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Abstract—The recent advances in imaging devices have opened
the opportunity of better solving the tasks of video content
analysis and understanding. Next-generation cameras, such as
the depth or binocular cameras, capture diverse information,
and complement the conventional 2D RGB cameras. Thus, inves-
tigating the yielded multi-modal videos generally facilitates the
accomplishment of related applications. However, the limitations
of the emerging cameras, such as short effective distances,
expensive costs, or long response time, degrade their applicability,
and currently make these devices not online accessible in practical
use. In this work, we provide an alternative scenario to address
this problem, and illustrate it with the task of recognizing human
actions. Specifically, we aim at improving the accuracy of action
recognition in RGB videos with the aid of one additional RGB-
D camera. Since RGB-D cameras, such as Kinect, are typically
not applicable in a surveillance system due to its short effective
distance, we instead offline collect a database, in which not
only the RGB videos but also the depth maps and the skeleton
data of actions are available jointly. The proposed approach can
adapt the inter-database variations, and activate the borrowing
of visual knowledge across different video modalities. Each action
to be recognized in RGB representation is then augmented with
the borrowed depth and skeleton features. Our approach is
comprehensively evaluated on five benchmark datasets of action
recognition. The promising results manifest that the borrowed
information leads to remarkable boost in recognition accuracy.

Index Terms—Action recognition, next-generation cameras,
transfer learning, feature borrowing

I. INTRODUCTION

In the past decade, human action recognition had become one
of the most important research topics in video content analysis
and understanding. A vast amount of research effort had
been made to establish representative benchmarks and propose
effective recognition schemes. Despite the great effort, action
recognition in general is still very challenging, and most action
recognition systems suffer from the difficulties caused by large
intra-class variations [1]. Although designing more powerful
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features from RGB videos has gained significant progress,
the information captured by conventional RGB cameras is
insufficient to account for various types of the unfavorable
variations, such as those caused by mutual or self-occlusion,
camera perspective settings, and inter-personal differences.

Most video processing techniques are highly adapted to
the imaging devices. We are aware of the recent advances
in imaging devices, such as the RGB-D camera Microsoft
Kinect [2], the binocular camera FUJIFILM FinePix Real
3D [3], the infrared camera FLIR T620 [4], and the lightfield
camera Lytro [5]. The multi-modal videos they record give
rich and diverse information. Thus, there has been a strong
demand for content analysis techniques that leverage these
cameras to better solve increasingly complex video processing
tasks including action recognition, and even to initiate new
applications. However, these cameras have their respective
restrictions. For instance, Kinect is with a short range of
effective distance from 1.2 to 3.5 meters, and the emerging
cameras are often relatively expensive to conventional RGB
cameras. The restrictions hinder their applicability, and may
make these devices not online accessible in practical use.

In this work, we propose an alternative scenario to address
the foregoing problem, and focus on boosting the performance
of the underlying applications by jointly using a conventional
2D RGB camera and one additional emerging camera, even if
the latter is not online available. We illustrate this scenario with
the application to recognizing human actions, a fundamental
topic in video processing.

As pointed out in [6], [7], the depth maps taken by an RGB-
D camera as well as the inferred skeleton data of human actions
are very helpful toward more accurate action recognition.
However, most RGB-D cameras, such as Kinect, are not
applicable in video surveillance systems due to the short
effective distance. We instead use Kinect to offline collect
an auxiliary, multi-modal database that contains entries in
form of triplets: the RGB videos as well as the depth maps
and the skeleton structures of action instances. Our goal is to
improve the performance of recognizing actions taken by a 2D
RGB camera by leveraging the knowledge borrowed from the
auxiliary database. More specifically, the proposed approach
considers the action to be recognized as a query to the auxiliary
database, and attempts to retrieve the corresponding depth map
and skeleton structure. If it works, it compensates for the online
unavailability of Kinect.

Fig. 1 outlines the framework. The proposed approach to
cross-modal information borrowing is composed of three stages.
At the first stage, our approach attempts to establish the
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Our approach aims at improving action recognition by borrowing information from an auxiliary, offline collected database where multi-modal videos

are available. To this end, it establishes cross-database correspondences, correlates domains of different video modalities, and associates each action instance in
RGB representation with the reconstructed depth and skeleton features. In this manner, our approach provides an alternative way of utilizing new types of

cameras even if they are not online accessible.

correspondences between the RGB data in the target database
and the auxiliary database. It adapts to the variations of the two
databases by formulating the task of data correspondences as
a labeling problem over Markov random fields (MRFs) [8]. In
this way, both the data appearances and the label information
can be simultaneously taken into account, and result in better
cross-database correspondences. The second stage is built upon
the correspondences. We correlate videos of different modalities
by adopting kernel canonical correlation analysis (KCCA) [9],
which projects multi-modal videos in the two databases into a
common space. In that space, the actions in the target database
can then be convexly reconstructed by the nearby entries in the
auxiliary database. At the third stage, we consider the actions
to be recognized as the queries with their reconstructions in
different modalities as returns, the actions are then augmented
with borrowed depth and skeleton features. It follows that
techniques, like early and late fusion, can be adopted to explore
the complementary information carried by the original and the
borrowed features, and lead to performance improvement in
action recognition.

The main contribution of this work is to provide an effective
way of utilizing new types of cameras, and better solve complex
applications even when these cameras are not online available.
The proposed approach is comprehensively evaluated on five
benchmarks of action recognition, each of which is established
for addressing specific issues and contains actions of different
classes. By using the same auxiliary database, our approach
results in remarkable accuracy improvement in each dataset.
It validates the robustness and flexibility of the proposed
approach. Furthermore, our approach is developed in a general
manner, and hence can be applied to other applications in which
multi-modal videos are helpful, such as gesture recognition or
anomaly detection.

II. RELATED WORK

In the section, we review some research topics that are rele-
vant to the proposed framework, including action recognition,
transfer learning, and heterogeneous feature fusion.

