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BANet: A Blur-Aware Attention Network
for Dynamic Scene Deblurring
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Abstract— Image motion blur results from a combination
of object motions and camera shakes, and such blurring
effect is generally directional and non-uniform. Previous
research attempted to solve non-uniform blurs using self-
recurrent multi-scale, multi-patch, or multi-temporal architec-
tures with self-attention to obtain decent results. However, using
self-recurrent frameworks typically leads to a longer inference
time, while inter-pixel or inter-channel self-attention may cause
excessive memory usage. This paper proposes a Blur-aware
Attention Network (BANet), that accomplishes accurate and
efficient deblurring via a single forward pass. Our BANet utilizes
region-based self-attention with multi-kernel strip pooling to dis-
entangle blur patterns of different magnitudes and orientations
and cascaded parallel dilated convolution to aggregate multi-scale
content features. Extensive experimental results on the GoPro
and RealBlur benchmarks demonstrate that the proposed BANet
performs favorably against the state-of-the-arts in blurred image
restoration and can provide deblurred results in real-time.

Index Terms— Image deblurring, blur-aware attention module,
region-wise pooling attention.

I. INTRODUCTION

DYNAMIC scene deblurring or blind motion deblurring
aims to restore a blurred image with little knowledge

about the blur kernel. Scene blur caused by camera shakes,
object motions, low shutter speeds, or low frame rates not
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Fig. 1. Performance comparison on the GoPro test dataset in terms of
deblurring quality and runtime complexity. The proposed BANet performs
favorably against the state-of-the-art methods in both accuracy and efficiency.

only degrades the quality of taken images/videos but also
results in information loss. Therefore, removing such blur-
ring artifacts to recover image details becomes essential to
many downstream vision applications, such as facial detection
[1], [2], text recognition [3], moving object segmentation [4],
etc., where clean and sharp images are appreciated. Although
significant progress has been made in conventional and deep-
learning-based approaches [5], [6], [7], [8], we observe a
compromise between accuracy and speed. Owing to this
observation, we target to develop an efficient and effective
algorithm in this paper for blurred image restoration with its
current performance in accuracy and speed shown in Fig. 1.

Deep-learning-based approaches usually reach superior
results, given their better feature representation capability
toward dynamic scenes. Among the state-of-the-art architec-
tures for deblurring, self-recurrent models have been widely
adopted to leverage blurred image repeatability in either
multiple scales (MS) [6], [9], [10], [11], multiple patch
levels (MP) [7], [12], [13], or multiple temporal behav-
iors (MT) [8], as shown in Fig. 2(a)–(c). Specifically, the MS
models distill multi-scale blur information in a self-recurrent
manner and restore blurred images based on the extracted
coarse-to-fine features [6], [9], [10]. However, scaling a
blurred image to a lower resolution often results in losing
edge information [8]. In contrast, the MP models split a
blurred input image into multiple patches to estimate and
then remove motion blurs of different scales [7], [13]. How-
ever, splitting the blurred input and features into equal-sized
non-overlapping patches may cause contextual information
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Fig. 2. Network architecture comparisons among (a) MS, (b) MP, (c) MT, and (d) our BANet. Recurrent models are typically less efficient. BANet completes
deblurring via a single forward pass.

discontinuity, sub-optimal for handling non-uniform blur in
dynamic scenes. In [8], a self-recurrent MT structure was
proposed to progressively eliminate non-uniform blurs over
multiple iterations. Each iteration would gradually deblur
the image until it becomes sharp. However, its inflexible
progressive training and inference process may not generalize
well for images of varying region-wise blurring degrees.
Besides, these existing self-recurrent models, including MS,
MP, and MT, cannot achieve high-quality deblurring in real-
time (say, 30 HD frames per second).

In addition to model architectures, recent research stud-
ies [13], [14] further exploit self-attention to address blur
non-uniformity. Suin et al. [13] utilize MP-based processing
with self-attention to extract features for areas with global
and local motions. However, using a self-recurrent mechanism
to generate multi-scale features often leads to a signifi-
cantly longer inference time. To shorten the latency, Purohit
and Rajagopalan [14] selectively aggregate features through
learnable pixel-wise attention [15] enabled by deformable
convolutions for modeling local blurs in a single forward pass.
Despite its effectiveness, self-attention exploring pixel-wise
or channel-wise correlations via trainable filters often causes
high memory usage, thus only applicable to small-scale fea-
tures [14]. Furthermore, motion blurs coming from object
motions manifest smeared effects and produce directional and
local averaging artifacts, which cannot be handled well by
inter-pixel/channel correlations.

