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Abstract—We present a novel computational model for simul-
taneous image co-saliency detection and co-segmentation that
concurrently explores the concepts of saliency and objectness in
multiple images. It has been shown that co-saliency detection
via aggregating multiple saliency proposals by diverse visual
cues can better highlight salient objects; however, the optimal
proposals are typically region dependent and the fusion process
often leads to blurred results. Co-segmentation can help preserve
object boundaries; but it may suffer from complex scenes. To
address these issues, we develop an unified method that addresses
co-saliency detection and co-segmentation jointly via solving
an energy minimization problem over a graph. Our method
iteratively carries out the region-wise adaptive saliency map
fusion and object segmentation to transfer useful information
between the two complementary tasks. Through the optimization
iterations, sharp saliency maps are gradually obtained to recover
entire salient objects by referring to object segmentation, while
these segmentation are progressively improved owing to the
better saliency prior. We evaluate our method on four public
benchmark datasets while comparing it to the state-of-the-art
methods. Extensive experiments demonstrate that our method
can provide consistently higher-quality results on both co-saliency
detection and co-segmentation.

Index Terms—Co-saliency detection, co-segmentation, locally
adaptive proposal fusion, energy minimization, joint optimization

I. INTRODUCTION

IMAGE co-saliency detection and object co-segmentation

are two fundamental and active research topics in com-

puter vision and image analysis. They are highly relevant

but different. Co-saliency detection is a weakly supervised

extension of saliency detection to locate the eye-catching

regions that are commonly present in multiple images. Com-

pared to single-image saliency detection, co-saliency detection

leverages not only intra-image but also inter-image evidence

to better highlight regions of interest. As a key component of

image analysis, it is essential to a broad set of applications,
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Fig. 1: (a) A pair of images for co-saliency detection. (b) The

ground truth. (c) ∼ (e) Three saliency proposals generated by

DSR [6], MR [7], and SpC [8] respectively. (f) The detection

results by the fusion-based method SACS [9]. (g) The detec-

tion results by our method.

such as object detection [1], co-localization [2], and video

compression [3]. In a different manner, object co-segmentation

focuses on jointly extracting common objects from a group of

images. It has been studied extensively, since it can borrow

signal strengths across images to improve segmentation and

it enhances action extraction [4] and image matching [5]. In

this work, we investigate the strengths and weaknesses of

co-saliency detection and co-segmentation. Motivated by the

close relationship between the two tasks, we derive a new

unified approach to solve them simultaneously. In this way, the

complementary information can be transferred between both

tasks to improve their performances.

We motivate our joint co-saliency detection and co-

segmentation by first considering the requirements to achieve

high-quality co-saliency detection. To capture complex im-

age content, many modern co-saliency methods favor fusing

multiple (co-)saliency proposals, each of which is gener-

ated from particular saliency evidence, via either fixed-weight
summation [10]–[12], fixed-weight multiplication [8], [12] or

adaptive-weight summation [9], [13]. Fig. 1(c) ∼ Fig. 1(e)

show different saliency proposals generated by the method

DSR [6], the method MR [7], and using the multi-image spatial

cue (SpC) [8], respectively. None of them gives satisfactory

results. The algorithm SACS [9] implements adaptive weighted

summation of the three proposals, and significantly improves

the detection results as shown in Fig. 1(f). Despite the ef-

fectiveness of proposal fusion, two major issues arise. First,

the fusion-based methods mentioned above are of map-wise

fashion; Namely, the fusion weights are assigned to the whole

saliency proposals. However, the optimal saliency proposals

often vary from image region to region, as mentioned in our

prior work [14], [15]. Secondly, weighted combinations of

different saliency proposals typically lead to blurred results,

especially near the surrounding areas of objects. The evi-

dence of objectness from co-segmentation can guide region-

wise saliency proposal fusion and help recover sharp object



2 IEEE TRANSACTIONS ON IMAGE PROCESSING

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 2: Our approach enables the progressive improvement of co-saliency detection and co-segmentation. (a) & (f) Two images

and the ground truth for co-saliency detection. (b) ∼ (e) The results of co-saliency detection (top row) and co-segmentation

(bottom row) at the first four iterations for the image in (a). (g) ∼ (j) The results for the image in (b).

boundaries [15]. Our approach can integrate co-segmentation

into co-saliency detection, and achieves the superior results

displayed in Fig. 1(g).

The second motivation of our method is that object co-

segmentation often suffers from large intra-object variations

or complex background, which may lead to over- or under-

segmentation. Saliency detection identifies the focus in images

by human visual processing. The detection results provide

important evidence for figure-ground separation in image seg-

mentation, which alleviate the ambiguity caused by large intra-

object variations or complex background. Thus, (co-)saliency

detection can serve as an intrinsic component of object (co-

)segmentation to improve performance.

The mutual dependency between co-saliency detection and

co-segmentation motivates a unified approach to accomplish

the two tasks simultaneously with the complementary informa-

tion transferred between them to help each other. Our method

optimizes a coupled objective function over a graph structure

that links the two tasks. Through alternating optimization,

the concept of objectness attained via co-segmentation helps

the region-wise proposal fusion to better highlight salient

regions. Meanwhile, the improved co-saliency maps enhance

co-segmentation with more favorable saliency priors. Fig. 2

shows an example of the progressive improvement of co-

saliency detection and co-segmentation by our method. Given

a pair of images in Figs. 2(a) and 2(f), our method carries

out co-saliency detection and co-segmentation simultaneously.

At the first iteration, the co-saliency detection results inherit

the noise from different saliency proposals, while the co-

segmentation masks contain some false positives. Through the

optimization process, co-saliency maps of higher quality are

attained with less false positives and sharper object boundaries.

Meanwhile, gradually improved co-segmentation masks are

obtained and used to guide saliency detection at the next

iteration. At the end, both tasks help each other to stable high-

quality solution after a few iterations as shown in Figs. 2(e)

and 2(j).

II. RELATED WORK

We review relevant topics to the development of our ap-

proach in this section, including saliency detection, co-saliency

detection, and co-segmentation.

A. Saliency Detection

The literature of saliency detection is extensive. Methods

for saliency detection can be roughly sorted into human

visual attention prediction [16]–[20] and salient object detec-
tion (SOD) [6], [7], [21]–[38]. Methods for visual attention

prediction usually generate a heat map consisting of blob-

like regions indicating the eye-fixation likelihood. Inspired by

human visual systems, Itti et al. [16] presented a pioneering

saliency detection model based on local contrast computed

from the center-surround differences across multiple scales.

Borgi and Itti [18] fused complementary global rarity cues of a

scene and local contrast evidence in both the RGB and L∗a∗b∗

color spaces to enhance the performance. Without using any

image features or high-level priors, Hou and Zhang [17]

defined the saliency through the residual on the Fourier domain

of an input image; and Xia et al. [19] thought using spatial

domain residual is more correlated to our visual attention.

Visual fixation methods usually spotlight object boundaries

because the design principles abide human visual systems to

target on the place of rapid scene change first; thus it is not

as suitable as salient object prediction to support a wide-range

of multimedia applications by showing regions of interest.

Salient object detection (SOD) aims to spotlight entire

salient objects, instead of merely their boundaries or dis-

criminative parts in visual attention prediction. To separate

the conspicuous foreground from the background, traditional

methods highly rely on the contrast cues. For instance,

Achanta et al. [21] approximated saliency based on the devi-

ation between a low-pass filtered image and the average color

of the whole image. Perazzi et al. [24] jointly considered the

color contrast with surrounding pixels and the spatial com-

pactness of saliency distribution. Besides pixel-level saliency

models, several region-based models, e.g. [6], [7], [22], [23],

[25]–[29], [31], were developed to reduce the computation

load and ease the influence of image noise. In addition to

low-level features, Shen and Wu [25] further took high-level

knowledge, such as face locations and center priors, into

account. Some approaches to saliency detection, such as [6],

[7], [26], concentrated on the derivation of correct background.

Specifically, these approaches consider regions near image

boundaries as background and predict a superpixel as salient

or non-salient based on its difference from the background.

Zhu et al. [29] further integrated global contrast with the

improved background priors to achieve better performance.

Moreover, methods based on graph-based clustering, e.g. [23],

[28], [31], were proposed to better locate the potential objects.

Stemming from the unsupervised nature, the performance of

these methods based on either the learned or handcrafted

features for single-image saliency detection is still limited.