A. Action Recognition

Human action recognition has received strong attention in
the fields of computer vision and video processing. Being one

of the most important components in video understanding,
action recognition is essential to widespread applications, such
as surveillance and human-computer interaction. As indicated
in [1], one fundamental difficulty of action recognition is the
large intra-class variations. These variations can result from
both intrinsic and extrinsic factors, such as posture differences
among subjects, clutter background, different camera perspec-
tives, mutual or self occlusions.

To account for intra-class variations, many feature descriptors
have been proposed to better characterize actions. Global
descriptors, e.g., [10], [11], which characterize and encode the
region of an action as a whole, are popular for their simplicity.
For instance, Bobick and Davis [10] extracted the silhouettes
of an action, and recognize the action by analyzing the motions
of the silhouettes. Gorelick et al. [11] represented an action
as a space-time shape and adopted Poisson equation to extract
the space-time features for classification. However, global
descriptors are often sensitive to occlusions and deformations.
On the other hand, local descriptors, especially the bag-of-
words models [12], [13], are widely used recently. Approaches
of this class typically compile histograms of locally quantized
features. However, the geometric structure among local features
in the spatio-temporal space is ignored in these approaches,
possibly resulting in performance degradation.

To address this issue, one of the current research trends in
action recognition is to model the relationships among local
features. For example, Matikainen et al. [14] specified the
geometrical displacements between local features by generating
a frequency lookup table. Prabhaka et al. [15] computed the
causalities between visual words, and included them as parts
of the features. Besides, graphical models, such as factorial
conditional random fields in [16] or hidden Markov model
in [17], have been applied to formulate the spatio-temporal
correlation of local evidences. All the aforementioned methods
recognized actions based on 2D RGB images/videos. Restricted
by the available information, it is still very challenging to
deal with intra-class variations caused by different camera
perspectives or partial occlusions.

Owing to the recent advances in sensor technology, it has
been feasible to capture color as well as depth information of
an action video in real time by RGB-D cameras, e.g., Kinect.
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Research efforts, such as [6], [18], [19], have demonstrated
that depth maps of actions afford informative and invariant
clues to build robust action recognition or pose estimation
systems. Besides, OpenNI library [20] was developed upon
RGB-D cameras, and can identify the positions of key joints
on the human body, i.e., the skeleton. Researches, e.g., [7],
[21], on 3D skeleton representation and correction open
the opportunity of resolving multi-view action recognition.
In [22], Ellis et al. utilized skeletons of human actions to
perform both pre-segmented and online action recognition.
Ashraft et al. [23] suggested to represent an action as a set of
projective depths with respect to planes extracted from mirror
symmetry, and carried out view-invariant action recognition.
The introduction of depth and skeleton information indeed
benefits action recognition. However, the short ranges of the
effective distances make RGB-D cameras inapplicable in many
real world applications, such as surveillance where the installed
cameras are usually distant from the monitored environments.
In our prior work [24], an approach to augmenting additional
depth and skeleton features to a target action was proposed.
In this work, we generalize our approach to dealing with
actions that are not fully covered by an auxiliary dataset,
and comprehensively evaluate it on five benchmarks of action
recognition.

B. Transfer Learning

Transfer learning refers to a knowledge delivering process
from the source domains to the target domain. It aims to
help improve the task in the target domain by leveraging
abundant information in the source domains. The soul of
transfer learning is to identify the domain-specific and the
commonly-shared knowledge in the sources, and transfer the
latter to benefit target task. According to the survey paper [25],
the methods of knowledge transfer can be generally divided
into four categories: transfer by model parameters [26], by
data instances [27], [28], by feature representation [29], and
by relational information [30].

Most of the above-mentioned methods work when the source
and target domains are the same or related. In our case, the
source and the target domains correspond to different video
modalities, and are hence irrelevant. To handle this issue, we
adopt kernel CCA to correlate video data of different modalities,
and uncover a common subspace, upon which knowledge
transfer across modalities is allowed.

C. Heterogeneous Feature Fusion

Two popular strategies to fuse heterogeneous features are
early fusion and late fusion [31]. While the former fuses
information in the level of features, the latter combines the
predictions of the models, each of which is derived with one
or a subset of features.

One representative way of early fusion is multiple kernel
learning (MKL) [32]-[34], which refers to learning a kernel
machine with multiple kernels. Recent research efforts [35],
[36] have shown that fusing feature in the kernel space not only
increases the accuracy but also enhances the interpretability
of the yielded classifiers. In our case, we could represent data
described by each type of the original and the borrowed features

as a kernel matrix. MKL will learn a kernel machine and derive
the kernel weights. Namely, the heterogeneous features are
combined in the domain of kernel matrices.

In late fusion, one additional classifier or regressor is
typically employed to merge the confidence scores of the
models separately constructed from different features. Late
fusion, e.g., [30], [31], is relatively easy to implement, but
still shows effectiveness in practice. We apply both one
early fusion method and one late fusion method to fuse the
multi-modal features in our case. The two methods achieve
similar performance in the aspect of accuracy. However, higher
computational cost is required in the early fusion method for
searching the optimal values of the hyperparameters in the
kernel functions.

III. PROBLEM STATEMENT

We focus on recognizing actions of C' classes. Suppose that
we are given a training set, D = {(x;, ;) },, where x; € X
and y; € Y = {1,2,...,C} are the RGB feature representation
and the class label of the ¢th action, respectively. To enhance
the performance of action recognition, an auxiliary dataset,
A = {(%;,d;,8;)}£,, taken by Kinect is also provided, where
x;, € X,d; € D, and §; € S are the RGB, depth, and skeleton
feature representations of the 4th instance, respectively. Note
that auxiliary dataset A is unlabeled, and we use tildes to mark
data in A for the sake of clearness. We will utilize information
in D and A, and derive a better classifier for predicting test
data that are similarly distributed to D. More specifically, we
consider actions in D as queries to A, and focus on retrieving
their corresponding depth maps and skeleton data. That is, we
aim at leveraging the RGB-D camera Kinect even though it is
not online accessible in the application.