This paper proposes a Blur-aware Attention Network
(BANet) to overcome the above-mentioned issues. BANet is
an efficient yet effective single-forward-pass model, as illus-
trated in Fig. 2(d), which achieves state-of-the-art deblurring
performance while working in real-time, as shown in Fig. 1.
Specifically, our model stacks multiple layers of the Blur-
Aware Module (BAM) for removing motion blurs. BAM
separates the deblurring process into two branches, Blur-aware
Attention (BA) and Cascaded Parallel Dilated Convolution
(CPDC), where BA locates region-wise blur orientations and
magnitudes while CPDC adaptively removes blurs based on
the attended blurred features. Based on an observation of

directional and regional averaging artifacts caused by dynamic
blurs, the proposed BA derives region-wise attention by using
computationally inexpensive regional averaging to capture
blurred patterns of different orientations and magnitudes glob-
ally and locally. To derive the orientations and magnitudes
of different blurred regions in an image, we reassemble
horizontal and vertical blurred responses to catch irregular
blur orientations and utilize multi-scale kernels to learn the
magnitudes. CDPC leverages two cascaded multi-scale dilated
convolutions to deblur image features. As a result, BANet
possesses the superior deblurring capability and can support
subsequent real-time applications superbly.

In short, our contributions are two-fold. First, BANet is
featured with a novel BAM module that exploits region-wise
attention to capture blur orientations and magnitudes, making
BANet capable of disentangling blur contents of different
degrees in dynamic scenes. With the disentangled region-wise
blurred patterns, it then utilizes cascaded multi-scale dilated
convolution to restore blurred features. Second, our efficient
single-forward-pass deep networks perform favorably against
state-of-the-art methods with fast inference time.

II. RELATED WORK

A. Conventional Methods

Dynamic Scene image deblurring is a highly ill-posed
problem since blurs stem from various factors in the real
world. Conventional image deblurring studies often make
different assumptions, such as uniform [16], [17], [18], [19]
or non-uniform [20], [21], [22], [23], [24] blurs, and image
priors [25], [26], [27], [28], [29], to model blur characteristics.
Namely, these methods impose different constraints on the
estimated blur kernels, latent images, or both with handcrafted
regularization terms for blur removal. Nevertheless, these
methods often attempt to solve a non-convex optimization
problem and involve heuristic parameter tuning that is entan-
gled with the camera pipeline; thus, they cannot generalize
well to complex real-world examples.
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Fig. 3. Architecture of the proposed blur-aware attention networks (BANet). The blur-aware modules (BAM) serve as the building blocks of BANet. The
first BAM is detailed in the purple dotted box while the rest are represented by solid purple boxes.

B. Deblurring via Learning

Learning-based approaches with self-recurrent modules gain
great success in single-image deblurring. Particularly, the
coarse-to-fine schemes can gradually restore a sharp image
on different resolutions (MS) [6], [9], [10], [11], fields of
view (MP) [7], [13], or temporal characteristics (MT) [8].
Despite the success, self-recurrent models usually lead to
longer inference runtime. Recently, non-recurrent methods
[14], [30], [31], [32], [33], [34] were proposed for efficient
deblurring. For instance, Kupyn et al. [30], [31] suggested
using conditional generative adversarial networks to restore
blurred images. However, these methods do not well address
non-uniform blurs in dynamic scenes, often causing blur
artifacts in the deblurred images. To address this issue,
Yuan et al. [32] proposed a spatially variant deconvolution
network with optical flow estimation to guide deformable con-
volutions and capture moving objects during model training.
Li et al. [33] proposed a depth-guided model for deblurring.
However, the optical flow and depth information may not
always correlate with blur, which may cause less effective
deblurring. Cho et al. [34] proposed an efficient multi-scale
deblurring structure with a multi-input multi-output. With
multi-scale input, the process adopts a shallow convolution
to turn the images into attention masks and multiply them by
the same scales’ features. However, its simple feature attention
mechanism may not be able to extract blur information com-
prehensively from an input image, hence limiting its deblurring
performance.