Recent research efforts, e.g. [32]–[36], [39], have been
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Fig. 3: The proposed framework for joint co-saliency detection and co-segmentation. Given images of a particular object

category, we process the input images by compiling their superpixel representation, extracting features from the superpixels,

and computing a set of saliency proposals. The proposed approach takes the processed data as input, and performs alternating

co-saliency detection and co-segmentation until convergence.

made to use convolutional neural networks (CNN) for saliency

detection. Due to the availability of large-scale training data

such as ImageNet, the features learned by CNN for object

recognition usually give better performance than conventional

handcrafted features. As mentioned in [40], recent mod-

els [34], [36] based on fully convolutional networks (FCN) [41]

can achieve superior saliency inference by incorporating the

contextual image information with end-to-end learning. With

the intrinsic interdependence between saliency detection and

semantic image segmentation, some methods, e.g. [33], have

formulated a multitask objective for joint feature learning for

such two correlated tasks. However, CNN-based methods rely

on labeled training with object masks or extra information

sources for tuning the deep models, which are generally

unavailable in saliency detection, and such heavy annotation

cost makes these methods less practical. To alleviate the

requirement of a large set of training masks, weakly supervised

salient object detection becomes widely studied to infer the

exact object locations given only training images with weak

image-level labels [37], [38]. However, it is restricted to

detecting saliency objects whose categories have been covered

by training data.

B. Co-saliency Detection
Co-saliency detection is another branch of weakly super-

vised extension of single-image saliency detection by ex-

ploring the visual cues shared across multiple images to

identify salient objects better. Chang et al. [42] formulated

co-saliency as a combination of intra-image saliency and inter-

image repetitiveness. Fu et al. [8] proposed a clustering-based

algorithm for co-saliency detection by considering intra-cluster

evidence such as pixel distribution, contrast, and correspon-

dences. Then, co-saliency is carried out via Bayesian inference

of each pixel belonging to the clusters. To prevent detecting

common background as salient foreground, Zhang et al. [43]

incorporated object proposals from other image groups into

the testing group to better distill the intra-image contrast and

intra-group consistency to generate the co-saliency score in

a Bayesian framework. Different from the existing methods

that focus on RGB images and assume all images contain co-

salient objects of a single category, Cong et al. [44] proposed a

novel co-saliency detection model for RGBD images, whereas

Yao et al. [45] used an efficient clustering-based principle to

achieve multi-class co-saliency detection on cluttered datasets

that contain an arbitrary number of object categories. Despite

their effectiveness, co-saliency detection remains a challenging

task in practice due to various unfavorable image variations,

such as small objects or background clutters.

A research trend in saliency detection lies in fusing a

set of saliency proposals, each of which is obtained based

on particular image evidence. The fused saliency map is

derived to leverage the most information with these proposals

while excluding their individual biases. Li et al. [10] and

Fu et al. [8] respectively proposed normalized summation and

multiplication to combine saliency proposals; however, simple

arithmetic operations are insufficient to effectively wipe out

non-salient regions as well as keep the salient foregrounds.

Hence, Cao et al. [9], [13] sought adaptive fusion weights

based on a low-rank constraint on different salient foreground

color content. Huang et al. [30] obtained multi-scale saliency

proposals and fused them via the low-rank constraint to extract

the shared intrinsic saliency information.

The aforementioned fusion-based methods carry out image-
wise proposal fusion, while the optimal saliency proposals

often vary from region to region. To address this issue,

Tsai et al. [14] formulated adaptive region-wise fusion as an

optimization problem where local consensus, spatial consis-

tency and global correspondence are jointly taken into account.

Huang et al. [46] adopted a hybrid strategy that adaptively

selects a summation or multiplication fusion scheme for each

superpixel. Despite the effectiveness, the common drawback

for fusion-based approaches, e.g. [9], [14], [30], [46], is that

the resultant saliency maps are typically blurred, especially

near the object boundaries. Thus, post-processing is often

required; but it is ad-hoc and may degenerate the performance.

Segmentation or boundary detection has been commonly
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integrated into co-saliency detection e.g. [11], [15], [47]–[49]

to enhance the performance since foreground segments directly

gives estimated objects in a secne. Li et al. [11] applied

GrabCut [50] to multi-scale initialization windows, and utilize

the commonly appeared segment-based object proposals for

intra-image saliency estimation. Jerripothula et al. [49] utilized

the segmentation masks to adaptively determine the penalty

for superpixels in fusing saliency proposals. However, these

methods derive image segmentation and saliency detection in

separated steps. Hence, complementary information between

image segmentation and saliency detection cannot be mutually

transferred to enhance each other’s performance.

C. Image Co-segmentation

Image co-segmentation is closely related to co-saliency

detection as it targets at segmenting the common but not nec-

essarily salient parts across multiple images. Rother et al. [51]

introduced the pioneering work of co-segmentation by mini-

mizing the unnormalized foreground histogram dissimilarity in

Markov random field (MRF). Hochbaum and Singh [52] used

a sub-modular rewarding term to encourage similar pixels hav-

ing same labels and efficiently solved it by graph-cut. Joulin

et al. [53], [54] utilized discriminative clustering to separate

the common foreground superpixels from the background.

Co-saliency detection can be adopted in the pre-processing

step of co-segmentation, and replaces the interactive supervi-

sion process. It provides the prior knowledge of the common

objects in multiple images, and can deal with the difficulties

due to complex background and large intra-object variations.

Chang et al. [42] introduced a co-saliency guided method for

co-segmentation by taking into account foreground similarity

and figure-ground dissimilarity. Yu et al. [55] used a Gaussian
mixture model (GMM) to compute figure-ground statistics, and

embedded co-saliency information in the unary term of MRF

for co-segmentation.

Saliency information can also be used to improve the

object appearance models and enhance co-segmentation. For

instance, Fu et al. [56] used depth enhanced co-saliency maps

for co-segmentation. Meng et al. [57] cast co-segmentation

as the shortest path problem on a directed graph constructed

by referring to object proposals, region similarities, and co-

saliency information. Rubinstein et al. [58] built several en-

ergy terms by using saliency and correspondence information

for co-segmentation. To reduce the interference from similar

backgrounds in images, Han et al. [59] proposed an op-

timization framework where background knowledge derived

from boundary superpixels is exploited for co-segmentation.

However, treating prior knowledge generation separately from

the segmentation process potentially impedes the effective and

adaptive transfer of useful information across different tasks.

Co-saliency detection and co-segmentation are highly rel-

evant to each other. Their combination has been explored in

existing methods. Nevertheless, these methods treat the two

tasks as separated steps. Thus the combination is unidirec-
tional. Namely, these methods either use co-segmentation to

improve co-saliency detection, e.g. [11], [15], [47]–[49], or

leverage co-saliency detection to help co-segmentation, e.g.

[42], [55]–[59]. Our approach instead enables simultaneous

co-saliency saliency and co-segmentation. It bidirectionally
links the two tasks in the domain of superpixels whose pair-

wise relationships are modeled by a graph. The joint objective

function on both tasks is designed on the graph. Through

an alternating optimization process, both tasks are progres-

sively improved via sharing information. As an unidirectional

approach, our prior work [15] integrates prior knowledge

attached via segmentation into region-wise proposal fusion for

saliency detection. We will show in the experiments that this

bidirectional method here consistently outperforms our prior

work [15] for co-saliency detection. More importantly, this

work further improves co-segmentation with the integration

of co-saliency detection, and make extension to four datasets.

III. PROPOSED METHOD

We introduce our method in this section. First, the problem

definition is given. Then, the steps of image processing,

feature extraction, and graph construction are applied to the

input images. Finally, the proposed objective function for

joint co-saliency detection and co-segmentation as well as its

optimization are specified.

A. Problem definition

Considering a set of n images I = {I1, I2, · · · , In}, we

apply several existing (co-)saliency detection algorithms, e.g.

[6]–[8], [27], [29], to obtain M saliency proposals for each

image. Each image Ij is decomposed into Nj superpixels,

which serve as the domain of joint co-saliency detection and

co-segmentation because they preserve intrinsic image struc-

tures and abstract unnecessary details. Total N =
∑

j Nj , j ∈
{1, 2, · · · , n} superpixels are yielded for the image set I.

For co-saliency detection, our goal is to seek a plausible

weight vector yi = [yi,1 yi,2 . . . yi,M ]� ∈ [0, 1]M for

each superpixel i ∈ {1, 2, · · · , N} to accomplish the saliency

detection by region-wise combining the M saliency proposals.

For co-segmentation, we optimize the segmentation masks

represented by superpixel figure-ground indicators zi ∈ {0, 1},
i ∈ {1, 2, · · · , N}.

