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Abstract—We present a novel and highly efficient superpixel
extraction method called USEAQ to generate regular and com-
pact superpixels in an image. To reduce the computational cost
of iterative optimization procedures adopted in most recent
approaches, the proposed USEAQ for superpixel generation
works in a one-pass fashion. It firstly performs joint spatial
and color quantizations and groups pixels into regions. It then
takes into account the variations between regions, and adaptively
samples one or a few superpixel candidates for each region.
It finally employs maximum a posteriori (MAP) estimation to
assign pixels to the most spatially consistent and perceptually
similar superpixels. It turns out that the proposed USEAQ is
quite efficient, and the extracted superpixels can precisely adhere
to boundaries of objects. Experimental results show that USEAQ
achieves better or equivalent performance compared to the state-
of-the-art superpixel extraction approaches in terms of boundary
recall, undersegmentation error, achievable segmentation accu-
racy, the average miss rate, average undersegmentation error,
and average unexplained variation, and it is significantly faster
than these approaches. The source code of USEAQ is available
at https://github.com/nchucvml/USEAQ.

Index Terms—Superpixel extraction, image segmentation, joint
spatial and color quantizations.

I. INTRODUCTION

UPERPIXEL extraction aims to group spatially connected

and perceptually consistent pixels into small regions. Ex-
tracted superpixels are expected to adhere to object boundaries
and be semantically meaningful. They not only provide a
compact image representation but also serve as an effective
domain for image feature computation. Hence, superpixels
speedup and facilitate many successive applications such as
surface reconstruction [1], video object segmentation [2],
[3], tracking [4], [5], saliency map detection [6]-[8], image
segmentation [9]-[11], and object recognition [12]-[15]. Be-
ing essential to these applications, superpixel generation has
become an inherent part in various computer vision and image
processing applications.

As indicated in [16], three properties are desirable for
superpixel extraction. First, a superpixel needs to be composed
of similar pixels, and adheres to image boundaries adequately.
Second, as a preprocessing step for reducing the complexity
of many applications, superpixel generation is required to
be computationally efficient. Third, the generated superpixels
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should both increase the speed and improve the quality of
segmentation results. We are aware of the increasingly grow-
ing image resolutions. An effective and efficient superpixel
extraction method is always in demand. Increasing the number
of superpixels in an image typically helps represent the object
boundaries more precisely. However, it also significantly in-
creases the computation time of superpixel extraction, which
limits the practical usage of superpixels in high-resolution
images and videos. Most existing approaches work on the
trade-off between the efficiency and the precise adherence
to boundaries. In this work, we present an approach whose
running time is almost independent of the number of extracted
superpixels.

To fulfill the aforementioned requirements, we propose a
novel superpixel extraction approach, named Ultra-fast Su-
perpixel Extraction via Adaptive sampling from Quantized
regions (USEAQ), to efficiently decompose an image into
semantic regions. Specifically, we apply the spatial and color
quantizations simultaneously to decompose an image. The
former retrieves the grid based on the positions of pixels,
and preserves the spatial relationships between pixels and
initial regions. The latter divides pixels into groups based
on their colors. In [17], our preliminary approach considers
pixels belonging to the same group in both spatial and color
quantizations as a superpixel candidate in initialization. It
neglects the variations among image regions such as homo-
geneous regions versus cluttered regions. In general, more
superpixels of smaller sizes are required in cluttered regions
to adhere to complex boundaries, while fewer superpixels of
larger sizes are preferable for homogeneous regions to have
a compact representation. The proposed approach takes this
observation into account, and employs an adaptive sampling
mechanism that picks one or more superpixel candidates
from each spatially quantized region according to the color
variations of that region.

In addition to the adaptive sampling mechanism, the other
major characteristic of our approach is that it works in a
one-pass manner. Most conventional methods such as [16]
implement an iterative optimization procedure where the rep-
resentative colors of superpixels and the pixel-superpixel reas-
signment are alternatively updated. On the contrary, the sub-
regions adaptively determined by our approach represent spa-
tially connected and visually coherent groups of pixels. It turns
out high-quality superpixels can be extracted by simply merg-
ing these sub-regions and performing neighborhood refinement
via maximum a posteriori (MAP) estimation. Consequently,
our approach significantly speeds up superpixel extraction by
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avoiding an iterative optimization process, and can generate
high-quality superpixels with regular and compact shapes.

In the experiments, we evaluate the performance of the pro-
posed approach on the Berkeley segmentation benchmark [18]
and the Stanford background dataset [19]. Compared to the
state-of-the-art approaches, our approach not only achieves
better boundary recalls but also is much more computationally
efficient. To the best our knowledge, our method is faster than
existing methods and provides the flexibility of generating
regular superpixels with different numbers of superpixels.
The main contributions of this work are threefold. First, a
mechanism of adaptive sampling from spatially and visually
quantized regions is proposed to efficiently generate initial
superpixels. Second, the MAP-based estimation is designed
and applied to reassign pixels to visually similar superpixels
and merge small superpixels in a one-pass manner. Third, the
proposed method achieves superior performance on the Berke-
ley segmentation benchmark and the Stanford background
dataset in both accuracy and efficiency.

The rest of the paper is organized as follows. We review the
relevant methods in Section II. Our approach is presented in
Section III. The experimental results including the parameter
adjustment and the comparisons with the state-of-the-art ap-
proaches are shown in Section IV. We show that the extracted
superpixels help improve the quality of image segmentation
and supervoxel construction in Section V. Finally, we make a
brief conclusion in Section VI.

II. RELATED WORK

The literature on superpixel extraction is quite extensive.
Most methods for superpixel extraction can be roughly divided
into two categories, i.e., graph-based and gradient-based meth-
ods. We review some representative methods of each category.

A. Graph-Based Superpixel Extraction

Graph-based methods construct superpixels by employing a
graph to model the relationships between neighboring pixels.
As shown in a pioneering work normalized cuts (NC) [20],
pixels are represented as nodes with their links to the neighbors
as edges in the graph. Superpixels are obtained by recursively
minimizing a cost function defined on the graph. Guiding
model search was introduced in [21] to reduce the computa-
tional cost of normalized cuts. Felzenszwalb and Huttenlocher
(FH) [22] presented a graph-based segmentation approach, in
which agglomerative clustering is applied so that each node
in the graph forms a minimum spanning tree. Their method
shows its advantage over normalized cuts in efficiency, but it
often leads to superpixels of less regular shapes and sizes.