C. Self-Attention

Self-attention (SA) [35] has been widely adopted to advance
the fields of image processing [15], [36] and computer
vision [37], [38]. Recent advances [13], [14] revealed that
attention is beneficial for learning inter-pixel correlations to
emphasize different local features for removing non-uniform
blur. Specifically, Purohit et al. [14] proposed to deblur using
SA to explore pixel-wise correlation for non-local feature
adaptation. However, since SA requires much memory in
O(H2W 2) space, where H and W are the height and width
of the input to SA, the method can only apply SA to the
smallest-scale features (from a 1280 × 720 blurred input to
160×90 SA’s input), limiting the efficacy of SA. Also, motion

blurs cause directional and local averaging artifacts, which
merely pixel-wise SA may not address well. Suin et al. [13]
proposed an MP architecture with less memory-intensive
SA by using global average pooling with space complexity
O(dadc H W ), where da is the channel dimension of the
components query and key in SA, dc is the dimension
of the component value, and dadc < H W . Despite the
method’s less space complexity, compressing pixel information
into the channel domain may lose spatial information, thus
degrading deblurring performance. In contrast, we propose
an efficient and low memory-cost regional averaging SA to
capture non-uniform blur information more accurately. It is
with space complexity O(C H W ), where C is the number of
output channels. It can deblur high-resolution input images
and achieve superior performance in real-time.

III. PROPOSED APPROACH

We present the blur-aware attention network (BANet) to
address the potential issues in two commonly used tech-
niques for deblurring: self-recurrence and self-attention. Self-
recurrent algorithms result in longer inference time due to
repeatedly accessing input blurred images. Self-attention based
on inter-pixel or inter-channel correlations is memory intensive
and cannot explicitly capture regional blurring information.
Instead, the proposed BANet is a one-pass residual network
consisting of a series of stacked blur-aware modules (BAMs),
which serve as the building blocks, to disentangle different
patterns of blurriness and remove blurs based on the attended
blurred features.

As illustrated in Fig. 3, BANet starts with two convolutional
layers, which contain a stride of 2 to downsample the input
image to half resolution. BANet employs one transposed
convolutional layer to upsample features to the original size.
In between, we stack a set of BAMs to correlate regions with
similar blur and extract multi-scale content features. A BAM
consists of two components, BA and CPDC, where BA
distills global and local blur orientations and magnitudes, and
CPDC captures multi-scale blurred patterns to eliminate blurs
adaptively. Combining BA and CPDC, BAM is a residual-like
architecture that derives both global and local multi-scale
blurring features in a learnable manner. We detail the two key
components, BA and CPDC, in the following.
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Fig. 4. Architecture of blur-aware attention (BA). It cascades two parts, including multi-kernel strip pooling (MKSP) and attention refinement (AR). It is
developed to disentangle blurred contents in an efficient way. See the text for details.

A. Blur-Aware Attention (BA)

To accurately restore the motion area displaying directional
and averaging artifacts caused by object motions and camera
shakes, we propose a region-based self-attention module,
called BA, to capture such effects in the global (image)
and local (patch) scales. As shown in Fig. 4, BA contains
two cascaded parts: multi-kernel strip pooling (MKSP) and
attention refinement (AR). MKSP catches multi-scale blurred
patterns of different magnitudes and orientations, followed by
AR to refine them locally.

1) Multi-Kernel Strip Pooling (MKSP): Hou et al. [39]
presented an SP (strip pooling) method that uses horizontal
and vertical one-pixel long kernels to extract long-range band-
shape context information for scene parsing. SP averages the
input features within a row or a column individually and
then fuses the two thin-strip features to discover global cross-
region dependencies. Let the input feature maps x = [xi, j,c] ∈

RH×W×C , where C denotes the number of channels. Applying
SP to x generates a vertical and a horizontal tensor followed by
a 1D convolutional layer with a kernel size of 3. This produces
a vertical tensor yv

= [yv
i,c] ∈ RH×C and a horizontal tensor

yh
= [yh

j,c] ∈ RW×C , where yv
i,c =

1
W

∑W−1
j=0 xi, j,c and

yh
j,c =

1
H

∑H−1
i=0 xi, j,c. The SP operation, after a convolution

layer, fuses the two tensors into y = [yi, j,c] ∈ RH×W×C ,
where yi, j,c = yv

i,c + yh
j,c, and then turns the fused tensor into

an attention mask Msp as

Msp = σsig( f1(y)), (1)

where f1 is a 1 × 1 convolutional layer and σsig(·) is
the sigmoid function. Although SP has shown its effects
on segmenting band-shape objects for scene parsing, it is
unsuitable to directly apply SP to an image deblurring task,
aiming to locate blurred patterns that tend to involve different
orientations and magnitudes, and restore a sharp image.