The auxiliary dataset A we collected was compiled to cover
the action classes of interest in advance, i.e., )/, in this case.
Establishing A beforehand is reasonable, since we often focus
on detecting some predefined types of actions in most action
recognition applications. However, it is not necessary that the
action classes in D and that in A are the same. For instance, D
in turn is one of the adopted benchmarks of action recognition
in our experiments, and the action classes in A are the union of
those in all the benchmarks. In addition, D and A are allowed
to be established in different ways, so large inter-database
variations may be caused.

IV. THE PROPOSED APPROACH

Our approach improves action recognition by augmenting
each action, initially in RGB feature presentation, with the
estimated depth and skeleton features. It is composed of three
components, each of which is described in turn as follows.

A. Cross-database Correspondences

The goal of this stage is to correlate D and A, the two
independently collected datasets, by exploring their common
video modality, RGB. Specifically, we want to associate each
x; in D with a plausible sample X, in A. A naive way
is the nearest neighbor search. However, it ignores the inter-
database variations, and may result in sub-optimal performance.
To address this issue, we exploit the data labels in D, and
incorporate discriminant analysis to guide the construction of



Fig. 2. The illustration figure of our MRF model. We construct a state node
and an observation node for each action x; € D, and connect the two nodes.
The state node of x; is further connected to the state nodes of the £ nearest
neighbors of x;, i.e., Xq, Xp, and x. here. Two types of energy functions, 1»
and ¢, defined over the edges are considered.

cross-database correspondences. We cast this task as a labeling
problem over Markov random fields (MRFs), in which the
mutual verification among correspondences is activated. Hence,
the borrowed multi-modal features are more discriminative.

In the construction of the MRFs model with graph G =
(V,€), each X; in A corresponds to a state, while each x; in
D 1is associated with a variable node v;. There are total M
states and N variable nodes. Let £ = {1,2,..., M} denote the
set of the states. Each node v; € V takes a value from L. In
this way, v; determines the correspondence of x; in A, i.e.,
{x; € D,x,, € A}. An undirected edge e = (v;,v;) is added
into £ if x; is one of the £ nearest neighbors of x;. Namely,
|£] = M, |V| = N, and {N/2 < || < {N. Here we use
Euclidean distance for the nearest neighbors search. Suppose
the average number of training data per class is n. The value of
¢ is empirically set as [y/n] here. MRFs model the probability
distribution over each possible labeling V' = [v; - --vy] € LN
in form of

1
P(V) = exp (—E(V)), 1)
where partition function Z for normalization is defined as
Z= > exp(—E(V")). 2)
vieLN

MREFs allow the flexibility of designing proper energy function
E according to our prior knowledge about the problem.
In this work, we consider the following energy function:

EWV)=) o)+ Y e, 3)
v; €V (vi,v5)€EE

where the unary function 1 and the pairwise function ¢ are
respectively defined as

X; — Xy, ||, if X,;, € kNNs of x; in A,
s {” wi )
00, otherwise,
Ml%o, = %ol if v =y
Vi, Vj) = i 3 . 5
A J) {_)‘2||Xvi — X, I, otherwise, )

where kNNs denote the k nearest neighbors. k, A1, and A
are three positive constants. Their values are determined by
cross validation in the experiments. An illustration figure of
our MRF model is shown in Fig. 2.
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The designed unary function in (4) prefers a high degree
of similarity between x; and X,,, and hence ensures the
appearance compatibility of each correspondence. The pairwise
function in (5) enforces class-consistent labeling. That is, X,,
and x,, are required to be similar to each other if and only if
x; and x; are of the same class.

After applying graph cut [37] to minimizing the energy in
(3), the most plausible configuration V' is obtained. It follows
that the N cross-database correspondences, {(x;, X, )} ,, are
established with 7; < v;.

It is worth mentioning that the labels of training actions
are taken into account in the MRF model. The corresponding
actions in A of the actions in D of the same class tend to be
similar, and to be dissimilar otherwise. It implies that more
discriminant depth and skeleton features can be borrowed in
the successive stages.

B. Cross-modal Feature Association

At the stage, we aim to augment each training action in
D and each testing action with additional depth and skeleton
features. Based upon the one-to-one modal mapping in A,
the correspondences {(x;,X,,)}, established above can be
propagated across video modalities, i.e., {(x;,d,,)}Y , and
{(xi,8x,) }}¥,. Yet, these correspondences are valid only for
training data in D, and are not available for testing data. To
overcome this problem, we adopt kernel canonical correlation
analysis (KCCA) to correlate data of two different domains,
RGB X and skeleton S, via {(x; € X,8,, € S)}¥,.

Let ¢ : X — F, denote the feature map, which transforms
data from domain X to space J,. Similarly, we have :8—
Fs. Via ¢ and é, data of the two domains are mapped to
high-dimensional Hilbert spaces, i.e.,

x; — d(x;) and §; — ¢(§;), fori=1,2,...N. (6)

KCCA seeks a pair of projections (u,v) to uncover a
common space, in which the correlation between projected
data {u" ¢(x;)} and {v' ¢(3,,)} is maximized. It has been
proven in [38] that the projections lie in the span of data, i.e.,

N N
u=> o(x;) and v=> Bi¢(s). (]
=1

i=1

In KCCA, the optimal projections (u*,v*), parameterized by
(o =laj---ay]",B8" =[B;-By]"), are given by

.

(a",3") = argmax ——2 BB g
*P\JaTK2a BT K23

where K, = [¢(x;) 6(x;)] € RNV, 9)

Ky = [6(3,)  ¢(5x,)] € RV*N, (10)

It can be verified that the optimal (a*,3") in (8) can
be obtained by solving a generalized eigenvalue problem.
Furthermore, the formulation of KCCA can be generalized
to uncover multidimensional projections, i.e., U = [u; - - - u,]
and V' = [vy - - - v,]. In implementation, we use the RBF kernel
functions for implicitly computing the inner products in (9)
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and (10). Namely,

_ o ~x.2
= ¢(Xi)T¢(xj) = exp(w) and (11)

x

Ko (i, 7)
~ ~ —|Is v—~ﬂ-,. 2
Ky(i,j) = 6(3r.) " d(8x,) = exp (”5”725”

Os

), (12)

where o, and o are positive constants. As suggested in [39],

we set o, as the mean of the pairwise distances among data
{x;}}¥,. The same way is applied to determining o.

