

After the T -step reasoning, we are able to compute the
matching scores between the expression and the compound
nodes of both graphs, Ga and Gc, for identifying the target
object specified by the expression. In graph-based represen-
tations, those nodes with higher matching scores are more
relevant to the expression. In this work, the matching scores
of the i-th compound node in graph G∗ are calculated by

S∗
i =

〈
W ∗

c v
∗
i (T )

∥W ∗
c v

∗
i (T )∥

,
W ∗

d q

∥W ∗
d q∥

〉
, (14)

where ∗ ∈ {a, c}, v∗i (T ) is the features of the i-th node at the
T -th iteration, and W ∗

c and W ∗
d are two trainable matrices of

parameters. || · || means the L2-norm of a vector.
The scores of the ground-truth (GT) nodes in Ga and Gc

are denoted by Sa
GT and Sc

GT, and they should be maximized
during the training phase. To jointly consider two attention
graphs, we define the loss function of this work as follows:

L = − log (PGT) (15)

where
PGT =

exp (Sa
GT + Sc

GT)∑K
k=1 exp (S

a
k + Sc

k)
. (16)

a) Network Optimization: During training, we first use
Le in (3) to train our proposed language parser. Then, we fix
the trained parameters of the language parser and learn the
rest modules in CLIPREC via L in (15).

b) Matching: During inference, for each test sample, we
construct the two attention graphs by the same procedures
as described above. The correspondence between the unseen
object categories and candidate categorical labels can still
be matched by using the features from the image and text
encoders of the pre-trained CLIP model. The two graphs
are fed into the multi-step reasoning module for information
aggregation. A matching score is obtained for each compound
node of both graphs by computing its similarity to the ex-
pression via (14). The object corresponding to the node with
the highest score is retrieved as the target, and the task of
(zero-shot) REC is completed.

IV. EXPERIMENTS

We first focus on zero-shot REC and evaluate our method
on the Visual Genome [39] and Flickr30K [40] datasets by
following the setup of [10] and on our collected RefCOCOZ
and RefCOCOZ+ datasets. Then, we conduct ablation studies
and show some qualitative results. Finally, we show the eval-
uation results of the proposed CLIPREC on RefCOCO [41],
RefCOCO+ [41], and RefCOCOg [42] for the standard REC
task. Due to the limit of the space, we only describe evaluation
results of the zero-shot REC task. The descriptions of the
standard REC task are provided in the supplementary results.

A. Datasets and Implementation Details
We introduce the datasets used for standard and zero-shot

REC and describe the implementation details of our method.
a) Datasets for standard REC: RefCOCO: The Ref-

COCO dataset contains 142,210 expressions for 50,000 objects
in 19,994 images where these expressions are collected via an
interactive game interface. In [41], this dataset is split into four
parts: 120,624, 10,834, 5,657, and 5,095 expression-referent
pairs for training, validation, testA, and testB, respectively.
TestA includes images of multiple people, while testB covers
images of multiple other objects.
RefCOCO+: The RefCOCO+ dataset has 141,564 expressions
for 49,856 objects in 19,992 images collected via an interac-
tive game interface. Different from those in RefCOCO, the
expressions in RefCOCO+ do not contain any descriptions of
absolute locations. In [41], RefCOCO+ is also split into four
parts: 120,191, 10,758, 5,726, and 4,889 expression-referent
pairs for training, validation, testA and testB, respectively.
RefCOCOg: The RefCOCOg dataset contains 95,010 long
expressions for 49,822 objects in 25,799 images collected in
a non-interactive setting. In this dataset, 80,512 expression-
referent pairs are used for training, 4,896 pairs for validation,
and 9,602 pairs for testing. The RefCOCO, RefCOCO+, and
RefCOCOg datasets [42] are collected from the MSCOCO
dataset [44] of 80 object categories.

b) Datasets for zero-shot REC: The datasets used for
zero-shot REC are collected from Flickr30K [40] and Visual
Genome [45], RefCOCO and RefCOCO+.
Flickr30K: It contains 31,783 images, where each image is
described in 5 sentences. For each sentence, the corresponding
referred objects are from one of 7 common object categories
and another category that does not belong to the 7 object
categories.
Visual Genome: It consists of 108,077 images, 5.4 million
region descriptions, 1.7 million visual question answers, 3.8
million object instances in 33,877 categories, 2.8 million
attributes, and 2.3 million relationships.