Motivated by SP, we propose MKSP that adopts strip
pooling with different kernel sizes to discover regional and
directional averaging artifacts caused by dynamic blurs.

MKSP combines and compares multiple sizes/scales of
averaging results followed by concatenation and convolution
to catch blurred patterns of different magnitudes and orienta-
tions. The idea behind our design is to reassemble different
orientations by horizontal and vertical operations on multi-
scale results, e.g., the difference between consecutive kernel
sizes, and reveal the scales of blurred patterns. We apply
convolutional layers to automatically discover these blur-aware
operations on the feature level to learn irregular attended
features rather than a fixed cropping method on the image
level used in MP methods [7], [13]. MKSP averages the
input tensors within rows and columns by adaptive average
pooling to generate H × n × C and n × W × C long features,
where n ∈ {1, 3, 5, 7} represents different scales. Thus, MKSP
generates four pairs of tensors, each of which has a vertical
and a horizontal tensor followed by a 1D (for n = 1) or 2D (for
the rest) convolutional layer with the kernel size of 3 or 3×3,
respectively. This produces the vertical tensor yv,n

∈ RH×n×C

and the horizontal tensor yh,n
∈ Rn×W×C , where the vertical

tensor is

yv,n
i, j,c =

1
Kh

Kh−1∑
k=0

xi,( j ·Sh+k),c, (2)

where the horizontal stride Sh = ⌊
W
n ⌋ and the horizontal-strip

kernel size Kh = W −(n−1)Sh . Symmetrically, the horizontal
tensor is defined by

yh,n
i, j,c =

1
Kv

Kv−1∑
k=0

x(i ·Sv+k), j,c, (3)

where the vertical stride Sv = ⌊
H
n ⌋ and the vertical-strip kernel

size Kv = H − (n − 1)Sv .
After determining the horizontal and vertical magnitudes,

the orientations of blur patterns are estimated jointly consider-
ing the two orthogonal magnitudes. More specifically, MKSP,
after a 1D (for n = 1) or 2D (for the rest) convolutional
layer, fuses each pair of tensors (yv,n , yh,n) into a tensor
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Fig. 5. Visualization of the attention masks of SP and MKSP, and the
corresponding effects on the final results on GoPro test set.

yn
∈ RH×W×C by

yn
i, j,c = yv,n

i,⌊ n× j
W ⌋,c

+ yh,n
⌊

n×i
H ⌋, j,c

. (4)

Similar to SP, we concatenate all the fused tensors to yield
an attention mask as Mmksp = fout (y1

⊕ y3
⊕ y5

⊕ y7),
where ⊕ stands for the concatenation operation, and
fout (·) = σsig(Conv(σReLU (Conv(·)))) represents
a non-linear mapping function consisting of two
3 × 3 convolutional layers. The first layer uses the ReLU
activation function, and the second uses a sigmoid function.
As shown in Fig. 5, the proposed MKSP can generate
attention masks that better fit objects or local scenes than
those by using SP with only H × 1 and 1 × W kernels used,
which yields rough band-shape masks.

2) Attention Refinement (AR): After obtaining the glob-
ally attended features by the element-wise multiplication of
attention masks Mmksp and input tensor x, we further refine
these features locally via a simple attention mechanism using
f AR(·). The final output of our BA block through the MKSP
and AR stages is computed as

f AR(x̃) ⊗ x̃, (5)

where ⊗ represents element-wise multiplication, and
x̃ = Mmksp ⊗ x denotes the global features extracted using
MKSP. Figs. 6(c) and (d) demonstrate that cascading MKSP
with AR can refine the attended feature maps.