Moore et al. [23] proposed superpixel lattices (SL) to
generate superpixels by preserving the topology of a regular
lattice. They optimized both vertical and horizontal paths by
referring to the boundary cost map, and used the optimized
paths to split an image and yield superpixels. To further
enhance the results of [23], Moore et al. [24] imposed a
punitive cost on the boundary orthogonal to the current cut
during the iterative process of graph partition.
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Liu et al. [25] presented an approach to superpixel seg-
mentation, in which the entropy rate (ERS) and a balancing
function jointly constrain the compactness and sizes of each
cluster, and a greedy algorithm is adopted to complete the
segmentation. Their method is computationally more efficient
than normalized cuts [20]. Veksler et al. [26] over-segmented
an image by covering it with overlapping square patches of a
fixed size. They developed an energy function based on image
gradient to guide the assignment from pixels to superpixels
by using graph-cuts [20]. Zhang et al. [27] introduced two
pseudo-Boolean functions in which segmentation is modeled
as a binary labeling problem. The adopted non-iterative pseudo
Boolean optimization makes their method more efficient than
that in [26]. Peng et al. [28] used a framework with higher
order energy optimization to carry out superpixel construction.
k-means clustering is used to generate the initial superpixels,
which help accelerate the optimization of the higher order
energy function for refining the initial superpixels. Despite
the effectiveness and the significant progress on efficiency,
graph-based approaches to superpixel extraction are not able to
support real-time performance. The proposed method achieves
the comparable performance to the state-of-the-art graph-based
methods, and supports real-time superpixel extraction.

B. Gradient-Based Superpixel Extraction

Methods of this category cover those using either gradient
ascent or gradient descent for superpixel extraction. Unlike
graph-based methods, the gradient-based methods initially
partition an image into multiple regions as the reference, and
gradually refine the region boundaries to yield superpixels. The
process of refinement is carried out by considering diverse
image properties so that each of the resultant superpixels is
composed of perceptually similar pixels. For instance, the
pioneering work, watershed [29], considers the flooding of the
water from local minima in an image to retrieve the segments
of superpixels. As a result, the shapes of the superpixels may
be too irregular to adhere to the boundaries of objects.

Mean shift [30] searches the local maxima of a density
function by using an iterative mode-seeking procedure. After
convergence, pixels belonging to the same mode form a
superpixel. To speed up mode-seeking, quick shift [31] adjusts
the under-segmentation and over-segmentation of clusters by
moving points to their nearest neighbors. Based on mode-
seeking, these methods can automatically determine the num-
ber and the compactness of superpixels in an image. However,
extra hyperparameters in mode-seeking such as those in the
kernel function need to be set in advance.

Levinshtein et al. [32] delivered a method for compiling
the TurboPixels. Their method uniformly places the initial
seeds on images and gradually expands the superpixels from
the seeds by a level set based geometric flow algorithm. The
method can make the sizes of the superpixels uniform, but
it is less efficient compared to other gradient-based methods.
Zeng et al. [33] proposed structure-sensitive superpixels based
on the geodesic distance computed from geometric flows.
The number of superpixels is automatically determined by
the energy functions of the structure density and compactness
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Fig. 1. The overview of the proposed approach to superpixel extraction. Firstly, an input image undergoes joint spatial and visual quantizations. Then, an
adaptive sampling mechanism is applied to the quantized regions to compile the superpixel candidates. Finally, the resultant superpixels are obtained by

performing pixel-superpixel reassignment and superpixel refinement.

constraints. However, the running time of computing structure-
sensitive superpixels is even longer than that of TurboPixels.

Achanta et al. [16] proposed a method, called simple linear
iterative clustering (SLIC), to construct superpixels. SLIC sets
the initial seeds as the cluster centers obtained by applying
k-means to the image. The computational complexity of
SLIC, mainly on running k-means, is dramatically reduced
by considering local search regions. Although SLIC is ef-
ficient, the yielded superpixels are sensitive to the locations
of initial seeds. Liu et al. [34] proposed manifold SLIC (M-
SLIC), which extends SLIC to retrieve small superpixels in
content-dense regions and large superpixels in content-sparse
regions, respectively. Restricted centroidal Voronoi tessellation
is used to induce the content-sensitive superpixels. Because
M-SLIC works on manifolds, which can be computed effi-
ciently, it is faster than many the state-of-the-art methods. To
further increase the computational speed of SLIC, Achanta
and Susstrunk [35] proposed simple non-iterative clustering
(SNIC) to construct superpixels with one iteration.

Van den Bergh et al. [36] extracted superpixels via using
an energy-driven sampling (SEEDS) method. Their method
initializes superpixels as the uniform cells, and progressively
adjusts the boundaries of superpixels according to an energy
function that takes the color homogeneity and shape prior
of superpixel boundaries into account. The optimization of
the energy function is solved by a hill-climbing algorithm.
However, the shapes of the generated superpixels are often
irregular. The computational cost time also significantly in-
creases with respect to the number of superpixels. Inspired by
SEEDS, Yao et al. [37] proposed efficient topology preserving
segmentation (ETPS) which applies a coarse-to-fine energy
update strategy to efficiently achieve the energy minima for
superpixel extraction.

Shen et al. [38] used lazy random walk (LRW) to represent
the relationship between a seed and its neighboring pixels,
and generate superpixels according to the relationship. To
improve the performance, an energy optimization function
based on texture information and object boundaries in the
image is developed and adopted. However, their method is
time-consuming. Fu et al. [39] proposed regularity preserved

superpixels (RPS) to keep regularity properties. Based on the
initial seeds, the pixels are re-assigned based on locally max-
imal edge magnitudes. The shortest path algorithm retrieves
local optimal boundaries. They also extended RPS to generate
supervoxels. However, RPS is much less efficient than SLIC
and SEEDS. Shen et al. [40] proposed to use the density-based
spatial clustering of applications with noise (DBSCAN) to
decrease the computational costs for superpixel construction.
Small initial superpixels are further merged with adjacent
superpixels with similar color distributions. Hu et al. [41]
proposed a spatial-constrained watershed superpixel algorithm
(SCoW) which can provide more compact and evenly dis-
tributed superpixels by placing evenly distributed marker
points in the image. The flooding process of the watershed can
be processed without iteration to achieve real-time efficiency.

Li and Chen [42] proposed the linear spectral clustering
(LSC) to construct uniform superpixels. The objective function
of LSC is highly similar to that of normalized cuts, which
is defined on a graph structure. Thus, LSC adopts a graph-
based objective function. To speed up the process of superpixel
extraction, LSC solves the objective via iteratively using k-
means clustering, instead of eigendecomposition which is
widely adopted in graph-based methods. New extension and
applications of LSC were proposed and discussed in [43].

Most gradient-based approaches adopt iterative optimization
procedures to generate superpixels that adhere to the bound-
aries of objects. To avoid the iterative optimization procedures
and further improve the efficiency, our approach merges sub-
regions generated from spatial and color quantizations via
MAP estimation in a one-pass fashion. Hence, our approach
can achieve much higher computational efficiency compared
with the existing gradient-based approaches.