We follow the protocol in [10] for zero-shot REC where
we split Flickr30K into the Flickr-Split-0 and Flickr-Split-1
subsets and split Visual Genome into the VG-Split-2 and VG-
Split-3 subsets to cover the following four cases of zero-shot
REC. (1) Case 0: In Flickr-Split-0, the referred noun in its test
set is not included in its training set; (2) Case 1: In Flickr-
Split-1, the categories of the referred objects in its test set are
not covered by its training set; (3) Case 2: In VG-Split-2, the
objects semantically close to the referred objects in the test
set only appear in the training set; (4) Case 3: In VG-Split-3,
the objects semantically close to the referred objects in the
test set appear not only in the training set but also in the test
set. More details about the four cases of zero-shot REC can
be found in [10].

In addition, we also create the RefCOCOZ and RefCO-
COZ+ datasets by collecting images from RefCOCO [41] and
RefCOCO+ [41] respectively where the images of RefCOCO
and RefCOCO+ are collected from MSCOCO dataset [44] of
80 object categories. The setting of zero-shot REC on the
two datasets is the combination of case 0 and case 1 [10],
hence termed case 01. For the two datasets, we choose 51
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TABLE I
COMPARISON OF OUR COLLECTED REFCOCOZ(+) AND REFCOCO(+). THE TARGET OBJECTS OF THE TEST SET OF REFCOCOZ(+)

ARE ALSO FROM FOUR CATEGORIES: 16,882 (16,573), 8,556 (8,243), 3,988 (3,560), AND 6,636 (6,058) FOR PERSON, ANIMAL,
VEHICLE, AND FOOD, RESPECTIVELY. IN ADDITION, THE TARGET OBJECTS (i.e., THE NOUNS IN THE EXPRESSION AND CATEGORIES OF

OBJECTS IN AN IMAGE) IN THE TEST SET OF REFCOCOZ(+) ARE NOT PRESENT IN THE TRAIN AND VALIDATION SETS OF
REFCOCOZ(+).

RefCOCOZ RefCOCO RefCOCOZ+ RefCOCO+
train val test train val test train val testA testB train val testA testB

15,137 2,083 35,862 120,624 10,834 5,657 5,095 13,858 1,667 29,034 120,191 10,758 5,726 4,889

TABLE II
PERFORMANCE OF ZERO-SHOT REC USING THE PROPOSED CLIPREC AND FIVE COMPETING METHODS ON FLICKR-0, FLICKR-1,

VG-SPLIT-2, AND VG-SPLIT-3, WHERE “B” AND “UB” DENOTE THE BALANCED AND UNBALANCED SETS, RESPECTIVELY, AND “0.3”
AND “0.5” MEAN THE CRITERIA IOU≥ 0.3 AND IOU≥ 0.5, RESPECTIVELY. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Methods Back- Flickr- Flickr- VG-2B VG-2UB VG-3B VG-3UB
-bone Split-0 Split-1 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5

QRG [43] VGG 35.62 24.42 13.17 7.64 12.39 7.15 14.21 8.35 13.03 7.52

ZSGNet [10] VGG 39.32 29.35 17.09 11.02 16.48 10.55 17.63 11.42 17.35 10.97
R50 43.02 31.23 19.95 12.90 19.12 12.37 20.77 13.77 19.72 12.82

CLIP-DGA R101 56.53 50.67 63.08 60.21 65.57 63.38 64.14 60.63 63.25 61.19
CLIP-CMRIN R101 56.07 51.25 64.35 60.05 65.48 63.96 64.35 61.08 64.75 62.56
CLIP-SGMN R101 56.87 50.06 63.07 61.14 65.35 62.58 63.97 61.13 64.54 60.67

CLIPREC w/o MLP R50 58.56 51.71 65.26 64.82 68.05 66.15 68.54 64.98 66.82 65.07
CLIPREC R50 64.85 55.56 72.63 69.56 73.74 70.10 74.05 71.86 72.96 70.33