Fig. 3 illustrates our framework where co-saliency detec-

tion and co-segmentation are carried out simultaneously. By

iteratively transferring useful information to regularize each

other, both tasks are progressively improved and converge

rapidly to favorable results. For instance, in Fig. 3, most of

our adopted saliency proposals, especially the multiple-image

saliency proposals, are interfered by the common background

regions across images, such as lake areas. Thanks to the collab-

orated and iterative refinement framework, potential adversary

effect is minimized in the joint outputs.

B. Superpixel and feature extraction

In our implementation, each image Ij is decomposed into

Nj ≈ 200 superpixels by using the SLIC algorithm [60]. In

addition to the color and SIFT [61] features, we also exploit

the deep features produced by the CNN-S network [62] to

describe semantic characteristics of objects. Combining the



C.-C. TSAI et al.: IMAGE CO-SALIENCY DETECTION AND CO-SEGMENTATION VIA PROGRESSIVE JOINT OPTIMIZATION 5

three complementary types of features typically results in more

comprehensive description of the co-salient regions. To extract

deep features, we up-sample and concatenate the feature

maps in layers of the CNN-S network, conv relu1 (96 chan-

nels), conv relu2 (256 channels), conv relu3 (512 channels),

conv relu4 (512 channels) and conv relu5 (512 channels),

to yield a 1888-dimensional hypercolumn representation for

each pixel. Next, we use the bag-of-words (BoWs) model

for superpixel representation. Specifically, for color features,

the k-means clustering algorithm is applied to pixels in three

color spaces, i.e. RGB, L∗a∗b∗, and YCbCr, and generates

20 visual words. To ensure having stable result, we run k-

means 20 times, and select the clustering with the minimal

sum of the squared distances between data and their cluster

centers. The color BoWs representation of the i-th superpixel

hc
i is then a 20-dimensional histogram. The SIFT and deep

BoWs representations, denoted by hs
i and hd

i respectively,

are similarly set. Lastly, we concatenate them and yield a

60-dimensional feature representation for the i-th superpixel,

hi = [hc
i ,h

s
i ,h

d
i ]. The similarity between two superpixels i

and î is defined by

s(i, î) = exp(−χ2(hi,hî)

σ
), (1)

where the constant σ is set to the average pair-wise distance

between all superpixels under this feature representation.

C. Graph construction

A graph G = (V = ∪ Vj , E = ∪ Ej) is constructed

to encode the spatial relationships among superpixels. Vj
corresponds to all the superpixels in Ij , thus |V| = N . Edge set

Ej represents the adjacency relationships between superpixels

in Vj . Namely, edge eîi ∈ Ej is added for linking vi and vî if

superpixels i and î in Ij are spatially connected. We set the

weight of edge eîi as

A(i, î) = s(i, î) ∗ b(i, î), (2)

where b(i, î) is the counts of pairs of adjacent pixels across

the boundary of superpixels i and î. The design of the

edge weights is crucial. Considering both the content and

shared boundary lengths of superpixels can better describe

the inherent structure of images, and boost the performance.

With affinity matrix A ∈ R
N×N in (2), the associated graph

Laplacian L ∈ R
N×N can be computed.

D. Objective function
We seek plausible weights Y = [y1 y2 . . . yN ] ∈ R

M×N

for superpixel-wise saliency map fusion as well as figure-
ground configuration Z = [z1 z2 . . . zN ] ∈ {0, 1}N for co-
segmentation by minimizing the following objective function:

J(Y, Z) = ‖Y ‖22 + α1

∑

i:vi∈V
U(yi) + α2

∑

1≤j<ĵ≤n

D(zj , zĵ)

+ α3

∑

i:vi∈V
C(yi, zi) + α4

∑

e
iî
∈E

B1(yi,yî) + α5

∑

e
iî
∈E

B2(zi, zî)

(3)

s.t. ‖yi‖1 = 1,yi ≥ 0̄, zi ∈ {0, 1}, for 1 ≤ i ≤ N,

Fig. 4: Illustration of the unary term U term for co-saliency

detection. See the text for the details.

where 0̄ is an all-zero vector, and α1, α2, α3, α4 and α5 are

five positive constants. zj = {zi|i ∈ Vj} denotes the figure-

ground configuration of image Ij . zĵ is similarly defined. Real-

valued yi,m ∈ [0, 1] is the fusion weight of saliency proposal

m on superpixel i. Binary variable zi takes value 1 if super-

pixel i belongs to the foreground, and 0 otherwise. Y and Z are

optimized jointly so that the useful information can be shared

for transferring object-aware boundaries from co-segmentation

to co-saliency as well as transferring saliency priors from co-

saliency to co-segmentation. In (3), U(yi) and B1(yi,yî) are

the unary and pairwise terms for co-saliency detection, re-

spectively. D(zj , zĵ) and B2(zi, zî) are the discriminative and

pairwise terms for co-segmentation, respectively. The coupling

term C(yi, zi) is included to encourage the coherence between

the co-saliency map and the figure-ground co-segmentation.

Lastly, the term ||Y ‖22 is introduced for regularization. These

terms are detailed as follows.

1) Unary term U(yi) for co-saliency detection: We follow

the co-saliency formula

Co-saliency = Saliency× Repetitiveness,

to design this unary term. Thus, this term contains two parts

that leverage the intra- and inter-image cues to infer the

goodness of each saliency proposal in terms of saliency and

repetitiveness on superpixel i, respectively. The two parts are

respectively shown in the blue and yellow diagrams of Fig. 4.

For the intra-image cue, we intend to assign a higher weight

to a saliency proposal that is consistent with others. It helps

exclude individual biases. Inspired by [63], we employ a low-

rank formulation to conduct this task. We further generalize

it to locally estimate the quality of saliency proposals. For

superpixel i, we find its K(= 50) spatially nearest superpixels.

See the blue colored region on I2 of Fig. 4 as an example. Let

xi,m ∈ R
256 be a histogram denoting the 256-bin distribution

of saliency values on the saliency proposal m for the region

covered by these K superpixels, i.e. the blue contours in the

blue diagram of Fig. 4. By stacking the M vectors derived

from all the saliency maps, Xi = [xi,1 xi,2 . . . xi,M ] ∈
R

256×M , we infer the consistency by seeking a low-rank

representation of Xi. Specifically, robust PCA (RPCA) [64]
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is adopted to decompose Xi into a low-rank approximation

Ri and a residual matrix Ei by solving

min
Ri,Ei

(||Ri||∗ + λ||Ei||1), s.t. Xi = Ri + Ei, (4)

where ||Ri||∗ is the nuclear norm of Ri. λ is a constant and

we set it to 0.05 in this work. After solving (4), we convert

normalized errors Ei = [ei,1 . . . ei,M ] to belief :

bi,m =
exp(−||ei,m||22)∑M
k=1 exp(−||ei,k||22)

, for 1 ≤ m ≤M. (5)

For energy minimization, the associated penalty variable li
computed from intra-image evidence for superpixel i using

the saliency proposal m is then defined by

li,m =
exp(1− bi,m)

∑M
k=1 exp(1− bi,k)

. (6)

For the inter-image cue, we explore inter-image corre-

spondences to evaluate the property of repetitiveness. Let

ci,j ∈ [0, 1] be the similarity, computed via (1), between

superpixel i and its most similar superpixel î in image Ij ,

j ∈ {1, 2, ..., n}. See the bottom part in the yellow diagram

of Fig. 4 for an example where the most similar superpixels

in other images are pointed by black arrows. We take into

account the similarities of all correspondences of superpixel i,
and define the correspondence cue as

ci =
mean({ci,j |1 ≤ j ≤ n})

var({ci,j |1 ≤ j ≤ n}) + 1
. (7)

Large ci means that superpixel i is consistently matched

across images and the degree of repetitiveness is high. On the

contrary, low ci implies that superpixel i probably belongs

to distinct background. To make this cue more robust, we

normalize {ci} of all superpixels in an image as a probability

indication of recurrent regions.
Let si,m denote the mean saliency value of saliency proposal

m on superpixel i, the yellow circled region on the saliency

proposals in the yellow diagram of Fig. 4. We prefer saliency

map m if the value of si,m is proportionate to that of ci. We

introduce a variable gi,m that penalizes the case where just

one of ci and si,m is large, i.e.

gi,m =
exp((1− ci)si,m + ci(1− si,m))

∑M
k=1 exp((1− ci)si,k + ci(1− si,k))

. (8)

The denominator in (8) is used for normalization.
The intra- and inter-image cues on superpixel i and proposal

m, i.e. li,m in (6) and gi,m (8), are combined via

wi,m =
exp(li,m + gi,m)

∑M
k=1 exp(li,k + gi,k)

× size(i), (9)

where size(i) is the size of superpixel i. It can be observed

that a lower penalty wi,m implies that the m-th saliency

proposal on superpixel i is more reliable, so a higher fusion

weight yi,m should be assigned to minimize the energy cost.