III. OUR APPROACH

The proposed approach is introduced in this section. Fig. 1
gives the overview of our approach for a better illustration.
The proposed approach carries out superpixel extraction in a
one-pass manner to reduce the computational burden of the
optimization process. To this end, we apply the spatial quanti-
zation, which initially decomposes an image into rectangular



regions purely based on the positions of pixels. In addition
to the spatial information, dominant colors of the image are
obtained by partitioning the color space. The spatial and visual
quantizations are introduced in Section III-A. Then we present
in Section III-B an adaptive sampling mechanism that com-
piles the initial superpixel candidates on the quantized image.
In Section III-C, a graph structure is employed to represent
the relationships between pixels and superpixel candidates.
A process of pixel-superpixel reassignment is described. The
reassignment is carried out via maximum a posteriori (MAP)
estimation where both spatial and visual similarities between
each pixel and superpixel candidates are jointly considered.
Finally in Section III-D, superpixel refinement by merging
small and irregular candidates is performed based on MAP
estimation so that the desired number of high-quality super-
pixels is obtained.

A. Spatial and Visual Quantizations

The goal of image quantization is to yield a set of high-
quality superpixel candidates. The higher the quality of the
candidates, the less the efforts required for post-processing
and further refinement. Nevertheless, the computational cost
of quantization needs to be taken into account so that this
step will not be the computational bottleneck. Thus, spatial
and visual information are jointly used to conduct image
quantization.

Given an image [ as well as a desired number of superpix-
els 9, we firstly perform spatial quantization that uniformly
divides the image I into rectangular regions. Let W and H
denote the width and the height of I, respectively. The width
and the height of each rectangular region are given as follows:

w = W%J and h = U{SJ (1)

Let v, = [u; v;] " be the center of the ith region R;, while
Pr = [z yi] " be the (z,v) position of the kth pixel py, in I.
After spatial quantization, the region R; is composed of the
following pixels:

Ri=A{px ll Pt —vi <l Pr —; Vi #i}. (@

Despite the simplicity, spatial quantization is essential to the
generation of regular superpixels.

In addition to the spatial requirement, the most crucial
criterion for superpixel generation is to ensure the high visual
similarity among pixels within the same superpixel. In many
recent approaches such as SLIC [16], each spatially quantized
region is considered an initial superpixel. These regions cannot
adhere to the boundaries of objects, since the appearance of
pixels is not consistent in the individual regions. To address
this issue, these approaches, including both graph-based and
gradient-based ones, apply iterative processes to recursively
retrieve pixels with similar colors. Aiming at developing an
efficient and effective approach to superpixel extraction, we
avoid adopting an iterative process. Instead, the concept of
color quantization [44], [45] is adopted to effectively retrieve
the quantized color of each pixel.

Let ¢, = [r gr bx] " be the three-dimensional color vector
of pixel p; in the RGB color space. We firstly partition the
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RGB color space into N disjoint color groups, {C,,}»_,. For
efficiency, we uniformly divide each color channel into 6 bins,
leading to N = 0 x 6 x 6 cubes. The value of 8 is empirically
set to 4 in the experiments. For image I, each cube C,, contains
the following pixels

Co =k |l ek —an [[<l ¢k = @m [[,Ym #n}, 3

where q,, and q,, are the centers of cubes C, and C,,,
respectively. Taking input image I into account, we set the
quantized color of cube C,, to

Zpk eCp Ck
Cnl

where |C,| is the number of pixels that belong to color cube
Cp- In (4), the quantized color q,, of cube C, is the mean
color of pixels falling into this cube. After color quantization,
the quantized colors of all pixels of I are attained.

An input image is spatially and visually quantized in the
procedure described above. Unlike many existing methods,
no complex operations like clustering and iterative processing
are required in the stage of quantization of this work. The
complexities of both spatial and visual quantizations grow
linearly with respect to the number of pixels.

an = , forn=1,2,..., N, 4)

B. Adaptive Sampling from Quantized Regions

Our preliminary work [17] analyzes the distribution of
the quantized colors in each spatially quantized rectangle
region. It divides the spatially quantized region into sub-
regions according to the quantized colors, and retrieves the
largest sub-region as a superpixel candidate. In this way, the
number of the superpixel candidates is the same as that of
spatially quantized regions, i.e., 4 in (1). Pixels within the
same superpixel candidate tend to be spatially and visually
similar, since they belong to the same group in both spatial
and color quantizations.

However, our preliminary work [17] neglects the possible
variations among the spatially quantized regions. The homo-
geneous regions often cover pixels of one or few quantized
colors, while the cluttered regions contain pixels of many
quantized colors. Fig. 2 gives an example. The input image of
a castle and its color quantization are shown in Fig. 2(a) and
Fig. 2(b), respectively. The joint spatial and color quantizations
are displayed in Fig. 2(c). One spatially quantized region is
detailed in Fig. 2(d), where different quantized colors are
present. In a clutter region like that in Fig. 2(d) covering
multiple objects or background simultaneously, one superpixel
is insufficient to represent the whole region. This unfavorable
effect will accumulate and lead to segmentation error in the
following step of pixel-superpixel reassignment. In practice,
fewer superpixels of larger sizes are preferable for homoge-
neous regions to have a compact representation, while more
superpixels of smaller sizes are required in cluttered regions
to adhere to complex boundaries.

This work addresses this issue by sampling one or multiple
superpixel candidates from each spatially quantized region R;.
Unlike the prior work [17] where one superpixel candidate is
sampled from each spatially quantized region, this work allows
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(a) (b) (© (d)

Fig. 2. (a) An input image of a castle. (b) The result of color quantization with
N =63 quantized colors, where 8§ = 4. (c) The result of joint spatial and
color quantizations. (d) The quantized colors in a spatially quantized region
which contains the forest and the stone coast.

sampling at most S candidates for each region. To this end,
we set a size threshold

(&)

where w and £ in (1) are the width and the height of the region,
respectively. For each region R;, the pixels of a quantized
color in R; yield a superpixel candidate if the number of these
pixels is larger than 7. Hence, there are at most S superpixel
candidates sampled from R;. The higher the variations in
R, the more the sampled superpixel candidates. Despite the
size threshold, one superpixel candidate is sampled for the
quantized color with the most pixels in each R;. It ensures that
each R; has at least one superpixel candidate. This sampling
process is repeated for all the quantized regions {R;}?_,. The
set of the resultant superpixel candidates {SP,,}M_,, where
M is the number of superpixel candidates with the range,
0 < M < S x 4. The value of S is empirically set. The effect
of setting different values of S is analyzed and discussed in
the experiments.

After sampling, we compute the dominant color and the
center of each superpixel SP,,, as follows:

ZP&GSPm Ck

SPo] ©

Vi =

and
Zpk ESPm, pk

ISPy

where |SP,,| is the size of superpixel SP,,. ¢, and pj, are
the color and the location of pixel py, respectively.