CLIPREC w/o MLP R101 59.23 53.12 66.14 65.50 69.37 67.68 68.89 65.52 67.74 66.83
CLIPREC R101 66.02 57.24 73.65 71.16 75.67 72.22 76.85 73.08 73.98 72.32

out of 80 classes as the seen classes and re-organize the
rest into four subsets for the unseen, including person (1
class), animal (10 classes), vehicle (8 classes), and food
(10 classes) due to their majorities in the two datasets. We
utilize the natural language toolkit (NLTK) [46] to analyze
the expression and facilitate the curation process. Note that
each sample in RefCOCO and RefCOCO+ contains the object
candidates, categories, and an expression. For the test set,
we select the samples whose target objects are related to
person, animal, vehicle, or food classes to form RefCOCOZ-
test and RefCOCOZ+-test. The numbers of test samples of
the person, animal, vehicle, and food subsets in RefCOCOZ-
test are 16,882, 8,556, 3,988, and 6,636, respectively. The
corresponding four numbers in RefCOCOz+-test are 16,573,
8,243, 3,560, and 6,058, respectively. We prepare the training
data by removing all the samples whose expressions contain
the nouns related to subsets person, animal, vehicle, or food in
RefCOCO and RefCOCO+. For the rest samples, if their object
candidates and corresponding categories are related to subsets
person, animal, vehicle, or food, we also remove them. The
remaining samples form RefCOCOZ-train and RefCOCOZ+-
train, and the numbers of samples in RefCOCOZ-train and
RefCOCOZ+-train are 15,137 and 13,858, respectively. The
comparision between RefCOCOZ(+) and RefCOCO(+) are
shown in Table I.

c) Implementation details: Our CLIPREC 1 is a two-
stage method. For the REC task shown in [28], there are
two setups for training: the ground-truth object strategy and
the detected object strategy. Both ground-truth and detected
objects are used to construct the graphs in the ground-truth
object strategy. By contrast, in the detected object strategy,

1The source code will be released upon acceptance.

the graphs are constructed only with the detected objects.
The detected objects with the highest IoU (intersection over
union) values between the detected object and the ground-truth
are considered the ground-truth objects. During prediction
in the ground-truth object strategy, the ground-truth object
with the highest score is considered correct. In the detected
object strategy, if the IoU value between the object with the
highest score and the ground-truth object is larger than 0.5,
the prediction is considered correct.

For zero-shot REC, we train the region proposal network by
following the same training settings as [10] on Flickr30k and
Visual Genome. For RefCOCOZ and RefCOCOZ+, we use
MSCOCO to train the region proposal network to obtain the
detected objects. It is worth noting that the detected objects
labeled as “background” are removed.

In the setting of zero-shot evaluation, because the target
objects are from unseen classes, we employ the detected object
strategy for training. In addition, during inference, we use the
image (i.e., ResNet50 and ResNet101) and text encoders of
the pre-trained CLIP model to extract the embedded visual
and textual features from the input image and expression as
well as match the object candidates with the corresponding
category labels. The manual prompt of the text encoder is
utilized from the zero-shot module of CLIP (i.e., ”a photo of
a [category]”). Following [10], we use the top-1 accuracy (%)
as the evaluation metric. The number of epochs, the batch size,
and the learning rate for training are set to 30, 32, and 10−4,
respectively. In addition, the number of reasoning steps, i.e.,
the number T of layers in GCN, is set to 3.
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TABLE III
PERFORMANCE OF ZERO-SHOT REC WITH CLIPREC AND FOUR COMPETING METHODS ON REFCOCOZ AND REFCOCOZ+, WHERE

THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Methods Back- RefCOCOZ RefCOCOZ+
-bone average person animal vehicle food average person animal vehicle food

ZSGNet [10] R50 42.59 45.53 34.22 49.98 40.65 29.27 30.50 24.47 33.41 28.70
RECLIP [24] R50 45.77 47.75 45.34 41.83 48.16 44.81 44.65 42.59 42.37 49.63
CLIP-DGA R101 67.77 66.84 63.13 68.75 72.39 48.68 53.56 39.15 47.80 54.23

CLIP-CMRIN R101 67.69 65.25 63.53 69.13 72.88 48.47 52.46 39.83 47.56 55.06
CLIP-SGMN R101 68.02 65.95 64.12 68.98 73.03 48.62 53.12 37.93 48.29 55.15