The proposed BA facilitates the attention mechanism
applied to deblurring since it requires less memory,
i.e.O(H WC), where C represents the channel dimension, than
those adopted in [14] and [13]. It disentangles blurred contents
with different magnitudes and orientations. Fig. 7 showcases
three examples of blur content disentanglement using BA,
where we witness that background scenes are differentiated
from the foreground scenes because those objects closer to
the camera move faster, thus more blurred. Fig. 8 shows more
examples of attention maps yielded by BA, which implicitly
acts as a gate for propagating relevant blur contents.

B. Cascaded Parallel Dilated Convolution (CPDC)

Atrous convolution, also called dilated convolution, has
been widely applied to computer-vision tasks [40], [41]
for enlarging receptive fields and extracting features from
objects with different scales without increasing the kernel
size. Inspired by this, we design a cascaded parallel dilated
convolution (CPDC) block with multiple dilation rates to

Fig. 6. (a) Input blurred image in GoPro testing set. (b)–(d) Comparisons
among the attended feature maps by using different components of the
proposed BA including (b) AR, (c) MKSP, and (d) MKSP + AR.

Fig. 7. Three disentanglement examples of blurred patterns of different
degrees using our BA on GoPro test set. (a) Input blurred images and
(b) attended feature maps on different regions.

capture multi-scale blurred objects. Instead of stacking dilated
convolutional layers with different rates in parallel, which
we call parallel dilated convolution (PDC), our CPDC block
cascades two sets of PDC with a single convolutional layer
working as a fusion bridge. It can distill patterns more
beneficial to deblurring before passing through the second
PDC. As an example, Fig. 9(a) shows a PDC block consisting
of three 3×3 dilated convolutional layers with a dilation rate D
(D = 1, 3, and 5), each of which outputs features with half the
number of input channels. After concatenation, the number of
the output channels of the PDC block increases by 1.5 times.
As shown in Fig. 9(b), our CPDC block consists of two PDC
blocks bridged by a 3×3 convolutional layer, which would be
more effective in aggregating multi-scale content information
for deblurring.

C. Loss Function

In BANet, we utilize the Charbonnier loss as suggested
in [42] and [12]:

Lchar =

√
||R − Y||2 + ε2, (6)

where R and Y respectively denote the restored image and
the ground-truth image, and ε = 10−3 as in [42] and [12].

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on December 09,2022 at 03:16:54 UTC from IEEE Xplore.  Restrictions apply. 



6794 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Fig. 8. Visualization of the blur-aware attended features on GoPro test set, where moving objects in the blurred images are highlighted while background
is mostly excluded. These blur-aware masks are crucial for handling blurred images with diverse blur patterns.

Fig. 9. Architectures of (a) parallel dilated convolution (PDC) and
(b) cascaded parallel dilated convolution (CPDC).

In addition, to enhance the restoration performance, we add
an FFT loss to supervise the results in the frequency domain,
as adopted in MIMO-UNet+ [34]:

L F FT = ||F(R) − F(Y)||1, (7)

where F represents the fast Fourier transform function. At last,
we optimize BANet using the total loss L as

L = Lchar + λL F FT , (8)

where λ is set to 0.01 empirically.

IV. EXPERIMENTS

This section evaluates the proposed method. In the follow-
ing, we first describe the experimental setup, then compare our
method with the state-of-the-arts, and finally conduct ablation
studies to analyze the effectiveness of individual components.

A. Experimental Setup

We evaluate the BANet on three image deblurring bench-
mark datasets: 1) GoPro [6] that consists of 3, 214 pairs of
blurred and sharp images of resolution 720 × 1280, where
2, 103 pairs are used for training, and the rest for testing,
2) HIDE [43] that contains 2, 025 pairs of HD images, all
for testing, and RealBlur [44] that consists of 3, 758 pairs
for training and 980 pairs for testing. The RealBlur dataset
is further split into two datasets: RealBlur-R collected from
raw images and RealBlur-J from JPEG images. We train our
model using Adam optimizer with parameters β1 = 0.9 and
β2 = 0.999. We set the initial learning rate to 10−4, which

TABLE I
EVALUATION RESULTS ON GOPRO TEST SET. THE BEST SCORE IN ITS

COLUMN IS HIGHLIGHTED IN BOLD AND THE SECOND BEST IS
UNDERLINED. SYMBOL ∗ INDICATES THOSE METHODS WITH-

OUT RELEASED CODE; THUS WE CITE THE RESULTS
FROM THE ORIGINAL PAPERS OR EVALUATE ON THE

RELEASED DEBLURRED IMAGES. ALL METHODS ARE
TRAINED ON GOPRO TRAINING SET. TIME AND

PARAMS ARE MEASURED IN MILLISECOND (MS)
AND MILLION (M)

then decays to 10−7 based on the cosine annealing strategy.
Following [8], [32], we utilize random cropping, flipping,
and rotation for data augmentation. Lastly, we implement our
model with PyTorch library on a computer equipped with Intel
Xeon Silver 4210 CPU and NVIDIA 2080ti GPU.