Note that we sample from region R; at most S superpixel
candidates, each of which consists of the pixels that belong
to the same group under both spatial and visual quantizations.
With this procedure of candidate generation, there may exist
pixels in R; that are not covered by any superpixel candidates.
In the cases, we temporarily assign each of these pixels to its
most spatially and visually similar candidate via the measure in
(11), which will be introduced later. It follows that each pixel
in image I is assigned to one particular superpixel candidate.

The current pixel-superpixel assignment is efficiently ob-
tained in the complexity linear to the number of pixels of the
image if the value of S is small enough to be neglected. The
resultant superpixel candidates are of high quality in terms

L, = (7

Fig. 3. During pixel-superpixel reassignment, a pixel p; can be reassigned
to superpixel candidate SP; which covers it or some candidate SP; that is
connected to SP; in G.

of the similarity among pixels belonging to the same candi-
date. However, the current pixel-superpixel assignment has a
problem. Namely, the superpixel candidates do not preserve
object boundaries, but the rectangular spatial quantization. To
address this issue, we perform pixel-superpixel reassignment,
described in the following section.

C. MAP-based Pixel-Superpixel Reassignment

For pixel-superpixel reassignment, the neighborhood rela-
tionships between the superpixel candidates and pixels are
required. To this end, we construct a superpixel adjacency
graph by linking nearby superpixel candidates. Let G = (V, £)
denote the graph. V is the set of the nodes, each of which
corresponds to a superpixel candidate, leading to |V| = M.
An edge e(m,m’) is added if candidates SP,,, and SP,, are
nearby enough. Specifically, the edge set £ = {e(m,m/)|1 <
m,m’ < M} is defined by

1, if |, — £, | < max(w,h),

otherwise,

®)

where ||£,, — £,| is the Euclidean distance between the
centers of candidates SP,, and SP,,,. w and h in (1) are
the width and the height of a spatially quantized rectangle
respectively. Note that the edges defined in (8) may link
spatially disconnected superpixel candidates. These edges are
defined due to the performance consideration. Consider a
spatially quantized region covering highly textured areas of an
image. There will be some spatially disconnected superpixels
with similar appearances. For pixel-superpixel reassignment,
we found that connecting these superpixels via (8) helps
improve the performance.

Note that unlike graph-based methods optimizing over graph
structures, graph G is used to describe the connection relation-
ship between superpixel candidates and pixels. Specifically,
we assume that a pixel can be reassigned to one member
of a superpixel candidate subset. This subset consists of the
superpixel candidate covers that pixel and all the candidates
that are connected to that candidate in graph G. Fig. 3 gives an
example. A pixel p; can be reassigned to superpixel candidate



SP; which covers it or some candidate SP; that is connected
to SP; in the graph G.

To assign each pixel to the most spatially and visually sim-
ilar superpixel, we formulate it as an instance of the maximum
a posteriori (MAP) estimation problem. The degree of con-
sensus of assigning a pixel py, with color ¢ and position py,
to superpixel candidate SP,, is measured by referring to the
posterior probability p(SP.,|pr) for m = 1,2,..., M. Based
on the formula of Bayes’ theorem, the posterior probability
function is derived as follows:

p(spm |pk) X p(pk\SPm)p(SPm), )

where p(pr|SP.,) is the likelihood function representing
the conditional probability of covering pixel p; given su-
perpixel SP,,. p(SP,,) is the prior probability of the su-
perpixel candidate p(SP,,). We use it to encode our prior
knowledge/assumption about whether it is valid for candidate
p(SPm) to cover pixel py.

After sampling superpixel candidates, we use the mean color
v, in (6) and the center position £, in (7) to represent can-
didate SP,,. The likelihood probability function p(py|SP.,)
in (9) is defined by comparing the spatial positions and colors
between pi and SP,, as follows:

Because the spatial and color evidence is independent, the
likelihood probability function in (10) can be rewritten as

Y

where p(pi|€,) and p(cg|v.,) are the spatial and visual
likelihood functions, respectively. To represent the spatial
likelihood, we consider the distance between the positions of
pr. and SP,,, and define it by

P(PEISPm) = p(Prlm)p(ck|Vim),

P(Pk|€m) o< exp (—wl|pr = £ml]). (12)

To avoid the effects of different image resolutions, we normal-
ize py, and £,,, with respect to the image width I and height
H in advance. To compute the color likelihood, we consider
the similarity between the color of p; and the mean color of
SP,. The color likelihood function is designed as

p(ck|vm) x exp (—(1 — w)|ck — viml|)- (13)

The parameter w € [0,1] in (12) and (13) controls relative
importance between the spatial and visual evidences. We will
investigate the effect of w in the experiments.

The prior function p(SP,,) in (9) is used to encode our
prior assumption about pixel-superpixel assignment. Consid-
ering the reassignment of a pixel pg, suppose py is currently
assigned to superpixel candidate SP,, in the procedure of
adaptive sampling. We assume that pixel py can only be
assigned to either SP,, or one of the other candidates
connecting to SP, in graph G. It follows that we have

1, if m=myg,

0, otherwise.

else if e(m, ;) = 1 in (8), (14)
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Fig. 4. The results after pixel-superpixel reassignment. It can be observed that
small objects with large intra-object variations or local regions with dramatic
appearance changes often cause fragments i.e., irregular and less compact
superpixels of small sizes.

With the likelihood and prior functions defined in (11) and
(14) respectively, the most plausible superpixel SP* for pixel
Pk 1s obtained by maximizing the posterior probability i.e.,

SP* = arg glgxp(pMS’Pm)p(S”Pm). (15)

The process of pixel-superpixel reassignment via (15) is
repeated for every pixel. This process can be efficiently done
by taking advantage of the sparsity of the prior probability
in (14). Once pixel-superpixel reassignment is completed, the
updated superpixels are obtained.

D. Superpixel Refinement

The desired number of superpixels is J. However, the
current number of superpixels M is between § and S¢§ due
to the adaptive sampling of superpixel candidates. Besides,
we also observe that small objects with large intra-object
variations or local regions with dramatic appearance changes
often lead to a number of small superpixels representing the
unnecessary details. See Fig. 4 for an example. Furthermore,
these superpixels typically become irregular and not compact,
hence violating the desirable property of high-quality super-
pixels. To solve the problem, the refinement process is applied
to superpixels so that small superpixels are merged into their
spatially connected and visually similar superpixels.

To this end, we modify the superpixel adjacency graph G
by linking only superpixels that are spatially connected. Each
edge e(m,m’) of G in (8) is reset to

1
e(m,m') = {07

for 1 <m,m’ < M.