CLIPREC w/o MLP R50 73.08 71.75 68.20 75.05 77.34 54.02 58.23 44.17 53.68 60.03
CLIPREC R50 78.80 78.07 72.74 81.39 82.98 58.64 64.50 46.48 57.92 65.68

CLIPREC w/o MLP R101 74.16 72.28 69.64 75.82 78.92 55.24 59.54 45.59 54.48 61.26
CLIPREC R101 79.57 78.24 73.69 82.56 83.77 60.47 64.53 48.45 60.92 67.97

TABLE IV
ABLATION STUDY RESULTS WITH T = 3 WITH DIFFERENT LOSS TERMS FOR ZERO-SHOT REC

Loss Flickr- Flickr- VG-2B VG-2UB VG-3B VG-3UB RefCOCOZ RefCOCOZ+
Split-0 Split-1 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5 avg avg

La 64.35 55.06 71.80 68.74 73.60 70.15 73.51 71.14 71.64 70.08 78.03 58.52
Lc 59.65 50.23 66.24 65.89 68.24 65.70 68.82 67.29 68.03 66.62 71.20 53.63
L 66.02 57.24 73.65 71.16 75.67 72.22 76.85 73.08 73.98 72.32 79.57 60.47

TABLE V
ABLATION STUDY RESULTS WITH T = 3 WITH AND WITHOUT Le AND TEXTUAL FEATURE OF EXPRESSION IN THE NODES OF

CONSTRUCTED GRAPHS RESPECTIVELY FOR ZERO-SHOT REC

Le Text Flickr- Flickr- VG-2B VG-2UB VG-3B VG-3UB RefCOCOZ RefCOCOZ+
Split-0 Split-1 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5 avg avg

✓ 65.58 56.67 72.86 70.07 73.96 71.18 76.05 72.26 73.16 71.79 79.28 59.94
✓ 63.93 55.28 70.18 69.67 73.46 70.17 74.83 71.96 70.75 69.04 77.75 58.20
✓ ✓ 66.02 57.24 73.65 71.16 75.67 72.22 76.85 73.08 73.98 72.32 79.57 60.47

TABLE VI
ABLATION STUDY RESULTS WITH DIFFERENT NUMBERS OF GCN LAYERS FOR ZERO-SHOT REC

No. layers Flickr- Flickr- VG-2B VG-2UB VG-3B VG-3UB RefCOCOZ RefCOCOZ+
(T ) Split-0 Split-1 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5 avg avg
0 62.24 50.56 69.21 67.63 68.01 66.52 72.33 70.18 68.63 67.24 75.80 57.18
1 65.16 54.74 71.52 69.65 73.02 70.86 74.46 72.36 72.15 70.21 78.83 60.04
2 66.27 56.67 73.04 71.12 75.83 71.84 76.63 73.28 73.93 71.16 79.62 59.93
3 66.02 57.24 73.65 71.16 75.67 72.22 76.85 73.08 73.98 72.32 79.57 60.47
4 64.58 56.60 72.24 69.78 74.05 70.93 75.56 71.96 72.25 71.64 78.98 60.21

TABLE VII
EXPERIMENTAL RESULTS IN THE ZERO-SHOT SETTING USING
DIFFERENT MANUAL PROMPTS. P1 AND P2 REPRESENT THE

PROMPT “THIS IS A PHOTO OF [CATEGORY]” AND “[CATEGORY]”,
RESPECTIVELY.

Methods Backbone
RefCOCOZ RefCOCOZ+

avg avg
CLIPREC with P1 R101 79.37 60.12
CLIPREC with P2 R101 80.04 60.33

CLIPREC R101 79.57 60.47

B. Comparisons with State-of-the-Arts for Zero-Shot REC

We evaluate the generalization ability of CLIPREC for
zero-shot REC where the expressions contain the instances
of unseen object categories during the inference phase. We
apply CLIPREC on Flickr-Split-0, Flickr-Split-1, VG-Split-2,
and VG-Split-3 using the same evaluation protocols as that
in [10]. To measure the effect of using CLIP for feature