B. Experimental Results

1) Quantitative Analysis: We compare our method with
11 latest approaches, including MSCNN [6], SRN [10],
DSD [9], DeblurGAN-v2 [31], DMPHN [7], EDSD [32],
MTRNN [8], RADN [14], SAPHN [13], MIMO-UNet+ [34],
and MPRNet [12], which also handle dynamic deblurring on
the GoPro [6] test set. For HIDE [43], we choose nine recent
deblurring methods, including DeblurGAN-v2 [31], SRN [10],
HAdeblur [43], DSD [9], DMPHN [7], MTRNN [8],
SAPHN [13], MIMO-UNet+ [34], and MPRNet [12], accord-
ing to their availability in released pre-trained weights. For
RealBlur [44], we choose four methods that trained on
the RealBlur training set, including DeblurGAN-v2 [31],
SRN [10], MPRNet [12], and MIMO-UNet+ [34].
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Fig. 10. Qualitative comparisons on GoPro [6] test set. The deblurred results listed from left to right are from MTRNN [8], DSD [9], DMPHN [7],
MIMO-UNet+[34], MPRNet [12], and Ours.

Fig. 11. Qualitative comparisons on HIDE [43] dataset. The deblurred results listed from left to right are from MTRNN [8], DSD [9], DMPHN [7],
MIMO-UNet+[34], MPRNet [12], and Ours.

TABLE II
EVALUATION RESULTS ON HIDE DATASET. THE BEST SCORE IN ITS

COLUMN IS HIGHLIGHTED IN BOLD AND THE SECOND BEST IS
UNDERLINED. SYMBOL ∗ INDICATES THOSE METHODS WITH-

OUT RELEASED CODE; THUS WE CITE THE RESULTS FROM
THE ORIGINAL PAPERS OR EVALUATE ON THE RELEASED

DEBLURRED IMAGES. ALL METHODS ARE TRAINED
ON GOPRO TRAINING SET. TIME IS MEASURED IN

MILLISECOND (MS)

To better compare with recent approaches, we devise two
versions of our model, BANet and BANet+. The only dif-
ference between them is the number of channels used in
a BAM, and BANet with 128 channels involves 18 million
parameters while BANet+ has 40 million parameters with
192 channels. Table I lists the objective scores (PSNR and
SSIM), runtime, parameters, and GFLOPs on the GoPro
test set for all the compared methods. We observe that the
self-recurrent models, MSCNN [6], SRN [10], DSD [9],
MTRNN [8], SAPHN [13], and MPRNet [12], consume longer
runtime than the non-recurrent ones, i.e., DeblurGAN-v2 [31],
RADN [14], MIMO-UNet+ [34], and ours. As reported in

TABLE III
EVALUATION RESULTS ON REALBLUR TEST SET. ALL METHODS

ARE TRAINED ON REALBLUR TRAINING SET. TIME
IS MEASURED IN MILLISECOND (MS)

Table I, BANet runs faster with fewer parameters and GFLOPs
as well as achieves better performance than recurrent-based
methods, MSCNN [6], SRN [10], DSD [9], DMPHN [7],
MTRNN [8], and SAPHN [13] and non-recurrent methods,
such as DeblurGAN-v2 [31] and RADN [14] on the GoPro
test set. BANet also performs favorably against an efficient
multi-scale model, MIMO-UNet+ [34], with the same runtime
and a comparable model size. BANet+ outperforms the best
competitor, MPRNet [12], by 0.37 dB in PSNR with faster
runtime (−113ms) and lower GFLOPs (−172). Table II shows
the quantitative results on HIDE [43]. As can be seen,
BANet outperforms all the compared methods except for
MPRNet [12] with a faster inference time. BANet+ only
works comparably to MPRNet [12] since MPRNet seems to
perform favorably on HIDE [43] particularly, but our model
runs much faster. Table III lists the quantitative comparisons
on the RealBlur test set, demonstrating that both BANet and
BANet+ outperform the compared methods on the RealBlur-J
and RealBlur-R test sets.
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Fig. 12. Examples of deblurred results obtained using DeblurGAN-v2 [31], SRN [10], MPRNet [12], MIMO-UNet+ [34], and Ours on RealBlur [44]
test set.