Similar to pixel-superpixel reassignment, merging a small
superpixel SP; into another superpixel SP; is carried out
by using MAP estimation with posterior probability defined
below

if SP,, and SP,,  are connected,

16
otherwise, (16)

p(S'Pi|S7)j) X p(SPﬂS'Pi)p(S'Pi), (17)

where p(SP;|SP;) and p(SP;) are the likelihood and the
prior functions, respectively.

Unlike pixel-superpixel reassignment, the likelihood func-
tion for merging superpixels considers only the visual sim-
ilarity, since the requirement of spatial connection will be
enforced in the prior function. Specifically, the likelihood is
given as follows

P(SP;|SPi) o exp (=[lvi = v,]]), (18)
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Fig. 5. The performance of our approach in BR with various value combinations of S and w when the number of the generated superpixels is set to (a) 25,
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Fig. 6. The performance of our approach in UE with various value combinations of S and w when the number of the generated superpixels is set to (a) 25,
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Fig. 7. The performance of our approach in ASA with various value combinations of .S and w when the number of the generated superpixels is set to (a)

25, (b) 50, (c) 100, (d) 250, (e) 500, and (f) 1000.

where v; and v; are the mean colors of superpixels SP; and
SP;, respectively. The prior function is used to ensure the
spatial connection of two superpixels to be merged, namely

p(SP) o d b

0’

With the likelihood in (18) and the prior in (19), the
posterior in (17) can be estimated. For merging superpixels, we
retrieve the superpixel of the smallest area, seek its spatially
connected and visually similar superpixel that maximizes the
posterior in (17), and merge these two superpixels. We also
compute the mean color of the newly generated superpixel,
and update the graph in (16) accordingly. The procedure of
superpixel merging is repeated until the desired number of
superpixels is obtained. As shown in the experiments, the
resultant superpixels are regular, compact, and of high quality.

if e(,7) =1 in (16),
otherwise.

19)

IV. EXPERIMENTAL RESULTS

The performance of our approach is evaluated in this sec-
tion. We first describe the used performance measures and the
adopted datasets for evaluation. Then, we discuss how to set
the values of the parameters in the proposed approach. Finally,
our approach is compared with the state-of-the-art approaches
to superpixel extraction in terms of accuracy and efficiency.
The comparison results are reported and analyzed. In addition
to the quantitative results, the generated superpixels by various
approaches on some examples are shown and discussed.

A. Dataset and Evaluation Metrics

Our approach is evaluated on the Berkeley Segmentation
Dataset and Benchmark (BSDS500) [18], which contains 500
images with the manually labeled ground truth and the bench-
marking code. These images include landscapes, animals,
humans, buildings, and artifacts captured in outdoor scenes.
Each image is manually segmented by at least three people.
The human-marked boundaries are treated as the ground truth.
During evaluation, the estimated boundaries of superpixels are
compared with each of the available ground truth of each
image. The average performance is reported. We adopted
three evaluation metrics for measuring the performance of the
generated superpixels, including boundary recall (BR), under-
segmentation error (UE) [16], and achievable segmentation
accuracy (ASA) [25]. All the three metrics are commonly
used in the literature of superpixel extraction. Among the
three metrics, BR represents the correctness of adhering to
the true boundaries of objects. Higher BR indicates that the
extracted superpixels better detect the boundaries of objects.
UE measures the degree of the superpixel overlapping with
multiple objects. It is the percentage of pixels that leak from
the ground truth boundaries. Thus, low UE implies better
adherence to the boundaries of objects. ASA is computed by
matching the label of each superpixel with respect to the labels
of ground truth, and evaluates the highest achievable object
segmentation accuracy. Similar to BR, superpixels with high
ASA often give better object representation of the image. In
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in (a) boundary recall (BR), (b) undersegmentation error (UE), and (c) achievable segmentation accuracy (ASA) is evaluated on the BSDS500 dataset.

addition to the effectiveness, the efficiency of our approach in
running time is evaluated and compared with the state-of-the-
art methods.

The second dataset for evaluation is the Stanford back-
ground dataset (SBD) [19], which contains 715 images se-
lected from existing datasets. The resolutions of the images
are approximately 320 x 240 pixels. Each image covers at
least one foreground object. Those objects are present in
different outdoor scenes including landscapes, animals, and
streets. Compared to the BSDS500 dataset, the SBD dataset
contains more complex scenes with multiple foreground ob-
jects, and hence is more challenging for superpixel evaluation.
As suggested in [46], the average miss rate (AMR), average
undersegmentation error (AUE), and average unexplained vari-
ation (AUV) are used as the evaluation metrics for superpixel
extraction. Lower AMR, AUE, and AUV represent better
performance.

B. Parameter Selection

In our approach, the values of three parameters should be
set in advance. The first one is 6 used in color quantization. It
determines the number of the quantized colors. The second
one is the maximum number of the adaptive sampling of
superpixel candidates S in each spatially quantized region.
The third one is the weight w in (12) and (13). It controls the
relative importance of the location information to the color
information. As shown in our preliminary work [17], € is not
critical to the performance once the number of the quantized
colors is sufficient. Thus unless further specified, we set § = 4,
which results in 64 = 6% quantized colors, in the experiments.
In the following, we investigate the effect on the performance
with various values of S and w on the BSDS500 dataset. The
value range of w is evaluated between 1 and 10, while that of w
is evaluated between 0 and 1. Fig. 5, Fig. 6, and Fig. 7 display
the average performances in BR, UE and ASA respectively
with different value combinations of S and w. The number
of superpixels is crucial to these performance measures, so in
each figure, the performances with different numbers of the
generated superpixels are reported.

As shown in Fig. 5(a) to 5(f), when the number of the
generated superpixels increases, the performance in BR is
improved significantly. With the increasing values of w, the BR

values decrease. Because large w values imply to preserve the
initial spatial regions in the grid as superpixels, the resultant
superpixels less adhere to the boundaries of the objects. By
fixing the values of w and the number of superpixels, the BR
values will increase when the value of S increases. When S
becomes larger, the number of initial superpixel candidates
will increase accordingly. More superpixel candidates can
better preserve the details of both objects and background.
As a result, the BR values will increase.

The results in UE with respect to w and S are shown
in Fig. 6. When increasing the value of w, the error in
UE also increases, because the shapes of superpixels tend
to become more rectangular. With the increasing number of
superpixels, the errors in UE decrease, which shows that more
superpixels help prevent the superpixels from overlapping
between multiple objects. Also shown in Fig. 6, larger S
achieves lower UE values, because larger S can provide better
boundary segmentation results. Finally, the ASA results are
shown in Fig. 7. Similar to the observations of BR in Fig. 5, a
small w value leads to better performance in ASA with various
numbers of the superpixels. When the values of S increase,
the ASA values also increase.