Considering all superpixels, this unary term becomes

∑

vi∈V
U(yi) =

N∑

i=1

w�
i yi = tr(W�Y ), (10)

where wi = [wi,1 . . . wi,M ]� and W = [w1 . . . wN ].

2) Discriminative term D(zj , zĵ) for co-segmentation:
This term estimates the quality of figure-ground separation

of images Ij and Iĵ , which is parametrized by zj and zĵ , in

a discriminative manner. Two attributes for being high-quality

figure-ground separation are considered. First, the foreground

appearances of images Ij and Iĵ need to be similar. Second,

the foreground and background regions of each image should

be dissimilar.

The feature representation of superpixel i is expressed by

hi = [hc
i h

s
i h

d
i ], a concatenation of the BoWs representation

from color, SIFT and deep features. Let Hf
j denote the

estimated foreground of image Ij . Since Hf
j is a collection of

superpixels, we represent it by summing the feature represen-

tation of all superpixels that it covers, i.e. Hf
j =

∑
zi∈zj

hizi,
where zj is figure-ground configuration of image Ij . The

estimated background of image Ij is similarly defined as

Hb
j =

∑
zi∈zj

hi(1 − zi). We adopt the global energy term

in [42] to discriminatively assess figure-ground separation for

a pair of images Ij and Iĵ . This discriminative term is designed

below

D(zj , zĵ) = ‖Hf
j −Hf

ĵ
‖22 −

∑

k∈{j,ĵ}
γ1‖Hf

k − γ2H
b
k‖22 (11)

= R− 2
∑

zi∈zj ,zî∈zĵ

〈hi,hî〉zizî

+ 2γ1γ2(1 + γ2)
∑

k∈{j,ĵ}

∑

zi∈zk

〈hi, H
f
k +Hb

k〉zi

+ (1− γ1(1 + γ2)
2)

∑

k∈{j,ĵ}

∑

zi,zî∈zk

〈hi,hî〉zizî,

where R is a constant and is irrelevant to optimization. γ1
controls the relative importance of foreground-background

dissimilarity. γ2 is set to the ratio between the foreground

and background regions and is not a tuneable parameter. To

make sure that the graph-cut algorithm [65] can be adopted,

this term must satisfy the regularity condition [65]. Namely,

the coefficient (1 − γ1(1 + γ2)
2) must not be larger than 0.

Following [42], we set γ1 to 1
(1+γ2)2

and let γ = γ2

(1+γ2)
. This

discriminative term D becomes

D(zj , zĵ) = R− 2
∑

zi∈zj ,zî∈zĵ

〈hi,hî〉zizî

+ 2γ
∑

k∈j,ĵ

∑

zi∈zk

〈hi, H
f
k +Hb

k〉zi. (12)

In (12), the value of γ depends only on γ2, which is set to the

area ratio between the foreground and background. We will

discuss how to determine the value γ2 later.

3) Coupling term C(yi, zi): This term encourages the co-

herence between the co-saliency and co-segmentation results.

For measuring the degree of coherence on superpixel i, we

first compute its mean saliency value by

si =

M∑

m=1

yi,msi,m = y�
i si, (13)

where yi = [yi,1 . . . yi,M ]� ∈ [0, 1]M is the weight vector

for saliency proposal fusion on superpixel i. si,m ∈ [0, 1] is
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the mean saliency value of proposal m on superpixel i. Note

that the values of {si,m}Mm=1 are in [0, 1] and vector yi is a

distribution, thus si ∈ [0, 1]. A higher mean saliency value

si implies the higher likelihood of superpixel i belonging to

foreground. To enhance the consistency between co-saliency

detection and co-segmentation, this term, penalizing the cases

where one of si and zi is large while the other is small, is

defined by

∑

vi∈V
C(yi, zi) =

N∑

i=1

[si(1− zi)+(1−si−π)zi]×size(vi), (14)

where π ∈ [0, 1], called the background shift, is introduced

to adjust the likelihood of background superpixels. It is often

used in co-saliency detection, e.g. [42], [58], to prevent the

trivial solutions that all superpixels are assigned to back-

ground. We will discuss how to set its value in the experiments.

In (14), the sizes of superpixels are also taken into account.

4) Pairwise term B1(yi,yî) for co-saliency detection:
We observe that different saliency proposals have individual

strengths and weaknesses. For instance, proposals based on

the background prior may not work well for objects with

considerable overlap with image boundaries. To address this

issue, this term encourages the neighboring superpixels in

graph G to use similar subsets of saliency proposals. Its

formulation is given below

∑

e
iî
∈E

B1(yi,yî) =
∑

e
iî
∈E

A(i, î)‖yi − yî‖22 = tr(Y LY �), (15)

where L is the graph Laplacian of G with affinity matrix A.

5) Pairwise term B2(zi, zî) for co-segmentation: This bi-

nary term is imposed to enforce the spatial smoothness of

co-segmentation results. It is defined by

∑

e
iî
∈E

B2(zi, zî) =
∑

e
iî
∈E

A(i, î)‖zi − zî‖22 = tr(ZLZ�). (16)

E. Optimization

Simultaneously solving the two sets of variables Y and Z
is hard. An alternating strategy is adopted to optimize the

variables in (3). At each iteration, one set of the variables is

optimized while keeping the other fixed, and then their roles

are switched. Iterations are repeated until the convergence of

the energy function values.

1) On optimizing Y : By fixing Z, the optimization problem

in (3) becomes

J(Y ) = α3

∑

i:vi∈V
C(yi, zi) + α4

∑

eiî∈E
B1(yi,yî)

+ α1

∑

i:vi∈V
U(yi) + ‖Y ‖22 (17)

s.t. ‖yi‖1 = 1,yi ≥ 0̄, for 1 ≤ i ≤ N.

The above constrained optimization problem is a quadratic
programming problem. We efficiently solve it by using the

public software CVX [66].

Algorithm 1 The optimization procedure of our method

Input: Images I = {I1, I2, · · · , In}, Max Iteration T ;

Output: Co-saliency maps Y and co-segmentation masks Z;

1: Generate M saliency proposals for I; (Sec. III-A)

2: Decompose each image into superpixels; (Sec. III-B)

3: Extract features for each superpixel; (Sec. III-B)

4: Construct graph G = (V, E) with affinity matrix A in (2);

5: Initialize the saliency maps via (17) with term C removed;

6: Set γ in (12) based on the foreground-background ratios;

7: Iteration ← 1;

8: while Iteration ≤ T do
9: Solve Y for co-saliency detection via (17);

10: Solve Z for co-segmentation via (18);

11: Iteration = Iteration + 1
12: end while

2) On optimizing Z: By fixing Y , the optimization problem

in (3) is reduced to

J(Z) = α3

∑

i:vi∈V
C(yi, zi) + α5

∑

eiî∈E
B2(zi, zî)

+ α2

∑

1≤j<ĵ<n

D(zj , zĵ) (18)

s.t. zi ∈ {0, 1}, for 1 ≤ i ≤ N,

which is a binary labeling problem. The energy function in

(18) is graph representable and regular, and hence can be

efficiently minimized by graph-cut [65].

For initialization, we solve the weights Y for saliency

proposal fusion via (17) with the coupling term C removed.

The saliency maps are generated via region-wise fusing

the saliency proposals with optimized Y . We binarize each

saliency map into foreground-background segmentation via

Otsu’s thresholding method. With the binary maps, the aver-

aged area ratios of the foreground and the background of im-

ages can be measured, then, γ = γ2

(1+γ2)
in (11) is determined.

It follows that the optimization problems in (17) and (18)

can be iteratively solved. The value of the objective function

decreases and converges to a local optimum. To conclude this

section, we summarize our approach in Algorithm 1.

IV. EXPERIMENTAL RESULTS

We evaluate the proposed method in this section. The

benchmark datasets used for evaluation are described first.

The adopted evaluation metrics and implementation details are

then given. Finally, the qualitative and quantitative results are

reported, analyzed, and discussed.