TABLE VIII
EXPERIMENTAL RESULTS IN THE ZERO-SHOT SETTING USING THE
UNSUPERVISED CLIPREC AND CLIPREC W/O CLIP FEATURES

Methods Backbone
Flickr- Flickr-
Split-0 Split-1

CLIPREC w/o CLIP features R101 51.23 47.66
CLIPREC R101 66.02 57.24

extraction, we create three new baselines, called CLIP-DGA,
CLIP-SGMN, and CLIP-CMRIN, by replacing the original
features with the visual and textual features extracted by CLIP
in three graph-based REC methods, DGA [28], SGMN [47],
and CMRIN [29], respectively. We create a baseline CLIPREC
w/o MLP for our method. In this baseline, the features
extracted from the CLIP model are used directly without using
MLP for adaptation introduced in Sec. III-C. ResNet50 and
ResNet101 are adopted as the backbones in all competing
methods for a fair comparison.
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The evaluation results are shown in Table II, from which we
find that the performances of CLIPREC w/o MLP with back-
bone ResNet101 are better than CLIP-DGA, CLIP-SGMN,
and CLIP-CMRIN. It shows that CLIP in our method is well-
designed for REC and gives promising results with the same
CLIP features. More importantly, CLIPREC achieves a signifi-
cant performance gain over CLIPREC w/o MLP. It indicates
that our method effectively adapts the CLIP features to the
REC task. Also, CLIPREC outperforms the previous state-of-
the-art method, ZSGNet-ResNet50, for zero-shot REC.

We further evaluate CLIPREC on the collected RefCOCOZ
and RefCOCOZ+ datasets for case 01 zero-shot REC [10].
In compared methods, RECLIP is the latest released zero-
shot REC method that it locates the object described by
expression by directly feeding the object candidates, noun-
phrases, and spatial-relation words of expression into the
image encoder of CLIP, the text encoder of CLIP, and a spatial-
relation parser, respectively. More importantly, RECLIP is
only suitable for expressions that include spatial-relation words
such as “left,” “right,” “top,” and “down”. The results report in
Table III show that both CLIPREC and CLIPREC w/o MLP
considerably outperform ZSGNet and RECLIP. Specifically, in
RefCOCOZ+ where spatial-relation words are not included in
the expressions, CLIPREC w/o MLP using R50 performs on
average 9.21% better than RECLIP. These results demonstrate
that our method can handle more complex sentence structures.
Meanwhile, the average top-1 accuracy of CLIPREC w/o
MLP with backbone ResNet101 is approximately 5% higher
than CLIP-DGA, CLIP-SGMN, and CLIP-CMRIN. The re-
sults demonstrate that the CLIP models can well serve the
purpose of feature extraction for image-text matching and do
not perform any reasoning and understanding of the structure
and semantics of the given image and expression. Finally, we
show that not only rich information encoded in the CLIP
features but also feature adaptation enabled by multilayer
perceptron realize more accurate zero-shot REC. When MLP
is appended to the image and text encoders of CLIP, the
performance gains of CLIPREC over its variant CLIPREC
w/o MLP are on average about 7%, which validates that our
design of MLP for feature adaptation is effective and can
make the most of CLIP for zero-shot REC.

C. Ablation Studies

To validate the effectiveness of the appearance and categor-
ical graphs in CLIPREC, we evaluate and compare the results
of using three different losses, La, Lc, and L, for performance
verification. Note that using La (or Lc) only stands for
only considering the visual (or categorical) graph construction
module while using L stands for considering both La and
Lc. The loss L in (15) that CLIPREC adopts is a function
of the probability PGT in (16), where the probability PGT is
estimated based on the scores computed in both the appearance
graph and the categorical graph. The losses La and Lc are
similar to L, but they consider just the scores computed in the
appearance graph and the categorical graph, respectively. We
adopt CLIPREC with the ResNet101 backbone as the baseline
for this ablation study. The results reported in Table IV show

that, although the performance of CLIPREC with La is better
than that with Lc, using both graphs with L can still boost the
performance. This confirms that the categorical graph encodes
information complementary to the appearance graph, leading
to further performance improvement.

In the case of using L, we evaluate CLIPREC with and
without loss La and textual features of expression in nodes
of graphs, respectively. The results reported in Table V show
that the performance of CLIPREC drops sightly if Le is
removed. However, if the textual features of expression are
removed, the performance of CLIPREC drops by about 3%.
The results demonstrate that using fusing the textual features
of expression to the nodes of graphs and adding Le help
improve performances greatly.