With U and V, we first project all the data under skeleton
representation in A, i.e., {V si} 2. For an input action x,
which is either a training or a testing sample, we project x
by U "Tx, and retrieve its m nearest skeleton samples. Without
loss of generality, we assume that the retrieved samples are
{V'T8;}™ . The borrowed skeleton feature s can be generated
by minimizing the square reconstruction error, and is a convex
combination of the m retrieved samples. That is,

m
S = § YiSis
=1

where the coefficients {;}7

m

U % =Y 7V Ts?
i=1

st. v >0fori=1,2,...,m,

Z%‘ =1L
i=1

The constrained least square problem in (14) can be efficiently
solved by using the algorithm suggested in [40]. We tune the
value of m via cross validation. The optimal range of m is
1 ~ 5 in most of our experiments.

The same procedure is repeated for correlating modalities
RGB X and depth map D, and the depth map, d, of x is
similarly retrieved. Action x is then augmented with two
additional features borrowed from auxiliary database A:

13)
" , are determined by solving

min (14)

{7z,
(15)

(16)

x — (x,d,s). (17)

The strategy is applied to each sample in the target database

D It follows that the augmented dataset is constructed, i.e.,

= {(xi,di,si) Ly

Flg. 3 gives an example of the feature augmentation. Fig. 3(a)
shows the action to be recognized, the query. The top three
retrieved depth maps and the skeleton structures, i.e., those with
largest reconstruction coefficients in (13), are shown in Fig. 3(c)
and Fig. 3(d), respectively. We also give the corresponding
RGB videos of the three depth maps in Fig. 3(b) for visually
assessing the similarity between the query and the returns.

C. Recognition with The Aid of The Augmented Features

By treating actions in the target database as queries to the
auxiliary database, their corresponding depth maps and skeleton
structures are retrieved by the aforementioned procedure. The
proposed approach implements the principle of query expansion
in the sense that the seed query is reformulated and expanded

to improve the performance of the subsequent applications.

Unlike most previous approaches to query expansion, ours

1st

2nd

(a)

i

|
’

(b) (d)

3rd

l
I
u

Fig. 3. Feature augmentation. (a) An action in the target database. (c) The
top three retrieved depth maps. (b) The corresponding RGB videos of the
depth maps. (d) The top three retrieved skeleton structures.

carries out the feature expansion across video modalities
captured by different types of cameras. It results in more
complementary information that can be leveraged to facilitate
the accomplishment of action recognition.

The training data have been expanded from D to D’. Three
video modalities of each action are available at the same time.
Early fusion or late fusion can be adopted for combining the
three heterogeneous features to achieve better performance. We
have implemented both the two fusion strategies, and describe
them in the following.

1) Multiple Kernel Learning for Early Fusion

We compile an kernel matrix for actions in each of the
three image modalities, and adopt SimpleMKL [33], one of the
state-of-the-art MKL packages, to learn an SVM classifier with
multiple kernels. In this way, the three heterogeneous features
are fused in the domain of kernel matrices.

2) Top-level Logistic Regression for Late Fusion

We learn an SVM classifier with probability estimation for
data in each modality, and concatenate the outputs of all the
SVM classifiers. A top level Lo-regularized logistic regressor is
derived to work on the concatenated vectors for feature fusion.
In this manner, features are combined in the classifier level.

D. On Predicting A Test Action

Given a test action x, we first augment it with the borrowed
depth and skeleton features via (17). Then, either early fusion
or later fusion can be applied to completing the prediction.

Testing with the benchmarks of action recognition, the
performances of early fusion and late fusion are quite similar.
Multiple kernel learning is less efficient owing to jointly tuning
the hyperparameters in the kernel functions. Thus, we choose
late fusion, and will report quantitative results by late fusion
in all the experiments.

V. VIDEO FEATURE REPRESENTATION

In the section, we describe the adopted features for char-
acterizing actions in RGB videos, depth maps, and skeleton
structures, respectively.



A. Features for RGB Videos

We implement two state-of-the-art methods to extract robust
RGB features from action videos that contain static background
and dynamic background respectively.

For action videos with static background, we preprocess
each video as follows. First, we apply the video inpainting
technique [41] to compute the background images from a
collection of sample videos. Then, we take the acquired
background images as the mask, and adopt a background
subtraction algorithm [42] to segment the foreground region
in each video frame. Accordingly, we can precisely compute
the space-time volume (STV) features from the region of
interest without worrying about the cluttered background. In
our implementation, we scale down a given action video to
the resolution 48 x 64 x ¢, where ¢ is the number of frames
in the video. The 3D-HOG (histogram of oriented gradients)
descriptor [43] is applied to extract features both in a space-
time volume and its horizontal mirror for against reflection. In
more detail, we use 16x16x16 pixel blocks, each of which is
further divided into 2x2x2 cells. Five hundred prototypes are
derived to build up the embedding space. It leads to a compact
representation for actions in RGB videos. In our experiments,
the RGB features are used to describe actions in IXMAS,
13DPost, and UIUC1 datasets.

We adopt the robust method proposed in [44] to extract RGB
features for action videos with dynamic background. In [44],
dense points are sampled from each frame, and are tracked
based on displacement information from a dense optical flow
field. Refer to [44] for the details of implementation. In our
experiments, the RGB features are used to describe actions in
UCF-CIL and UCF human action datasets.

B. Features for Depth Maps

We are motivated by the good performance reported in [45],
and use the Spatio-temporal Local Binary Pattern (STLBP)
as the feature representation of depth maps. The STLBP is
developed to model the variation of motion and appearance
based on concatenated LBP histograms. In our implementation,
we first compute the LBP histograms of each depth map, and
then extract the co-occurrence features from neighboring points
on the three orthogonal planes. Refer to [45] for the details of
implementation.