A. Datasets

We evaluate our method for co-saliency detection and co-

segmentation on four benchmark datasets. Two benchmarks,

the Image-Pair [10] and iCoseg [67] datasets, are used

for performance evaluation on both tasks. The challenging

Cosal2015 [43] and MSRC [68] datasets serve as the testbeds

for co-saliency detection and co-segmentation, respectively.
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(a) (b) (c) (d) (e) (f)

AP 0.975 0.970 AP 0.991 0.991

AUC 0.991 0.991 AUC 0.997 0.995

F-measure 0.939 0.935 F-measure 0.937 0.983

Fw
β 0.307 0.772 Fw

β 0.320 0.855

Fig. 5: Deficiency of AP, AUC, and F-measure. (a) & (d)

The ground truth of two examples. (b) & (c) Two saliency

proposals for (a). (e) & (f) Two saliency proposals for (d).

Instead, Fw
β can successfully discriminate the map quality.

1) Image-Pair: This dataset has 105 image pairs with

manually labeled ground truth. Each image pair contain one

or multiple common objects appearing on two distinct back-

grounds. We use the whole dataset for co-saliency detection,

and the subset of 30 pairs used in [69] for co-segmentation.

2) iCoseg: It is a large-scale dataset for both co-saliency

detection and co-segmentation. It contains 38 groups of total

643 images with manually labeled ground truth. Each group

has 4 ∼ 42 images. We use the whole 38 groups for co-

saliency detection and follow [49], [58] using the same 31
groups for co-segmentation. The images of a group contain

single or multiple similar objects with various poses and sizes

on complex backgrounds. Therefore, this benchmark is more

challenging than the Image-Pair dataset for both co-saliency

detection and co-segmentation.

3) Cosal2015: It is the largest and the most challenging

dataset for co-saliency detection. It has 50 image groups,

each of which contains 26 ∼ 52 images, with a total of

2015 images. Images of a group contain objects of a specific

category. Variations caused by different object poses and

scales, background clutters, and uncorrelated objects make this

dataset quite challenging.

4) MSRC: This dataset is widely used for image co-

segmentation. It consists of 14 groups with 418 images.

Each group has about 30 images. Compared with the iCoseg,

instances in each group of the MSRC dataset have higher

appearance variations and less regular object boundaries, such

as the thin branch of a tree. Thereby, this dataset is more

challenging than iCoseg.

B. Evaluation metrics

Let TP , TN , FP and FN respectively denote the numbers

of true positives, true negatives, false positives and false

negatives when evaluating a predicted binary map with respect

to the ground truth figure-ground segmentation. The precision

(P), recall (R), and the false positive rate (FPR) are respec-

tively defined by

P =
TP

TP + FP
, R =

TP

TP + FN
, and FPR =

FP

TN + FP
.

(19)

To evaluate the performance of co-saliency detection, we

first consider three widely used criteria, i.e. average precision
(AP), area under the ROC curve (AUC) and F-measure (Fβ).

AUC can be considered as the aggregated statistics from the

receiver operating characteristic (ROC) curve for the true

positive rate (or recall) and false positive rate. AP is the

score computed as the area under the precision and recall

curve (PR curve). The PR and ROC curves are generated by

thresholding the pixels in the predicted co-saliency maps with

256 levels from 0 to 1. Note that the number of non-salient

pixels is often much larger than the number of salient pixels

in saliency detection. Therefore, AP is more informative than

AUC since AUC is often over-optimistic. Meanwhile, with a

self-adaptive threshold T = μ+ σ, where μ and σ denote the

mean and standard deviation of saliency values in a saliency

map respectively, F-measure, defined as

F-measure =
(1 + β2)× precision× recall

β2 × precision+ recall
, (20)

is obtained by the harmonic mean of the precision and recall,

with β2 = 0.3 to emphasize more on recall as suggested

in [43], [71], [72].

As pointed out in [73], the traditional measures mentioned

above are less discriminative in some circumstances. Two

such examples are shown in Fig. 5. The saliency proposals

in Figs. 5(c) & 5(f) are perceptually closer to the respective

ground truth in Figs. 5(a) & 5(d). However due to the com-

bination of interpolation, dependency, and equal importance
flaws introduced in [73], the proposals in Figs. 5(b) & 5(e)

may have higher AP, AUC and F-measure scores than those

in Figs 5(c) & 5(f), respectively. To address this issue, we also

adopt a generalized F-measure, i.e. Fw
β [73], defined as

Fw
β =

(1 + β2)Pw · Rw

β2 · Pw +Rw
, (21)

which alleviates the hidden flaws of AP, AUC and F-measure

for more objective evaluation of the detected saliency maps. In

the experiment, we set β = 1 in (21) by following the original

setting in [73] that equally weighs the importance of weighted
precision (Pw) and weighted recall (Rw) based on the similar

definitions in (19) with four weighted basic quantities, i.e. ,

TPw, TNw, FPw and FNw, defined as:

TPw = (1− Ew) ·G (22)

TNw = (1− Ew) · (1−G) (23)

FPw = (Ew) · (1−G) (24)

FNw = (Ew) ·G, (25)

where · denotes the inner product, and G and Ew respectively

denote the column-stack representation of the binary ground

truth, and the column-stack weighted error map (defined as

|G−D|, with D being the column-stack representation of the

predicted saliency map) by considering the individual pixel

error according to their relative location and neighborhood

information by referring to the ground truth.

For co-segmentation, we adopt two widely used criteria, i.e.

accuracy (A) and jaccard index (J ). Accuracy is the percent-

age of pixels that are correctly predicted in co-segmentation.



C.-C. TSAI et al.: IMAGE CO-SALIENCY DETECTION AND CO-SEGMENTATION VIA PROGRESSIVE JOINT OPTIMIZATION 9

Method Year Setting
Image-Pair iCoseg Cosal2015

AP AUC Fβ Fw
β AP AUC Fβ Fw

β AP AUC Fβ Fw
β

DSR [6] CVPR2013 SI 0.859 0.951 0.811 0.658 0.787 0.920 0.748 0.557 0.680 0.892 0.657 0.464
MR [7] CVPR2013 SI 0.882 0.948 0.849 0.681 0.798 0.901 0.780 0.544 0.662 0.871 0.659 0.458

DRFI [27] CVPR2013 SI 0.887 0.960 0.838 0.642 0.846 0.964 0.789 0.574 0.703 0.918 0.681 0.452
RBD [29] CVPR2014 SI 0.809 0.893 0.794 0.650 0.821 0.944 0.779 0.604 0.667 0.890 0.659 0.487
SpC [8] TIP2013 CS 0.812 0.912 0.802 0.460 0.757 0.909 0.677 0.345 0.541 0.762 0.534 0.299
Cor [8] TIP2013 CS 0.674 0.879 0.659 0.484 0.431 0.718 0.420 0.251 0.345 0.625 0.253 0.253
CoC [8] TIP2013 CS 0.594 0.783 0.601 0.394 0.643 0.849 0.622 0.336 0.321 0.543 0.320 0.204
CBCS [8] TIP2013 CS 0.859 0.934 0.788 0.581 0.800 0.938 0.741 0.452 0.594 0.823 0.568 0.318
CSHS [47] SPL2014 CS 0.896 0.952 0.869 0.622 0.845 0.957 0.755 0.487 0.621 0.851 0.619 0.340
SACS [9] TIP2014 CS 0.926 0.977 0.873 0.694 0.871 0.966 0.796 0.557 0.724 0.919 0.692 0.446
CoDW [43] IJCV2016 CS - - - - 0.877 0.957 0.799 0.476 0.744 0.913 0.705 0.385
DIM [70] TNNLS2016 CS 0.933 0.973 0.862 0.480 0.877 0.968 0.792 0.479 - - - -
SGCS [15] ICME2017 CS 0.937 0.979 0.884 0.675 - - - - - - - -
MIL [71] TPAMI2017 CS - - - - 0.875 0.964 0.814 0.527 - - - -
Ours / CS 0.945 0.980 0.898 0.741 0.878 0.968 0.820 0.627 0.722 0.910 0.696 0.462

TABLE I: Quantitative results for co-saliency detection on three benchmark datasets. “SI” and “CS” denote the methods for

single-image saliency detection and multi-image co-saliency detection, respectively. The best result is highlighted in bold, and

“-” means no reported result on that dataset.

Jaccard index, also named as “IoU”, is the ratio of the

intersection to the union of the segmented object and the

foreground in ground truth. The two criteria are defined below

A =
TP + TN

TP + TN + FP + FN
and J =

TP

TP + FP + FN
.