To sum up, increasing the number of the generated super-
pixels will improve the performances in BR, UE, and ASA,
but will make the running time longer and have a less compact
image representation. In general, a large .S value accompanied
by a small w value results in better performances in BR, UE,
and ASA simultaneously, though it also makes the yielded
superpixels irregular and less compact. We set .S to 10 and w
to 0.01 in the rest of the experiments.

C. Effects of MAP-based Pixel-Superpixel Reassignment and
Superpixel Refinement

We conduct the ablation studies where the effects of re-
moving MAP-based pixel-superpixel reassignment (MAP for
short) and/or superpixel refinement (SR for short) from the
proposed USEAQ are measured. The three resultant variants of
USEAQ are denoted by “USEAQ w/o MAP and SR” (without
both MAP and SR), “USEAQ w/o SR” (without SR), and
“USEAQ w/o MAP” (without MAP), respectively. We report
and compare the performance of USEAQ and the three variants
in BR, UE, and ASA in Fig. 8.
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Fig. 9. Performance comparison of the state-of-the-art methods and our
method USEAQ in boundary recall (BR).

As shown in Fig. 8(a), both MAP and SR are essential for
making the resultant superpixels adhere to the true boundaries
of objects since removing each or both of them results in a
drop of the performance in BR. In Fig. 8(b) and Fig. 8(c),
we observe that SR is more important than MAP for the
performance measured in UE and ASA. The main reason is
that skipping SR leads to too many tiny superpixels. The
results in Fig. 8 confirm that both MAP and SR are key
components in the proposed USEAQ.

D. Quantitative Comparisons

We compare our approach USEAQ to 11 real-time or near
real-time, the state-of-the-art approaches to superpixel extrac-
tion, including FH [22], SLIC [16], Turbopixel (TP) [32],
RPS [39], SEEDS [36], LSC [42], M-SLIC [34], DB-
SCAN [40], SCoW [41], ETPS [37], SNIC [35] and our
preliminary approach USEQ [17] on the BSDS500 dataset.
To realize the degree of difficulty of over-segmenting images
in the BSDS500 dataset, we also show the performance of
the spatial quantization grid (BOX) as a baseline. Because
the number of the generated superpixels cannot be specified
directly in FH, we adjust the parameters of FH to get the
desired number of superpixels. For a fair comparison, the
results of all the competing approaches are yielded by using
the codes released by the original authors.

As shown in Fig. 9, USEAQ achieves the best performance
in BR compared to the state-of-the-art approaches and our
preliminary approach USEQ. Except for our method, LCS per-
forms favorably against other completing methods. FH reaches
similar performance in BR to USEQ, M-SLIC, DBSCAN, and
ETPS. It is better than SNIC, SLIC, TP, RPS, SCoW, and
SEEDS. Such results are consistent with those reported in [16],
[36].

USEQ can be considered a special case of USEAQ when
adaptive sampling is turned off. Based on the MAP-based
pixel-superpixel reassignment in USEAQ, small objects with
large intra-object variations can be dealt with multiple sampled
superpixels. Thus, superpixels by USEAQ can more precisely

I I I
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Fig. 10. Performance comparison of the state-of-the-art methods and our
method USEAQ in undersegmentation error (UE).

adhere to the boundaries of objects. Because the quantized
colors of pixels of small objects may be different, sampling
just one superpixel candidate in each spatially quantized
rectangle in USEQ is often insufficient to properly represent
these small objects. Thus, USEAQ has a better generalization
ability compared to USEQ, and consistently achieves higher
BR values than USEQ with different numbers of the generated
superpixels.

As shown in Fig. 10, the top three methods in UE are
LSC, M-SLIC, and USEAQ, respectively. LSC adopts a graph-
based objective function. It well represents the boundaries of
both content-dense and content-sparse regions. M-SLIC also
considers the differences between content-dense and contents-
parse regions. USEAQ achieves this property by adaptive
sampling. Thus, the superpixels generated by these methods
represent small, highly textured regions well. As a result, these
methods achieve lower UE values compared to the remaining
competing approaches. Although FH gives high BR values
as mentioned previously, it has worse performance in UE. It
is because the number and shapes of the superpixels are not
explicitly modeled in FH. Fig. 11 shows the performances in
ASA of all the competing approaches and our approach with
respect to different numbers of superpixels. LSC, M-SLIC,
and USEAQ also give the superior results in ASA.

Let N denote the number of pixels in an image for su-
perpixel extraction. The complexity of the spatial and color
quantizations are O(N), because they are accomplished by ac-
cessing pixels sequentially in one and two passes respectively.
The pixel-superpixel reassignment is performed via the MAP
estimation in (9) once for each pixel. By taking advantage of
the sparsity distribution in the prior function (14), the MAP
estimation for each pixel is completed in constant time. Thus,
the computational cost of pixel-superpixel reassignment for the
whole image grows linearly to the number of pixels. As for
adaptive sampling and superpixel refinement, their complexity
is not higher than O(N). Consequently, the complexity of
USEAQ is O(N).

As for the computational efficiency evaluation, all of the
approaches are executed on a modern PC with an Intel Core
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method USEAQ in achievable segmentation accuracy (ASA).

17 3.40GHz processor and 16G memory. No GPU accelerators
are applied. The programming language we used is C++.
Fig. 12(a) shows the average running time of the top ten
efficient approaches to superpixel extraction, including FH,
SLIC, SEEDS, LSC, M-SLIC, SCoW, ETPS, SNIC, USEQ,
and USEAQ with different numbers of the generated super-
pixels. Our preliminary approach USEQ is the most efficient
compared to the remaining approaches, which reveals the
efficiency of our MAP-based pixel-superpixel reassignment.
USEAQ enables adaptive sampling, which leads to extra
computational cost for taking into account more sampled
superpixels. Nevertheless, the computation time of USEAQ is
still remarkably less than that of other competing approaches.
Although the complexities of SLIC and SEEDS are also
O(N), their iterative procedures performed on superpixel
generation lead to significantly increasing time when the
number of the yielded superpixels increases. Similar to SLIC,
the time complexity of M-SLIC is also O(NV). Because of
the additional computation in the restricted centroidal Voronoi
tessellation, the running time of M-SLIC is longer than that of
SLIC. In comparison, SNIC is a non-iterative variant of SLIC.
It is more efficient than SLIC and M-SLIC. The iterative k-
means clustering used in LSC also increases the computation
time of LSC. Compared to SEEDS, SLIC, M-SLIC and LSC,
SCoW do not use an iterative process and ETPS can achieve
the convergence with a few iterations. Thus, the running time
of SCoW and ETPS is significantly less than that of SEEDS,
SLIC, M-SLIC and LSC.