Next, we evaluate the proposed CLIPREC with different
numbers of GCN layers, i.e., the numbers of reasoning steps,
and report the results in Table VI. After graph initialization
(i.e., T = 0), the performance of CLIPREC serves as the
baseline where the nodes of two attention graphs in CLIPREC
only contain the initial node features without exploiting any
relationship between objects. Through feature aggregation via
GCN (i.e., T > 0), the best performance of CLIPREC is
achieved when two or three layers of GCN are adopted.
However, once using more layers starts to result in degraded
performances. We conjecture the reason could be to aggregate
the information from irrelevant objects.

We further evaluate the capability of CLIPREC for zero-
shot REC on different manual prompts of the text encoder.
Table VII shows that the performance of CLIPREC remains
consistent regardless of whether prompt “This is a photo of
[category]” or “[category]” is used, with performance levels
similar to those achieved using the zero-shot module of CLIP.

Finally, we evaluate the capability of CLIPREC for zero-
shot REC by keeping the language parser and replacing the
visual and categorical features of CLIPREC with the visual
features from faster R-CNN and GloVe features, respectively.
Table VIII shows that the performance of CLIPREC decreases
evidently because the domains of faster R-CNN, GloVe, and
the language parser are less related. It is hard to project these
three kinds of domains into a common domain.

D. Qualitative Results of Zero-Shot REC

In this subsection, we show some qualitative results of
the proposed approach for zero-shot REC. The visualization
samples in the five above-mentioned cases are shown in the
first, second, and third rows of Fig. 3. In case 0, we find that
CLIPREC can locate the correct object even though CLIPREC
never learns the target nouns “ball” and “cattle.” In case 1,
although CLIPREC did not see the objects in the categories
“people” and “vehicle”, it can still locate the correct object.
In case 2, we observe that CLIPREC can effectively locate
the target objects even though the size of the target object is
small. In case 3, it can be found that CLIPREC can locate
the target object even when multiple objects and the target are
from the same category in the image. We get similar results on
our curated RefCOCOZ and RefCOCOZ+ that CLIPREC can
locate the objects described by the expressions for the unseen
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Fig. 3. Visualization results of CLIPREC in five zero-shot REC cases. The first two rows show the results in cases 0, 1, 2, and 3, respectively, while the
third row shows the results in case 01. The bounding box in green and red represent the ground-truth bounding box and predicted bounding box, respectively.

A black cattle next to the white cattle A man with glasses A boy with watch standing in the middle 

A bag on the table Cattle on most left A man in black

Fig. 4. Some failure results of CLIPREC. The bounding box in green and red represents the ground-truth bounding box and predicted bounding box,
respectively.

objects of categories “people,” “animal,” “food,” and “vehicle”
before. These results demonstrate the strength of CLIPREC for
zero-shot REC.

In addition, Fig. 4 also illustrates some failure results. In
the first row, for the case of ”A black cattle next to the
white cattle,” the target object is surrounded by similar objects.
Similarly, in the example of ”A man with glasses,” the ground-
truth bounding box of the target person includes another
person, and the watch in ”A boy with watch standing in the
middle” is too small. These object relationship ambiguities
caused by distractors of similar objects and mis-detections
by the object detector can lead CLIPREC to make incorrect
predictions. In the second row of Fig. 4, we observe that
the detector struggles to locate the target object due to its
small size, partial occlusion, or similar coloration with the

background, leading to incorrect predictions.
These results demonstrate not only the effectiveness of the

proposed approach but also how it improves the reasoning
capability beyond the original CLIP model.

V. CONCLUSION

In this work, we proposed the CLIPREC method for zero-
shot REC. By carefully leveraging the joint image-text fea-
ture space of the pre-trained CLIP model along with the
feature adaptation layers, our method is able to effectively
exploit the correlation between two graphs with the expression
containing seen or unseen object categories for precise pre-
dictions. Our proposed CLIPREC further includes learnable
layers to adapt the contrastively learned CLIP model to the
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REC task, resulting in significant performance improvement.
Extensive experimental and ablation results on the Flickr30K,
Visual Genome, and our curated RefCOCOZ and RefCOCOZ+
datasets demonstrate the superior performance of CLIPREC
with respect to the state-of-the-arts for zero-shot REC.
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