(26)

C. Implementation details

For saliency proposal fusion, we choose four single-image

saliency proposals (SISP), i.e. DSR [6], MR [7], DRFI [27]

and RBD [29], together with three multiple-image saliency

proposals (MISP) by distinct co-saliency evidences, i.e. SpC
(Spatial cue), Cor (Corresponding cue) and CoC (Contrast

cue), extracted from the CBCS model [8]. In general, methods

DST, MR, DRFI and RBD measure the saliency based on

feature distinctness between the predicted foreground and the

surrounding superpixels. Thus, they may not perform well

on objects that are connected on image boundaries. DRFI
in comparison gives better results than the other SISPs since

it additionally utilizes the supervised learning approach to

map the local feature vector to a saliency score. Merely

using SISPs may focus on only the salient objects that do

not repeatedly appear across images, and neglect the low-

contrast co-salient objects in images. Therefore, three inde-

pendent co-saliency evidences from methods CBCS are used

to complement the deficiency of SISPs. For instance, the cor-

respondence evidence CoC can detect the co-occurring regions

across images. In short, we select these proposals by jointly

considering their performances, popularity and complementary

effect on proposal fusion. Generally, the more accurate the

saliency proposals, the better the co-saliency detection, which

further benefits the joint co-segmentation task. To generate the

saliency proposals on the respective dataset, we run the source

code from the corresponding publications with the default

settings.

We evaluate our approach in two different perspec-

tives/tasks on each dataset, namely, co-segmentation guided

co-saliency detection and co-saliency detection guided co-
segmentation with the same optimization model (3). For

fair comparison with the state-of-the-art methods each of

which tunes its parameters for one specific task (co-

saliency detection or co-segmentation) on a dataset (Image-
Pair/iCoseg/Cosal2015/MSRC), we also tune the parameters of

our approach in a task-dataset centric manner, namely seeking

a set of optimal parameter values for each task on each dataset.

We search for the proper values of the parameters in the

order based on their importance to our model. In addition,

we search for the parameters regarding co-saliency detection

first to provide a proper initialization for co-segmentation.

The resultant order is, α1, α3, π, α4, α2, and α5. One

parameter is tuned while the others are fixed. The tuning

process is done sequentially in the above order and iteratively

until the performance of the task, co-saliency detection or co-

segmentation, no longer improves. We follow the competing

methods such as [58] by adjusting the background shift

per image group on the iCoseg and MSRC datasets for co-

segmentation evaluation. When solving the optimization for

(3), alternating optimization scheme of co-saliency detection

and co-segmentation is repeated for a few iterations until the

energy in (3) converges. Our model converges rapidly, so we

set the maximum number of iterations T = 4 in Algorithm 1.

D. Co-segmentation guided co-saliency detection

We evaluate the effectiveness of the proposed model for co-

segmentation guided co-saliency detection on the Image-Pair,

iCoseg and Cosal2015 datasets in the following.

1) Image-Pair dataset: We compare our approach with

seven adopted saliency proposals and other co-saliency de-

tection methods, including the bottom-up based co-saliency

model CBCS [8] and CSHS [47], the adaptive weight map-

wise fusion-based co-saliency model SACS [9], and our prior

work SGCS [15] based on the same set of the saliency pro-

posals. We further include the deep learning-based approach

DIM [70] for comparison which uses the stacked denoising

autoencoder to learn the intra- and inter-saliency information
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Fig. 6: Performance of co-saliency detection in PR and ROC curves on three benchmark datasets including the (a) Image-Pair,

(b) iCoseg, and (c) Cosal2015 datasets. The models adopted to generate our fusion proposals are plotted in dash lines, while

the state-of-the-art co-saliency detection methods are in solid lines.

with a supervised training phase on the auxiliary ASD [21]

dataset. We either reproduce the co-saliency detection results

from the released code [8], [9], [15] or directly get the results

from their Websites [70].

TABLE I shows the overall performance of the evaluated

approaches in different metrics and Fig. 6(a) displays the PR

and ROC curves. We find that fusion-based approaches consis-

tently improve their saliency proposals by properly combining

these proposals. SACS addresses the inherent issues of the

traditional fixed-weight linear fusion model via adaptively em-

phasizing the higher-quality saliency proposals. Our method

further addresses the problems of map-wise fusion in SACS
by using region-wise fusion. Meanwhile, it enhances the co-

segmentation strength by additionally considering the figure-

background distinctness in (11) besides encouraging only the

foreground coherence in SGCS, thus achieving the best results

in all evaluation metrics. Our model even surpasses the state-

of-the-art supervised deep learning approach DIM with the

gains of about 1.2% in AP and 26.1% in Fw
β .

Fig. 7 visualizes the saliency maps generated by differ-

ent approaches on two image pairs. Taking the second pair

as an example, none of the single-image saliency detection

methods, i.e. DSR [6], MR [7], DRFI [27], and RBD [29],

can get the dominating performance as they either produce

some unfavorable false alarms or miss some object parts.

The proposal Cor [8] searches the corresponding regions and

the proposal CoC [8] looks for the contrast regions across

images. They give relatively clean results in these examples.

However, the saliency maps in the object regions are not sharp

enough and there is noise in background. Method CBCS [8]

jointly takes into account the intra-image CoC, SpC cues and

inter-image Cor, CoC and the SpC cues from the paired

images, which helps suppress the false positives. Method

SACS instead exploits a map-wise fusion of multiple proposals

to yield the final saliency maps. We observe that it often

uniformly spotlights the co-salient regions. We also consider a

variant of our model Ours-iter1, which shows the saliency

maps produced by our model at the first iteration, namely

without the aid of co-segmentation. This variant combines the

locally complementary signal strengths from different saliency

proposals, and produces comparable results with the SACS,

which needs an additional post-processing refinement step.

However, without higher level objectness information, some

false positives are present. After turning on the coupling

term, our regional fusion additionally seeks consensus with

the co-segmentation results, and it further tackles the limit of

region-wise fusion SGCS. Our model yields the saliency maps

superior to those generated by all the competing methods.

2) iCoseg dataset: Next, we evaluate our co-segmentation

guided co-saliency detection on the iCoseg dataset. Fig. 6(b)

displays the PR and ROC curves, and TABLE I shows the

overall evaluation scores. Our approach results in a large

performance gain over seven adopted saliency proposals in all

evaluation metrics. We further compare our approach with sev-

eral powerful co-saliency detection models, including the con-

ventional unsupervised approaches, i.e. CBCS [8], CSHS [47]

and SACS [9], and the learning-based models, DIM [70],

CoDW [43] and MIL [71], with more complex initialization,

such as taking advantage of the deep networks pre-trained

on other datasets or taking negative samples for additional

background images from other groups. It is worthwhile to note

that SACS applying an adaptive combination of the adopted

saliency proposals already generates comparable or superior

quantitative results to the aforementioned learning-based mod-
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Fig. 7: (a) Six image groups and object ground truth with left two groups from the Image-Pair dataset, middle two groups

from the iCoseg dataset, and right two groups from the Cosal2015 dataset. (b) ∼ (h) The adopted saliency proposals produced

by approaches including (b) DSR [6], (c) MR [7], (d) DRFI [26], (e) RBD [29], (f) SpC [8], (g) Cor [8] and (h) CoC [8]. (i)

∼ (k) Results by co-saliency detection methods including (i) CBCS [8], (j) CSHS [47], and (k) DIM [70] on left two groups,

MIL [71] on middle two groups, and CoDW [43] on right two groups. (l) ∼ (n) Results by fusion-based approaches including

(l) SACS [9], (m) Ours-iter1: our approach without referring to the co-segmentation evidence, and (n) Ours.

els, especially on the weighted F-measure scores. As a fusion-

based method, our method achieves even better performance in

all evaluation metrics by integrating the segmentation guidance

into saliency map fusion.

Visual comparison is shown in Fig. 7. It can be observed

that method CBCS is insufficient to handle the cases of size-

varying co-salient objects, changing backgrounds, and differ-

ent illumination conditions, especially in the groups of Chee-

tah and Salisbury. Single-image saliency detection DRFI, by

training a random forest regressor based on the extracted over-

complete features, gives more preferable results than CBCS.

However, many salient parts are still missing. SACS achieves

significant improvement over CBCS and DRFI because of its

model of self-adaptive weighted fusion. Our co-segmentation

guided region-wise fusion approach collaboratively captures

the objectness cues and estimates the region-wise goodness

of different proposals, thus yielding higher-quality co-saliency

maps. The good properties of our co-saliency maps include

uniformly highlighted objects and less false positives. More

importantly, our method gives clearer borders between the

salient objects and background regions, which is favorable for

the co-segmentation task.