To investigate the effect of image resolutions, we collect
images with five different resolutions from 640 x 360 (360p)
to 2560x 1440 (1440p) and generate 2,500 superpixels for each
image. When the image resolutions increase, the computation
time of FH, SEEDS, SLIC, LSC, M-SLIC, SCoW, ETPS,
and SNIC significantly increases compared to that of USEQ,
and USEAQ as shown in Fig. 12(b). Because of the efficient
computation of the MAP-based reassignment in both the
pixel and superpixel levels, the computation time of USEQ,
and USEAQ moderately increases with respect to the image
resolutions. They are considerably faster than the state-of-the-

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING

TABLE I
SUMMARY OF SEVERAL METHODS FOR SUPERPIXEL EXTRACTION.
Approaches | # of SP | Compactness | Iteration Complexity

FH No No No O(NlogN)
SLIC Yes Yes Yes O(N)
TP Yes No No O(N)

RPS Yes Yes Yes O(NlogN)
SEEDS Yes No Yes O(N)
LSC Yes Yes Yes O(N)
M-SLIC Yes Yes Yes O(N)
DBSCAN Yes Yes No O(N)
SCoW Yes Yes No O(N)
ETPS Yes Yes Yes O(N)
SNIC Yes Yes No O(N)
USEQ Yes Yes No O(N)
USEAQ Yes Yes No O(N)

art approaches.

TABLE 1 reports the computational complexities of the
state-of-the-art methods. We also summarize these methods
by indicating that if the number of superpixels (SP) is con-
trollable, if the compactness of superpixels is achievable,
and if the method is iterative. Here we consider the number
of superpixels in a method controllable if it can be set
explicitly (e.g., giving the desired number of superpixels)
or implicitly (e.g., specifying the parameters regarding the
size of superpixels, which is closely relevant to the number
of superpixels). Except for FH, most methods are able to
control the number of superpixels. The compactness can also
be controlled or automatically adjusted by most methods.
In general, the methods whose computational complexity is
O(N) and without using an iterative process can achieve better
computational efficiency, as shown in Fig. 12.

The second dataset that we adopt is the Stanford back-
ground dataset (SBD) [19]. Following [46], the number of
superpixels is set to 400 for evaluation. Fig. 13 show the
tradeoffs of the performance and the computation cost of the
competing approaches and our approach. The performance
measures used in Fig. 13(a), Fig. 13(b), and Fig. 13(c) are
AMR, AUE, and AUV, respectively. In Fig. 13, approaches
present in the bottom left corners are of high performance
and low computational costs. As shown in Fig. 13(a), the
proposed USEAQ has the lowest AMR compared to the state-
of-the-art approaches. Expect for our approach, ETPS and
LSC outperform other approaches, which is consistent with
the results reported in [46]. Fig. 13(b) shows that ETPS is
superior than the other competing approaches. Nevertheless,
USEAQ remains faster than ETPS and the difference of AUE
between ETPS and USEAQ is 0.0018. M-SLIC achieves the
lowest AUE but requires longer running time. As displayed
in Fig. 13(c), USEAQ and ETPS have similar performance
in AUV by considering both AUV and computational costs
simultaneously. The results demonstrate that our method can
achieve the boundary adherence of foreground objects in
different outdoor scenes of the SBD dataset. It can be also
observed in Fig. 13 that our preliminary work USEQ and the
proposed USEAQ are the most efficient methods among all
other competing ones.

To sum up, the proposed USEAQ is compared with the state-
of-the-art methods for superpixel extraction. For effectiveness,
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USEAQ achieves the best performance in BR and comparable
UE and ASA on the BSDS dataset. By simultaneously consid-
ering the evaluation metrics AMR, AUE, AUV, and processing
time on the SBD dataset, USEAQ performs favorably against
or is comparable to all competing approaches. For efficiency,
USEAQ slightly falls behind its prior work USEQ due to the
extra step for adaptive sampling, which is the key to sub-
stantial performance improvement. Nevertheless, the proposed
USEAQ is remarkably more efficient than the state-of-the-art
methods.

E. Qualitative Comparisons

To gain insight into the quantitative results, Fig. 14 shows
the extracted superpixels on a few images of the BSDS500
dataset by using USEAQ and some of the state-of-the-art ap-
proaches. To consider the results with different numbers of su-
perpixels, each image is segmented into 250/500 superpixels.
Fig. 14(a) gives the results by using our USEAQ. For smooth
image regions, USEAQ can generate regular superpixels. This
property can be observed evidently in the homogeneous or

and (c) average unexplained variation (AUV).

flat background regions in Fig. 14. On the other hand, the
superpixels by USEAQ can precisely adhere to the boundaries
of objects with large intra-object variations or highly textured
background. This property can be found in the objects of most
examples (rows). In contrast, the generated shapes and sizes of
superpixels using FH are very irregular as shown in Fig. 14(c).
SLIC, M-SLIC, TP, RPS, and SCoW generate more regular
superpixels as shown in Fig. 14(d) ~ 14(h), respectively, but
fail to correctly adhere to the complex boundaries of objects.
The results by SEEDS shown in Fig. 14(i) reach a good
compromise between superpixel regularization and boundary
adherence. As shown in Fig. 14(j) ~ 14(m), ETPS, LSC,
DBSCAN, and SNIC yield regular superpixels for smooth
regions and irregular superpixels for cluttered regions. Thus,
the resultant superpixels better adhere to the boundaries of
objects and lead to better quantitative results.

Comparing our approach USEAQ in Fig. 14(a) to the com-
peting approaches, we observe that USEAQ more adaptively
controls the trade-off between superpixel regularization and
boundary adherence conditioned on the regions. In homoge-
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Fig. 14. The extracted superpixels from the BSDS500 dataset by using algorithms (a) USEAQ, (b) USEQ, (c) FH, (d) SLIC, (e) M-SLIC, (f) TP, (g) RPS,
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Fig. 15. The extracted superpixels from the SBD dataset by using algorithms (a) USEAQ, (b) USEQ, (c) FH, (d) SLIC, (e) M-SLIC, (f) TP, (g) RPS, (h)

SCoW, (i) SEEDS, (j) ETPS, (k) LSC, (1) DBSCAN, and (m) SNIC.

neous or flat regions, it puts emphasis on compiling regular
superpixels. In highly textured regions, it focuses on boundary
adherence. This feature is achieved by adaptive sampling, and
makes USEAQ reach better performance than USEQ in the
diverse criteria, including BR, UE, and ASA.

When the number of superpixels is set to 400, Fig. 15 shows
the extracted superpixels on a few images of the SBD dataset
by using USEAQ and some of the state-of-the-art approaches.
Similar to the visualization results on the BSDS500 dataset,
USEAQ can successfully adhere to the boundaries of fore-
ground objects on the SBD datasets by adaptive sampling
from quantized regions of the foreground objects. For smooth
background regions, it merges neighboring regions to generate
more regular superpixels. As a result, USEAQ show better
qualitative results.