2) Qualitative Analysis: Fig. 10 and Fig. 11 show qualita-
tive comparisons on the GoPro test set and HIDE dataset with
previous state-of-the-arts MTRNN [8], DSD [9], DMPHN [7],
MIMO-UNet+ [34], and MPRNet [12]. As observed in
Fig. 10, MTRNN [8], DSD [9], DMPHN [7], MIMO-
UNet+ [34], and MPRNet [12] do not well recover regions
with texts or severe blurs whereas BANet can restore those
regions better. In Fig. 11, MTRNN [8], DSD [9], DMPHN [7],
and MIMO-UNet+ [34] do not deblur the striped t-shirt
and texts well, while BANet recovers those parts better.
Fig. 12 and Fig. 13 demonstrate some deblurred results
using DeblurGAN-v2 [31], SRN [10], MPRNet [12], MIMO-
UNet+ [34], and ours, on the RealBlur [44] test set. As can
be seen, although all these models can remove blurs, BANet
performs favorably on delicate image details.

3) User Study: We further conduct a user study to eval-
uate the subjective quality of deblurred results on real
blurred images chosen from the RealBlur-J test set. We com-
pare our method (BANet+) against four methods, includ-
ing MIMO-UNet+ [34], MPRNet [12], SRN [10], and
DeblurGAN-v2 [31]. Note that all the methods are trained
on the RealBlur-J training set.

In the study, 34 subjects aged from 21 to 40 years par-
ticipated in the study without any prior knowledge of the
experiment. Their vision is either normal or corrected to be
normal. We picked 16 blurred images with varying scenes for
the experiment and obtained the deblurred results using all the

TABLE IV
RESULTS OF USER STUDY. THE VALUES REPRESENT THE
PERCENTAGE THAT OUR METHOD WAS CHOSEN OVER

THE OTHER COMPARED METHODS

compared approaches. Since each method is compared against
BANet with all the chosen blurred images in the experiment,
we have 16 × 4 = 64 image pairs in total. Each subject is
shown all the image pairs, one at a time, and asked which
one he/she prefers in terms of visual quality. Each image pair
is displayed randomly and placed side by side. Subjects are
asked to check images carefully before choosing without a
time limit.

Table IV shows the subjective evaluation results, where the
values represent the percentage that the deblurring results with
our method are preferred to the counterparts with the other
compared methods for all the votes collected. It indicates that
our method obtains over 95% preference votes compared to
all the compared methods, which again demonstrates that our
approach achieves better subjective visual quality.

C. Ablation Study

In the ablation studies, we do all the experiments on the
BANet (18M) version.
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Fig. 13. Examples of deblurred results obtained using DeblurGAN-v2 [31], SRN [10], MPRNet [12], MIMO-UNet+ [34], and Ours on RealBlur [44] test
set.

TABLE V
ABLATION STUDY ON GOPRO TEST SET USING

DIFFERENT COMPONENT COMBINATIONS IN BAM

1) BAM With Different Components: Table V shows
an ablation on different component combinations in our
Blur-Aware Module (BAM) tested on the GoPro test set.
As can be seen, adding a simple attention refinement (AR)
mechanism to PDC (Net1 vs. Net2) can improve PSNR by
0.41 dB, which shows the effectiveness of spatial attention for
deblurring. Using MKSP in PDC (Net1 vs. Net4) improves
PSNR by 0.72 dB, which has much more performance gain
compared to using strip pooling (SP) [39] in Net3 or AR
in Net2. Substituting PDC in Net5 with CPDC (Net6), our
proposed version of BAM leads to a further performance gain.
Thanks to its mechanism for locating blur regions based on
both global attention and local convolutions, our BAM attains
the best performance while achieving fast inference time.