C. Features for Skeleton Structures

As for skeleton features, we employ the Fourier Temporal
Pyramid [21] to represent the temporal dynamics of each 3D
joint of a human body. Computing the temporal dynamics
involves the following steps: First, pairwise relative position
features are extracted for each joint. On the one hand, enumerat-
ing the difference between all the joint pairs yields a redundant
representation, which increases discriminative power because
actions are generally interpreted by considering contexts. On
the other hand, some joints in the frame could be outliers.
Thus, we perform PCA on the skeletal structures of all training
frames to learn a compact representation which is more robust
to noise. Then, by tracking the changes of feature values, each
element of the representation can be considered as a set of time
series data. For learning a representation which is insensitive
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to temporal misalignment, we use Wang et al.’s approach [21]
to derive the Fourier Temporal Pyramid features to capture the
temporal structure of an individual observation. In our current
implementation, we use a three-level Fourier temporal pyramid
with 1/4 length of each segment as low-frequency coefficients.

VI. EXPERIMENTAL RESULTS

To test the effectiveness of our approach, we present the
performance of our approach to action recognition and compare
it with other state-of-the-art methods. In Section VI-A, we shall
describe the five used benchmarks of action recognition as well
as the auxiliary, multi-modal database that we collected. The
adopted baselines for performance comparison are introduced
in Section VI-B. For performance evaluation, we first consider
the cases where the target actions are covered by the auxiliary
dataset, and show both the quantitative and qualitative results
of our approach. Finally, we also consider the cases where
the target actions are only partially covered by the auxiliary
dataset, and discuss the obtained experimental results.

A. Action Recognition Benchmarks and Auxiliary Database

Five benchmarks of action recognition, including IX-
MAS [46], i3DPost [47], UIUC1 [48], UCF sports [49], and
UCEF CIL [50], are adopted in performance evaluation. They all
contain RGB action videos captured by stationary camcorders.
Since our method performs visual knowledge borrowing across
distinct data modalities, we use Microsoft Kinect to build up
an auxiliary, multi-modal action database. This three-modal
dataset will serve as the common auxiliary database in all the
experiments on the five benchmarks. Since the five benchmarks
were designed for addressing specific issues and were compiled
in different environment, not only the performance gain of
feature borrowing but also the generalization of our approach
are jointly assessed in this experiment setup.

The auxiliary dataset we collected as well as the five adopted
benchmarks are described as follows.

« Auxiliary Dataset: We used Kinect to collect this dataset,
so the RGB frames, the depth maps and the corresponding
skeletons of each action sequence are available simultane-
ously. The auxiliary dataset is composed of 1600 action
sequences of 40 distinct action classes. Total 10 actors
were employed in the construction of the dataset. Each
of them performed all the 40 classes of actions to cover
all the action categories in the first three benchmarks
(IXMAS, i3DPost, and UIUC1), and partially cover action
categories in the last two benchmarks (UCF sports and
UCF CIL). Each action was recorded by two cameras,
respectively located with view angles of 0° and 45°.
Besides, we mirrored each recorded action for against
reflection. Fig. 4 shows an action example from each
category of the dataset. The example actions in the top
two rows were taken by the camera with view angle of
0°, while the rest were by the camera with view angle
of 45°.

o IXMAS: The IXAMS (INRIA XMAS Motion Acquisition
Sequences) dataset [46] is composed of 12 action classes.
They are: check watch, cross arms, scratch head, sit down,
get up, turn around, walk, wave, punch, kick, point and
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pick up. Each action was performed by 10 different actors
for 3 times. All actions were recorded by 5 cameras with
different viewing angles. The foreground mask used to
locate a human body was provided in the dataset. Note that
we conducted the comparisons on action videos captured
by camera 1, 2 and 3 in the IXMAS dataset, since these
videos were taken with the view angles close to either
0°, 45°, or —45°. In addition, these action sequences
have been used in the experiments conducted by other
state-of-the-art methods, e.g., [S1]-[53].

o i3DPost: The i3DPost Multi-view Human Action Data-
set [47] contains 96 high-resolution video sequences of
12 action types performed by 8 actors. These actions were
recorded by multiple cameras with 8 different viewpoints.
Each of these cameras was arranged to have 45 ° difference
with its direct neighbors so that a full 360° coverage
can be achieved. The actions collected in this dataset
include ten daily activities: walk, run, jump-forward, pick-
up, wave-right-hand, jump-in-place, sit, fall, walk-sit, run-
Jjump-walk and two human interactions: handshake and
pull. The studio was covered by blue background. Thus,
the foreground mask used to characterize a human’s body
can be extracted by jointly using video inpainting [41] and
the background subtraction technique [42]. For comparing
with other state-of-the-art methods, we followed the
evaluation protocols suggested in [54], [55], in which total
eight daily activities and three camera settings, include
two single-view settings (0 ° and 45 °, respectively), and
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biak
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Fig. 4. The auxiliary dataset. One example comes from each of the 40 action classes. The examples in the top two rows were taken by the camera with view
angle of 0°, while the rest were by the camera with view angle of 45 °.

their combination, were adopted in the experiments.
UIUC1: The UIUCI human activity dataset [48] is
composed of 532 high resolution sequences of 14 kinds
of activities performed by 8 actors. Each actor performed
each activity 5 times. The activities performed in this
dataset are Walk, Run, Jump-upward, Wave, Jumping-jacks,
Hand-clap, Jump-from-sit-up, Raise-one-hand, Stretch-out,
Turn-around, Sit-to-stand, Crawl, Push-up and Stand-to-
sit. The foreground mask used to capture a human body
is provided in the dataset.

UCF sports: The UCF sports action dataset is composed
of 150 video sequences which are collected from the
Internet. It contains various sports actions. The collected
actions include swinging on the pommel, diving, kick-
ing, weight-lifting, horse-riding, running, skateboarding,
swinging-at the high bar, golf swinging, and walking. The
action videos were captured by different camera angles
and of various resolutions. In addition, these actions were
performed by different players. It means that large intra-
class variations present in this dataset.

UCF CIL: The UCF CIL dataset consists of 56 sequences
of 8 actions, including ballet fouettes, golf swing, push-up
exercise, ballet spin, one-handed tennis backhand stroke,
two-handed tennis backhand stroke, tennis-serve, tennis
forehand stroke. These action sequences were performed
by different human subjects, and were taken by different
cameras with diverse viewpoints. The ground truth of the
skeletons is given in this dataset.
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TABLE 1
RECOGNITION RATES (%) OF DIFFERENT METHODS ON THE IXMAS DATASET.