3) Cosal2015 dataset: We compare our method with ex-

isting co-saliency detection approaches and report the overall

statistics in TABLE I and Fig. 6(c). Likewise, our method

is compared with the conventional bottom-up approaches, i.e.

CBCS [8], CSHS [47], the fusion-based approach with the

same set of saliency proposals, SACS [9], as well as the state-

of-the-art method CoDW [43] proposed by the authors who

established this dataset. In this dataset, our method slightly
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TABLE II: Co-segmentation results in Jaccard index (J ) and

accuracy (A) on the Image-Pair dataset.

Method J A
Jou10 [53] 59.1 79.0
Yu14 [55] 55.6 86.2
Gao13 [69] - 92.4
Meng13 [57] 77.7 92.8

Ours 81.9 94.8

falls behind or is comparable to SACS [9] and CoDW [43] and

performs favorably against the other competing approaches.

Compared with SACS [9] and CoDW [43], our method has

slightly lower performance in AP, AUC, and Fβ but has better

results in Fw
β . As pointed out in Fig. 5 by [73], the measures,

including AP, AUC, and Fβ , have some limitations and may

lead to inaccurate evaluation; instead, the measure Fw
β gives

judgment more closed to human perception. Furthermore,

CoDW [43] requires a set of object proposals to pre-train the

restricted Boltzmann machines as the feature extractor, but

our method does not require those pre-processing steps. In

SACS [9], a post-processing step is used to refine the object

boundary by suppressing the false positive regions. In contrast,

our method achieve higher Fw
β scores without an extra post-

processing step.

To gain insight into the quantitative results, Fig. 7 visualizes

the detected saliency maps with different approaches. Taking

the right image of class ”Deer” as an example, we see

the results by the adopted proposals, i.e. DSR [6], MR [7],

DRFI [27], RBD [29], SpC [8], Cor [8] and CoC [8] have their

respective strength even though they do not give satisfactory

results in overall. Specifically, the results by MR and SpC
successfully highlight the deer body but missing the head

region. On the contrary, results by DRFI successfully delineate

the object’s region, but with low figure-background contrast.

Our method adaptively selects the reliable proposals region-

wisely to form a better co-saliency map than the adopted

proposals as well as the SACS by map-wise fusion manner.

Furthermore, we observe the results by the unsupervised state-

of-the-art methods, i.e. CBCS [8], CSHS [47], SACS [9]

and CoDW [43] have many false positives in the background

because the common objects in the cases are similar to the

background. With the segmentation guidance, our method can

more effectively remove the false positives due to the low

figure-background contrast issues in those images.

E. Co-saliency detection guided co-segmentation

In the following, we evaluate our model for co-segmentation

with the integration of co-saliency detection on the Image-Pair,

iCoseg and MSRC datasets.

1) Image-Pair dataset: We first evaluate the co-

segmentation performance on the Image-Pair dataset.

TABLE II reports the performances of our method and four

powerful co-segmentation methods, including Jou10 [53],

Yu14 [55], Gao13 [69], and Meng13 [57]. Except for

Jou10, methods mentioned above similarly require the prior

knowledge of foreground by either bounding boxes or saliency

information as in our model. Overall, the performance gain

cdbeabera cdpandad rimg010

(a)

(b)

(c)

(d)

(e)

Fig. 8: (a) Three image pairs from the Image-Pair dataset

for co-segmentation with the ground truth marked by the

contours. (b) ∼ (e) Segmentation results generated by different

approaches including (b) Jou10 [53], (c) Yu14 [55], (d)

Meng13 [57], and (e) Ours.

of our method over Meng13, the best competing method

tailored for paired image co-segmentation, is significant, i.e.

4.2% gain in Jaccard index and 2% gain in accuracy.

In Jou10 [53], both spatial and color features are used

to train a maximum margin classifier with a formulation

combining discriminative clustering and spectral clustering.

An important parameter μ weighs the influence of spatial

and color consistency in the discriminative cost function. To

obtain better results of this model, we tune μ for each of the

30 image pairs while keep the other settings adopted in the

released code. As shown in the second row of Fig. 8, this

method can identify the common regions, but the results are

noisy because of the complex image appearance. For instance,

due to the lake reflection, this method incorrectly classifies

the reflection as parts of the foreground in the first cdbeabera

image. In addition, Jou10 [53] usually requires more images

to derive a good hyperplane separating foreground instances

from background.

The MRF-based model Yu14 [55] considers individual

image segmentation with the constraints of high foreground

similarity by using the Gaussian mixture models (GMMs). In

this model, image segmentation is similarly initialized via the

co-saliency priors by CBCS [8]. We reproduce their results

with the recommended settings. As shown in the third row

of Fig. 8, this method has fewer false positives compared to

Jou10, but it suffers from the object variations across images.

In fact, it has the lowest Jaccard indices in TABLE II.

The method Meng13 [57] combines the active contour

method with a rewarding strategy based on both the foreground

similarity and background consistency. We also reproduce their

results with the default settings. As shown in the fourth row

of Fig. 8, this method is more preferable compared to the

previous two competing methods. However, the active contour

segmentation requires extra initial bounding boxes for the

objects of interest. In a different manner, we estimate the

initial object regions via saliency priors obtained by jointly

solving co-saliency detection and co-segmentation. Not only

the foreground similarity but also background consistency

constraints in the perspectives of co-saliency detection and co-
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Fig. 9: (a) Six image groups from the iCoseg (left three groups) and MSRC (right three groups) for co-segmentation with their

ground truth marked by the yellow contours. (b) ∼ (e) Segmentation results generated by different approaches including (b)

Jou12 [54], (c) Rub13 [58], (d) Fu15 [56] on the iCoseg dataset and Jou10 [53] on the MSRC dataset, and (e) Ours.

TABLE III: Co-segmentation results in Jaccard index (J ) and

accuracy (A) on the iCoseg and MSRC datasets.

iCoseg MSRC

Method J A J A
Jou10 [53] 39.5 61.0 45.2 70.8
Kim11 [74] 39.8 70.3 34.2 54.7
Jou12 [54] 42.6 70.2 50.7 73.6
Rub13 [58] 69.3 89.8 68.1 87.7
Fu15 [56] 59.4 88.5 - -
Ours 72.3 90.8 67.8 86.5

segmentation are taken into account. Both TABLE II and Fig. 8

show that our method remarkably outperforms the competing

methods.

2) iCoseg dataset: Next, we evaluate our method for co-

segmentation on the iCoseg dataset. TABLE III reports the

quantitative results and the left part of Fig. 9 shows visual

comparison among our method and the existing methods

for co-segmentation of more than two images, including

Jou12 [54], Rubi13 [58], and Fu15 [56]. We download

each of their co-segmentation masks from the authors’ Web-

sites.

The method Jou12 [54] extends their previous work [53]

to co-segment multiple images that consist of the multiple

objects by an iterative EM algorithm. However, without proper

saliency information, there are still similar issues that back-

ground regions with similar image appearance across multiple

images tend to be considered as objects of interest, leading to

false positives as displayed in Fig. 9(b).

The method Rubi13 [58] addresses the issues for images

with noisy background or irrelevant objects. Using the SIFT

flow and visual saliency, it separates the common objects from

the noisy signals by alternating dense pixel correspondence

inference and foreground estimation. This method with the

aid of saliency information greatly improves the figure-ground

separation compared to Jou12. In Fig. 9(c), we observe that

many background regions in Hot-Balloons and Cheetah images

are successfully excluded. However, single-image saliency

information rather than co-saliency priors obtained from the

image sets may not be sufficient to handle large intra-objects

shape variations as illustrated in the images of Kendo-Kendo.

The method Fu15 [56] solves an energy minimization

problem that integrates the depth cue to help capture common

object regions while excluding complex backgrounds by fusing

several existing RGB-based co-saliency maps via a low-rank

representation [9]. This method works well on removing the

background regions from the foreground; however, it some-

times misses significant foreground regions, as shown in the

group Kendo-Kendo of Fig. 9(d).

Compared to these methods, our model considering co-

saliency and co-segmentation simultaneously achieves the im-

proved co-segmentation performance. Unlike the competing

method Fu15 with the map-wise integration of multiple

saliency proposals to derive the co-saliency priors, our region-

wise fusion method better integrates locally complementary

saliency proposals, and hence guides and facilitates the fol-

lowing co-segmentation. Along the process of alternating

optimization, better results are achieved with the iteratively

refined co-saliency priors and the guided co-segmentation as

illustrated in Fig. 9(e).