TABLE 11
PIXEL ACCURACY (%) BY APPLYING THE MEAN SHIFT ALGORITHM TO
SUPERPIXELS GENERATED BY USEAQ, USEQ, SLIC, SEEDS, ETPS,
AND LSC WITH RESPECT TO TWO DIFFERENT NUMBERS OF SUPERPIXELS

(SP).
# of SPs USEAQ USEQ SLIC SEEDS ETPS LSC
400 34.77 34.59 34.14 34.45 34.49  33.46
1200 39.18 38.71 38.24 38.47 38.07 38.35

V. APPLICATIONS

In this section, we show that the superpixels generated
by the proposed USEAQ facilitate two applications, image
segmentation and supervoxel construction.
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A. Image Segmentation

Decomposing an image into superpixels is considered an
efficient way for image segmentation. We apply mean shift
MS) [30] to merge pixels as well as superpixels gen-
erated by different algorithms, including USEAQ, USEQ,
SLIC, SEEDS, ETPS and LSC, on the SBD dataset for
image segmentation. The mean shift algorithm takes into
account both the color and spatial features extracted in each
pixel/superpixel, and accomplishes image segmentation. Be-
fore applying mean shift, each evaluated method generates
400 and 1200 superpixels, respectively. After applying mean
shift to the generated superpixels by a method for superpixel
extraction, an image is partitioned into P merged superpixels.
The image is composed of () regions in ground truth with
P > . We perform bipartite matching between the merged
superpixels and the image regions in ground truth. For each
region g, let k; be the number of pixels of the corresponding
merged superpixel falling in region ¢ and ¢, be the numger of
2g=1kq

- , L St
The bipartite matching for maximizing the performance can be

established by using the Hungarian algorithm. After bipartite
matching, the used performance measure is the pixel accuracy
(PA) adopted in [47]. TABLE II shows the performance by
applying mean shift to pixels directly and to superpixels

pixels of region ¢. The performance is measured by

generated by different methods. The results show that the
proposed USEAQ can produce appropriate superpixels and
lead to higher pixel accuracy. In addition, a larger number
of superpixels helps improve the pixel accuracy. It is worth
mentioning that applying mean shift directly to pixels gives
lower pixel accuracy (32.82%) than applying it to the gen-
erated superpixels. This phenomenon has been pointed out
in [9]. Fig. 16 displays the segmentation results by applying
mean shift to image pixels and superpixels yielded by different
methods. Mean shift merges neighboring pixels/superpixels to
accomplish image segmentation. The proposed USEAQ shows
better qualitative results on the highly textured regions since
it achieves better boundary adherence of objects.

B. Supervoxel Construction

Supervoxels [48], [49] are the spatiotemporal extension of
superpixels and have been proven to be an effective repre-
sentation for video analysis. To extend USEAQ to supervoxel
extraction, we modify the graph-based hierarchical (GBH) [48]
approach, which is a superior approach to supervoxel extrac-
tion on the supervoxel benchmark [49]. GBH over-segments a
video into small spatiotemporal regions by using the method
in [22]. Then, a hierarchical segmentation scheme is applied
to construct a region graph for supervoxel generation. In our
implementation, we replace the method in [22] by USEAQ to
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(d) & (h) The extracted supervoxels extracted by GBH+USEAQ.

perform the over-segmentation in GBH. The resultant method
is denoted by GBH+USEAQ), and is evaluated on the Xiph.org
dataset [49].

Fig. 17(a) and 17(b) show the comparison of GBH and
GBH+USEAQ in 2-D and 3-D boundary recalls with respect
to different numbers of supervoxels, respectively. As shown
in the results, GBH+USEAQ can better preserve both the 2-D
and 3-D boundaries. Fig. 17(c) and 17(d) report the 2-D and 3-
D undersegmentation errors, respectively. GBH+USEAQ also
achieves lower undersegmentation errors. The results point out
that USEAQ helps reduce the undersegmentation errors in both
2-D and 3-D cases.

Fig. 18 visualizes the extracted supervoxels on two videos
by showing the video frames, the ground truth, and the ex-
tracted supervoxels by GBH and GBH+USEAQ. In Fig. 18(c),
GBH separates the grass of the soccer field and the sky into
several small regions, and cannot distinguish the soccer players
from the backgrounds. In contrast, GBH+USEAQ does not
separate the regions of the grass and the sky into several
supervoxels, and successfully separates the players from the
backgrounds as shown in Fig. 18(d). We attribute this nice
property of USEAQ to its adaptive sampling from quantized
regions. As revealed in Fig. 18(g) and 18(h), GBH+USEAQ
can better segment foreground objects including the people
and traffic cones. Both the quantitative and qualitative results

demonstrate the effectiveness of USEAQ in the application of
supervoxel construction.

VI. CONCLUSIONS

We have presented a novel approach to superpixel extrac-
tion. It firstly performs joint spatial and visual quantizations,
and employs an adaptive sampling algorithm for locating
superpixel candidates on the quantized image. The maximum a
posteriori estimation is applied to carrying out pixel-superpixel
assignment. The resultant superpixels are attained after a
refinement process. The complexity of our approach grows
linearly to the number of pixels and is irrelevant to the number
of the extracted superpixels. These nice properties distinguish
this work from most existing approaches. Compared with the
existing superpixel extraction approaches with their complex-
ity linear to the pixel number, our approach still has the
advantage of remarkably higher efficiency in running time,
since it compiles superpixels in a one-pass fashion and avoids
less efficient iterative procedures.

Our approach is comprehensively evaluated and com-
pared with the state-of-the-art approaches on the benchmark
BSDS500. For accuracy, our approach achieves the perfor-
mance comparable with the state-of-the-art approaches in
terms of boundary recall, undersegmentation error, and achiev-
able segmentation accuracy. For efficiency, it gives highly
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efficient running time in all cases of different resolutions
and various desired numbers of superpixels. In addition to
BSDS500, the SBD dataset is also used for evaluation. Our
approach achieves the superior or comparable performance in
terms of the average miss rate, average undersegmentation
error, average unexplained variation, and running time. In
addition to the quantitative results, we also show and compare
the generated superpixels by different approaches, where it
can be observed that our approach can adaptively control
the trade-off between superpixel regularization and boundary
adherence conditioned on the image regions. Namely, regular
superpixels are produced in homogeneous or flat regions,
while superpixels can still adhere to the boundaries in the
highly textured regions. We also demonstrate that the proposed
USEAQ facilitates two related applications, image segmenta-
tion and supervoxel construction. In the future, we plan to
extend this framework to applications where an effective and
efficient algorithm for superpixel or supervoxel extraction is
appreciated.
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