Method Ours RGB Bor-DEP Bor-SKE RGB+SDA INN-Bor [52] [53]
Accuracy (%) 91.6 89.4 85.3 84.8 90.0 78.8 87.7 81.3
TABLE II
RECOGNITION RATES (%) OF DIFFERENT METHODS ON THE 13DPOST DATASET.
Method Ours RGB Bor-DEP Bor-SKE RGB+SDA INN-Bor [54]
0° 95.2 86.9 88.1 80.9 76.8 72.6 71.5
Accuracy (%) 45° 96.4 91.6 83.3 84.5 85.3 71.3 84.9
0°u4s5° 94.7 85.1 88.7 86.3 87.5 80.9 84.9
TABLE III
RECOGNITION RATES (%) OF DIFFERENT METHODS ON THE UIUC1 DATASET.
Method Ours RGB Bor-DEP Bor-SKE RGB+SDA INN-Bor [48] [44] [56]
Accuracy (%) 99.4 94.9 87.4 88.2 95.4 88.5 98.3 98.4 99.6

B. Baselines

For performance analysis and comparison, we implemented
the following five baselines, each of which is denoted below
in bold and in abbreviation:

o RGB: This baseline simply ignores the information from
the auxiliary database. It extracts the RGB features,
described in Section V, for the actions in the target
database (one of the five adopted benchmarks), and
employs an SVM classifier to make the prediction. Note
that for experiments on IXMAS, i3DPost, and UIUCI
datasets, the 3D-HOG descriptor [43] is used to extract
RGB features. For the experiments on UCF sports and
UCF CIL datasets, the RGB features are computed by
the method proposed in [44]. We can examine whether
the auxiliary database helps improve the performance of
action recognition by comparing our approach with this
baseline.

o« RGB+SDA: SDA (semi-supervised discriminant analy-
sis) [57] is a semi-supervised algorithm. Here it is applied
to the RGB action videos in both the target and the
auxiliary databases, which are considered as the sources
of the labeled and the unlabeled training data in SDA,
respectively. This baseline discards the depth maps and
the skeleton structures captured by Kinect. It is used
only in the experiments on IXMAS, i3DPost, and UIUC1
datasets, since the auxiliary dataset fully covers actions
to be recognized in the three datasets.

o Bor-DEP: This baseline is a degenerate variant of our
approach. Recall that our approach augments each RGB
action video with additional depth maps and skeleton
data. This baseline discards the original RGB features
and the borrowed skeleton structures. It simply works on
the borrowed depth maps. The adopted features for depth
maps here are those described in Section V. Investigating
the performance of this baseline helps identify whether
the borrowed features themselves are informative or not.

o Bor-SKE: This baseline is the same as Bor-DEP, except
the used data features are changed from the borrowed

depth maps to the borrowed skeleton structures.

o INN-Bor: For each action in the target database, we
search its nearest neighbor in the auxiliary dataset accord-
ing to their RGB features. The action is then augmented
with the corresponding depth maps and skeleton structures.
We also use the late fusion method for feature combination.
This baseline doesn’t take the inter-database variations into
account, and directly borrows features without performing
domain adaptation. By comparing with this baseline, the
advantages of our approach, which jointly uses MRFs and
KCCA to adapt and correlate the multi-modal features in
different databases, can be revealed.

e RGB+SKEGT: In this baseline, actions come with the
RGB features as well as the ground truth skeletons. Similar
to our approach, late fusion is adopted to combine the
two types of features. This baseline can be considered as
the performance upper bound of our approach, since our
approach augments actions with the estimated skeletons
while the ground truth skeletons are given in this baseline.
Note that this baseline is performed only in the experi-
ments on UCF CIL dataset, in which the ground truth
skeletons are provided.

In addition to these baselines, several published systems on
the five benchmarks are also included for comparison.

C. Results in the Cases where Target Actions Are Fully Covered

We first evaluate our approach in IXMAS, i3DPost, and
UIUCI1 datasets, i.e., the cases where the auxiliary dataset
covers all kinds of actions to be recognized. To make a fair
comparison, we adopt the setup, Leave-One-Actor-Out (LOAO)
cross validation, which is also used in [51], [52]. Suppose there
are N actors in constructing a benchmark. LOAO in this case
is the same as N-fold cross validation, except the training
data by the same actor must belong to an identical fold. With
LOAO, we in turn conduct the experiments on the three adopted
benchmark datasets, and the auxiliary database we compiled
is used in all the experiments. The recognition rates of our
approach, the five baselines, and the state-of-the-art systems
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Fig. 6. The performances of various approaches with different numbers of training actors in benchmark i3Dpost where N = 8. The recognition rates in three
different settings are plotted, including (a) single-view 0 °, (b) single-view 45 °, and (c) multi-view 0°U45 °.

are reported in TABLE I, TABLE II, and TABLE III, one for
each benchmark.

In TABLE I, the baseline RGB achieves recognition rate
of 89.4% in IXMAS dataset, and it outperforms the state-of-
the-art systems in the benchmark, such as [52], [53]. This
is because we adopt the powerful descriptor [43] for feature
extraction as well as the effective video processing tools [41],
[42] for background removal. The baseline RGB-SDA is a bit
better than baseline RGB, so the unlabeled RGB data in the
auxiliary dataset contain useful information for regularizing the
training of the classifier. The baseline INN-Bor cannot account
for the inter-database variations. The borrowed features are
very corrupt, and hence result in the performance degradation.
One thing to be noted is that the baselines Bor-DEP and Bor-
SKE get recognition rates of 85.3% and 84.8%, respectively.
It points out that the borrowed features by the proposed
mechanism are quite informative. Our approach further merges
the three types of features, including the original RGB features,
the borrowed depth and skeleton features, and results in a
satisfactory performance, 91.6%.