3) MSRC dataset: We further evaluate our method for co-

segmentation on the MSRC dataset and compare it with the

models mentioned above that also have reported their results

on the MSRC dataset except for method Fu15. As summarized

in TABLE III, Kim11 yields relatively lower performance be-

cause it decomposes the multi-image co-segmentation problem

into several paired-image graph bi-partition sub-problems to

facilitate parallel computation. The MSRC dataset contains

images of different instances sharing only the same class

information; moreover, many MSRC images have similar back-

grounds, e.g. similar airports frequently appear in the “Plane”

class. These issues make it more challenging for the task of

separating foreground from background on the MSRC dataset.

Differently, our method considers the figure-background dis-

tinctness from all images to ease the potential difficulties in

this situation. In general, our method performs reasonably well

compared with other superpixel-based methods, i.e. Jou10,

Kim11, and Jou12 which may suffer from the superpixel

segmentation error due to the highly complex object content

and its boundary. In contrast, Rub13 is a pixel-based method

using its computed saliency map combined with single-image

Grabcut for co-segmentation, which derives better segmenta-
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Fig. 10: Ablation studies on the Image-Pair dataset in AP,

AUC, and F-measure (Fβ).

tion results. In fact, our method is also superpixel-based but

already generates comparable results to the pixel-based method

Rub13, even without additional Grabcut post-processing.

To gain better insight, we display the visual results on the

right side of Fig. 9. Taking the group “Car” for example,

which is relatively more challenging than the other two cases

since it exhibits various view angles on the same types of ob-

jects closely neighboring each other. However, without proper

saliency information, many objects of interest are mistakenly

regarded as the background regions, as shown in Fig. 9(b)

and (d) by the method Jou12 [54] and their previous work

Jou10 [53]. By leveraging saliency information, Rub13 is

expected to identify objects’ locations more precisely. How-

ever, we observe many background regions are also included

in their results. In comparison, we derive co-saliency priors

from the image sets to target the objects with large intra-

object shape variations on the MSRC dataset. Our co-saliency

priors enable our method to better localize objects. However,

some background is also segmented out, as shown in the case

“Flower.” We expect fine superpixel extraction can be helpful

to reduce the error.

F. Model Analysis

In the following, we evaluate the contribution of each energy

term in (3), conduct the convergence analysis, and discuss the

limitations of our method.
1) Ablation Studies: Fig. 10 reports ablation studies on

the Image-Pair dataset to investigate the contribution from

each individual energy term to the proposed model. Fig. 11

shows the corresponding visual results. In general, we can

see that adding the energy terms, U , C, B1, D, and B2 to

the objective function in (3) step by step can progressively

improve the results. Initially, we generate the original co-

saliency map by applying the unary term U to locally search

for the proper saliency proposals to fuse. As the energy terms

responsible for segmentation are turned off at this stage,

the corresponding segmentation mask in Fig. 11(b) is shown

as the whole background by default. Next, by turning on

the coupling term C, the co-saliency map in Fig. 11(b) is

treated as object priors for the co-segmentation; meanwhile,

it allows the segmentation mask to guide the region-wise

saliency proposal fusion. By associating the information be-

tween the co-saliency map and co-segmentation mask, we

observe high coherence between the fused saliency map and

(a) (b) (c) (d) (e) (f)

Fig. 11: Visual illustration of ablation studies. (a) An image

from the Image-Pair dataset and its ground truth for joint

co-saliency detection and co-segmentation. (b)∼(f) Results

generated by using different combinations of the energy terms,

including (b) Reg+U , (c) Reg+U+C, (d) Reg+U+C+B1,

(e) Reg+U+C+B1+D, and (f) Reg+U+C+B1+D+B2.

the segmentation result. Furthermore, after combining the co-

saliency smoothness term, B1, as illustrated in Fig. 11(d), the

quality of the saliency map is improved. Meanwhile, scores in

Fig. 10 are also elevated. Next, by adding the discriminative

term D, which helps remove the potential background and

recover the common foregrounds in images, the performance

scores are improved. Finally, the best performance is obtained

by encouraging the smoothness of the segmentation labeling

using B2, as illustrated in Fig. 11(f).

2) Convergence Analysis: The objective function values

in (17) and (18) corresponding to co-saliency map fusion

and co-segmentation in our iteration scheme are plotted in

Fig. 12. Initially, the adopted saliency proposals are inte-

grated to produce a baseline for co-saliency detection, which

provides a good initialization for image co-segmentation. By

conducting the iteration scheme, the co-saliency detection and

co-segmentation results are continually optimized according

to Figs. 12(b) and (d), meanwhile, the energy curves in

Figs. 12(a) and (c) converge rapidly. Since both the energy

curves no longer appear obvious changes after 3 iterations,

thus setting the maximum iteration number to 4 is reasonable

in our experiments. Note that the reason why (17) has the

lowest energy at the first iteration is that the coupling term C
is off at that iteration. The term C is then turned on after the

first-round co-segmentation masks are obtained.

3) Limitations: Our method is to combine the advantages

of different saliency proposals for more accurate co-saliency

detection; however, if the majority of the adopted saliency

proposals lose their discriminative power toward salient ob-

jects, our fusion might fail due to the group voting scenario

embedded in the unary term U . For instance, compared with

the ground truth in Fig. 13(a), the saliency proposal from the

method MR gives more favorable results than the other three

SISM; however, the group voting scenario implicitly forces

our method to trust more on the other methods, leading to the

degenerated fused saliency map shown in the last image of

Fig. 13 row (a). Therefore, how to independently emphasize

the better saliency proposal to fuse can be one interesting

direction to pursue. Next, Fig. 13 row (b) shows that three

of our co-segmentation results include all the salient objects

instead of the most commonly appearing objects. We find this

is a prevalent co-segmentation problem to the other works as

well since the soccer player appears in 30 out of 31 images in

that group, and the dark-green background and the background

airport also frequently show up among the whole images in
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Fig. 12: Learning curves during optimizing (3) on the Im-

age Pair dataset. (a) The objective values of (17). (b) The

weighted F-measure scores of co-saliency detection. (c) The

objective values of (18). (d) The accuracy scores (A) of co-

segmentation.

that group. Lastly, Fig. 13 row (c) shows the inherent difficulty

in segmentation, which typically encourages segments with

short boundaries since the penalty we pay is the length of the

cut as mentioned in [75]; however, not all natural objects have

short boundaries, as in the example “Bike.” Furthermore, some

foreground parts can also be mistakenly excluded if they are

assigned to the same superpixels with the background, like the

long-thin Kendo sword in the Kendo group. In other words,

the superpixel size may need to be set for the appropriate

trade-off between segmentation accuracy and computational

complexity, which is beyond the focus of this work.

V. CONCLUSIONS

In this paper, we have presented an unsupervised learning

framework that simultaneously accomplishes co-saliency de-

tection and co-segmentation. On the one hand, our method

carries out saliency proposal fusion via jointly exploring the

common object evidence generated from co-segmentation and

the consensus among various saliency proposals. On the other

hand, we take advantage of this joint optimization framework

for an enhanced co-segmentation mask from the improved co-

saliency priors. The benefits of the joint optimization formula-

tion are evident as it produces the high-quality saliency maps

by region-adaptive fusion of multiple locally complementary

saliency proposals, and generates accurate co-segmentation

masks with the aid of the iteratively refined co-saliency

priors. Moreover, unlike existing co-saliency models relying

on additional post-processing to smooth their model outputs,

our formulation has already merged such advantages into

the unified optimization process and generates even superior

results in both tasks evaluated on three respective datasets

under the same evaluation metrics. In future, we plan to apply

deep learning techniques to the proposed segmentation guided

fusion framework for category-specific object detection that

can benefit specific applications where saliency maps or seg-

mentation masks of high quality are appreciated, such as the

(a)

(b)

(c)

Fig. 13: Some challenging cases/examples where our method

fails. (a) Most of the saliency proposals do not perform well.

From left to right, the ground truth, four adopted SISMs from

DSR, MR, DRFI and RBD, and our fused map are shown.

(b) Multiple similar objects are present and/or the goal is to

extract a particular object instance. (c) Objects of interest have

complex shapes or long-thin boundaries.

passenger-specific salient object detection for the development

of autonomous driving.
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