2) Numbers of Stacked BAMs: Using more layers to enlarge
the receptive field may improve performance for computer
vision or image processing tasks. Nevertheless, stacking
more layers for deblurring does not guarantee better perfor-

TABLE VI
PERFORMANCE COMPARISONS OF THE STACKING NUMBER

OF BAMS IN BANET ON GOPRO TEST SET

TABLE VII
PERFORMANCE COMPARISONS OF STRIP POOLING (SP)

AND MKSP ON GOPRO TEST SET WITH PDC

mance [13] and might consume extra inference time. However,
using our residual learning-based BAM design, we can stack
multiple layers to expand the effective receptive field for better
deblurring. In Table VI, we show performance comparisons
with various numbers of BAMs stacked in our model on the
GoPro test set. We list four versions: stack-4, stack-8, stack-10,
and stack-12, corresponding to 4, 8, 10, and 12 BAMs stacked
in BANet. Although the quantitative performance improves
with the number of BAMs, the improvement became saturated
after 12. Therefore, we choose 10 for its excellent balance
between efficiency and visual quality.

3) Effectiveness of MKSP and CPDC: In Table VII,
we investigate the effects of kernel combination of MKSP on
the GoPro test set. MKSP with five kernel sizes of 1, 3, 5, 7,
and 9 performs a little worse than the first four sizes (1, 3,
5, and 7), indicating that adding the kernel size of 9 would
not catch blur features more accurately, thus not helping with
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TABLE VIII
ABLATION STUDY OF CPDC (W/O BA) COMPARED

TO PDC (W/O BA) ON GOPRO TEST SET

Fig. 14. Architecture comparisons between (a) our original BAM and (b) BA
replaced by SA [15] in BAM.

TABLE IX
PERFORMANCE COMPARISON BETWEEN BA AND SA [15] USING BANET

(STACK-4) ON GOPRO TEST SET. ∗ REPRESENTS DEBLURRING ON
EIGHT SUB-IMAGES INSTEAD OF AN ENTIRE IMAGE

the performance. In Table VIII, we verify that CPDC, which
uses a single convolution as a fusion bridge, outperforms PDC.
For a fair comparison, we also compare CPDC against a PDC
variant that stacks two PDCs in a series, called PDC2, with a
similar parameter size, and CPDC still performs better.

D. Blur-Aware Attention vs. Self-Attention

RADN [14] utilizes a similar self-attention (SA) mechanism
proposed in [15] for deblurring. It helps connect regions with
similar blurs to facilitate global access to relevant features
across the entire input feature maps. However, its high memory
usage makes applying it to high-resolution images infeasible.
Thus, SA is usually employed in network layers on a smaller
scale like in RADN [14], where important blur information
would be lost due to down-sampling. In contrast, our proposed
region-based attention is more suitable for correlating regions
with similar blur characteristics. Moreover, it can process
high-resolution images thanks to its low memory consumption.
To further demonstrate our BA’s efficacy, we compare the
SA [15] with BA using our BANet (stack-4) as a backbone
network, as shown in Fig. 14(b). Due to the high memory
demand for SA (O(H2W 2)) to process 720 × 1280 images,
we adopt our stack-4 model for training. When testing the
networks, we separate the input image into eight sub-images
for both SA and BA to deblur, each equipped with a single
2080ti GPU. Since our BA requiring lower memory usage
(O(C H W ), where C ≪ H × W ) can process the image with
the full resolution, we also show its result. In Table IX, SA∗

and BA∗ represent deblurring an image with its eight sub-
images separately, whereas BA for processing the entire image
at once. As can be observed, the proposed BA∗ works much
more efficiently than SA∗ with a comparable result. When
deblurring the entire image at once, BA undoubtedly performs
the best.

V. CONCLUSION

This paper proposes a novel blur-aware attention network
(BANet) for single image deblurring. BANet consists
of stacked blur-aware modules (BAMs) to disentangle
region-wise blur contents of different magnitudes and orien-
tations and aggregate multi-scale content features for more
accurate and efficient dynamic scene deblurring. We have
investigated and examined our design through demonstrations
of attention masks and attended feature maps, as well as
extensive ablation studies and performance comparisons. Our
extensive experiments demonstrate that the proposed BANet
achieves real-time deblurring and performs favorably against
state-of-the-art deblurring methods on the GoPro and RealBlur
benchmark datasets.
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