As mentioned previously, we consider three different cases
for performance evaluation in benchmark i3DPost, including
two singe-view settings (single-view 0° and single-view 45 °
for abbreviation), and one multi-view setting (multi-view
0°U45° for abbreviation). Thus, there are three sets of
quantitative results shown in TABLE II, one for each case.
The distribution of accuracy rates of various approaches

in the benchmark is similar to that in IXMAS, but it is
worth mentioning some interesting observations. The baseline
Bor-DEP and Bor-SKE are comparable or even better than
baseline RGB. This phenomenon indicates that depth maps and
skeleton structures are discriminative for actions in i3DPost.
Our approach can effectively borrow features across video
modalities, and leverage both the original and the borrowed
features to result in much better accuracy. The performance
gains of our approach over baseline RGB are significant in
all the three settings, i.e., 8.3% (95.2%-86.9%) in single-
view 0°, 4.8% (96.4%-91.6%) in single-view 45 °, and 9.6%
(94.7%-85.1%) in multi-view 0°U45°. With the aid of cross-
modal feature augmentation, our approach also remarkably
outperforms the state-of-the-art system [54].

As can be seen in TABLE III, although the recent work [56]
achieved the highest recognition accuracy in UIUCI, our
approach is still competitive. It can boost the accuracy rate from
94.9% to 99.4%, an almost ideal performance. This is because
our approach can successfully retrieve the corresponding depth
maps and skeleton structures for each action to be recognized.
The phenomenon will be further discussed later.

To demonstrate the power of the proposed strategy of
information borrowing, we used small amount of training
samples in the training stage to check if our approach can
work well under poor training environments. Suppose again
there are in total [V actors in a dataset. We use the action data of
N —k actors for training, while the rest are used for testing. We
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Fig. 7.

The confusion tables (in %) by two approaches (baseline RGB and Ours) on the three benchmarks, IXMAS, i3DPost, and UIUCI. (a) Baseline RGB

on IXMAS. (b) Baseline RGB on i3Dpost with the multi-view 0 °U45 © setting. (c) Baseline RGB on UIUCI. (d) Ours on IXMAS. (e) Ours on i3Dpost with

the multi-view 0 °U45 © setting. (f) Ours on UIUCI.

respectively set £ = 1,2, ..., 5. In each case, we try 16 random
splits of the actors, and compute the average recognition rates.
The results by various approaches on IXMAS and UIUCI1 are
plotted in Fig. 5(a) and Fig. 5(b) respectively. Fig. 6 gives the
outcomes with the three different camera settings in i3DPost
dataset.

It can be observed in Fig. 5 and Fig. 6 that although
the performances of all the approaches degenerate when the
numbers of training samples decrease, our approach consistently
achieves superior results to the five baselines and the other
systems in most cases. The outcomes support that our approach
can work robustly with different amounts of training data.
Besides, the introduction of the auxiliary database indeed
improves the performance and makes our approach outperform
the state-of-the-art methods when only a small amount of
training samples is provided. For instance in Fig. 6, our
approach, in the case N — 4, still gives higher recognition
rates than the state-of-the-art method [54] in the case N —1. It
demonstrates that our approach can make use of the auxiliary
database to compensate for the lack of training data.

To gain insight into the quantitative results reported above,
we investigate the performance improvement by our ap-
proach, especially from the viewpoint of feature expan-
sion/augmentation. Recall that the main difference between our

approach and the baseline RGB is that the augmented features
are taken into account by the former, but ignored by the latter.
Thus, we determine why augmented features help in this work
by comparing the two approaches.

The confusion tables by baseline RGB and our approach
on IXMAS dataset are given in Fig. 7(a) and in Fig. 7(d),
respectively. One can observe that our approach gives much
better accuracies than baseline RGB in class check-watch and
cross-arms. It is evident that the performance gains in the two
classes result from the introduction of the borrowed depth and
skeleton features. On the other hand, both two approaches do
not work well on class wave, relatively to other classes. The
borrowed depth skeleton features do not help. We consider
that the effectiveness of feature borrowing depends on whether
the borrowed features are informative and complementary to
the original features. The point of view is clarified through
the examples of feature augmentation in Fig. 8. Note that the
format of each of the twelve examples in Fig. 8 is the same
as that in Fig. 3, except the action classes in ground truth
(GT) and predicted by our approach and baseline RGB are
also included.

To see why the borrowed features help recognize actions
of class check-watch, an example of feature augmentation is
given in Fig. 8(Al). Baseline RGB fails to correctly classify
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Twelve examples of feature augmentation. The format of each example is the same as that in Fig. 3, except the action classes in ground truth (GT)

and predicted by our approach and baseline RGB are also included. (A1) ~ (A4) Four examples on IXMAS. (B1) ~ (B4) Four examples on i3DPost with the

multi-view 0 °U45 © setting. (C1) ~ (C4) Four examples on UIUCI.

this action in the example. Our approach instead exploits
the borrowed features and makes the correct prediction. It
can be checked that the borrowed depth maps and skeleton
structures by our approach clearly highlight the forearms, the
most discriminant part for distinguishing actions of this class
from the rest. Similarly, an example for class cross-arm is
given in Fig. 8(A2). Although feature borrowing improves the
performance in most cases, we consider another example in
Fig. 8(A4), in which both our approach and baseline RGB
make wrong prediction. In this example, the highly similar

appearances between actions of class wave and class scratch-
head in side view make our approach fail to retrieve appropriate
depth maps and skeleton structures.

The performance gains of our approach over baseline RGB
on i3DPost are more remarkable than those on IXMAS.
Fig. 7(b) and Fig. 7(e) respectively illustrate the confusion
matrices by baseline RGB and our approach on i3DPost with
the multi-view 0 °U45 © setting. The accuracies in classes jump-
forward, walk-sit, walk, and wave are significantly boosted
by our approach. We also show some examples of feature
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TABLE IV
RECOGNITION RATES (%) OF DIFFERENT METHODS ON THE UCF SPORTS DATASET.

Method Ours RGB Bor-DEP Bor-SKE INN-Bor [13] [44]
Accuracy (%) 94.0 86.0 63.3 64.7 87.3 88.2 89.1
TABLE V
RECOGNITION RATES (%) OF DIFFERENT METHODS ON THE UCF CIL DATASET.
Method Ours RGB Bor-DEP Bor-SKE 1NN-Bor RGB+SKEGT [58] [59]
Accuracy (%) 98.3 81.0 70.7 77.6 82.8 100.0 95.8 100.0

augmentation in Fig. 8(B1) ~ Fig. 8(B4). It can be visually
and statistically checked that the borrowed depth and skeleton
features are discriminant, and can complement the RGB
features.

As for benchmark UIUCI, the confusion tables by the two
approaches are plotted in Fig. 7(c) and Fig. 7(f). Although
the RGB features have been good enough in this benchmark,
our approach can still leverage the auxiliary database, and
achieve nearly flawless recognition results. It can be seen in
Fig. 8(C1) ~ Fig. 8(C4) that the retrieved depth maps and
skeleton structures quite match the given actions.

D. Results in the Cases where Target Actions Are Partially
Covered

We have evaluated our approach in the cases where the
actions to be recognized are fully covered by the auxiliary
dataset. Then, more challenging cases are considered. Our
approach is tested on the UCF sports and UCF CIL datasets.
Large intra-class variations are involved in the two datasets. In
addition, actions in the two datasets are only partially covered
by the auxiliary dataset.

For comparing with existing methods, we follow the Leave-
One-Out protocol used in [13], [44] for performance evaluation
on UCF sports dataset, i.e., testing on each action while training
on the rest together with their flipped versions. We follow the
evaluation protocol suggested in [58], [59] to evaluate the
performance on UCF CIL dataset. The recognition rates by
our approaches, the adopted baselines, and the state-of-the-art
methods on the two datasets are reported in TABLE IV and
TABLE V, respectively.

As shown in TABLE IV, the proposed approach achieves
recognition rate of 94.0%, and significantly outperforms
baseline RGB. Our approach with the augmentation of the
additional depth and skeleton features also performs better
than the state-of-the-art systems [13], [44]. A major difference
between testing on UCF sports dataset and on the first three
datasets is that baselines Bor-DEP and Bor-SKE are no longer
as powerful as baseline RGB. This is mainly caused by the
fact that the action classes in UCF sports are not completely
included in our auxiliary dataset. However, we also found
that actions of different classes in UCF sports dataset tend to
be associated with depth and skeleton features from actions
of distinct classes in the auxiliary dataset. It results from
the objective function of MRF in (3), in which discriminant
learning is achieved by taking the labels of training data into
account. It implies that the borrowed features can still enhance

the performance of classification, even if they are not consistent
with actions to be recognized in terms of action classes. It
should be noted that there is a minor performance gap between
baseline RGB and the approach in [44] though the same RGB
features are used in both of them. We have tried to reproduce
the approach in [44] as faithfully as possible. The minor
performance gap may result from some tunable parameters
used to convert videos from bags of features to histograms.

Like in the results of UCF sports dataset, similar performance
rankings of our approach and the baselines can be found in the
UCEF CIL dataset. As shown in TABLE V, the recent work [59]
achieved 100% recognition accuracy in UCF CIL dataset.
Under the circumstance, our approach is still competitive. Our
approach can boost the accuracy from 81.0% to 98.3% by
borrowing and fusing the depth and skeleton features. It is also
worth mentioning that baseline RGB+SKEGT serves as the
performance upper bound of our approach since the ground
truth of skeleton structures is used. It also achieves perfect
performance in this dataset. However, there is only a minor
performance drop, 1.7% (= 100.0%—98.3%), when the ground
truth skeletons are replaced with the borrowed skeletons. It
confirms that our approach can provide good alternatives to
the unavailable skeletons of actions.

The confusion tables filled by the results of the two
approaches, baseline RGB and Ours, on the UCF sports
and UCF CIL datasets are plotted in Fig. 9. As can be
seen, augmenting borrowed features improves the recognition
rates of most actions categories in both datasets. We also
visually compare the ground truth skeletons and the borrowed
skeletons by our approach. Two examples of skeleton feature
augmentation are shown in Fig. 10. Each example comes with
an action in UCF CIL dataset, its ground truth skeleton structure,
and the top three skeleton structures retrieved by our approach.
The action categories of the ground truth skeletons and the
borrowed skeletons are different, but their shapes are similar.
Besides, the actions of different categories in UCF sports and
UCF CIL datasets tend to be associated with skeleton features
from actions of distinct classes in the auxiliary dataset. Thus,
the borrowed skeletons are still helpful in improving action
recognition.

In general, action videos in the five benchmarks often include
self-occlusions or depth changes, especially in classes cross-
arm, punch, and walk-sit. Compared with RGB features, depth
maps are more discriminant in the cases. In addition, the
appearance of an action changes dramatically with different
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Fig. 10. Two examples of skeleton feature augmentation. (a) & (f) Two actions in UCF CIL dataset. (b) & (g) The corresponding ground truth skeleton
structures. (¢) ~ (e) & (h) ~ (j) the top three skeleton structures retrieved by our approach.

angles of view. The 3D skeleton structures in the situations are
more robust to this type of intra-class variations. Our approach
can effectively retrieve depth and skeleton features for actions
to be recognized. It hence facilitates the accomplishment of a
more accurate action recognition system.

VII. CONCLUSIONS

The new types of imaging devices provide the opportunity
of better solving increasingly complex video processing tasks,
but their respective limitations are currently hindering the
practical applicability. In the work, we resolve this problem by
proposing an approach that can borrow information from an
offline collected database where multi-modal videos taken by
heterogeneous cameras are available. Promising experimental
results demonstrate that our approach can effectively adapt
the variations between different databases, transfer knowledge
across video modalities, and lead to remarkable performance

boosting. Our approach hence provides an alternative way of
utilizing the emerging cameras even in the cases where they
are not online accessible. In addition, the proposed approach is
developed to carry out cross-modal information borrowing in
a general way. It can be applied to a set of applications where
multiple video modalities are appreciated, such as gesture
recognition, human pose estimation, scene understanding,
content-based image/video analysis and retrieval.
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