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Abstract—We present a novel two-pass framework for counting
the number of people in an environment where multiple cameras
provide different views of the subjects. By exploiting the comple-
mentary information captured by the cameras, we can transfer
knowledge between the cameras to address the difficulties of
people counting and improve the performance. The contribution
of this work is threefold. First, normalizing the perspective of
visual features and estimating the size of a crowd are highly
correlated tasks. Hence we treat them as a joint learning problem.
The derived counting model is scalable and it provides more
accurate results than existing approaches. Second, we introduce
an algorithm that matches groups of pedestrians in images
captured by different cameras. The results provide a common
domain for knowledge transfer, so we can work with multiple
cameras without worrying about their differences. Third, the
proposed counting system is comprised of a pair of collaborative
regressors. The first one determines the people count based
on features extracted from intra-camera visual information,
while the second calculates the residual by considering the
conflicts between inter-camera predictions. The two regressors
are elegantly coupled and provide an accurate people counting
system. The results of experiments in various settings show
that, overall, our approach outperforms comparable baseline
methods. The significant performance improvement demonstrates
the effectiveness of our two-pass regression framework.

Index Terms—People counting, transfer learning, correspon-
dence estimation.

I. INTRODUCTION

The goal of people counting is to estimate the number
of pedestrians or the density of the crowd in a monitored
environment [1]–[8]. In recent years, the topic has generated a
great deal of interest among researchers in many fields, e.g.,
image processing, computer vision, security and surveillance,
because it plays an important role in a broad spectrum of real-
world applications, such as video understanding, summarization,
and traffic monitoring.

Despite the wide applicability of people counting, most
computer-vision-based systems suffer from the following
drawbacks. First, mutual occlusion among pedestrians causes
significant changes in their appearances and the loss of extracted
features. It often results in an underestimate of the number
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of people. Second, the problems caused by low-resolution or
blurred images, especially for pedestrians far from the camera,
usually degrade the stability of a counting system. Finally,
large variations in the appearance of pedestrians and lighting
conditions, as well as cluttered backgrounds, make people
counting more difficult.

In this work, we propose a multiview people counting (MVPC)
system to resolve the above issues. Specifically, multiple
cameras monitor an area from different angles. Videos recorded
by the cameras contain complementary information; therefore,
fusing the knowledge embedded in the videos facilitates the
development of a robust and accurate counting system. In this
paper, we consider two issues: 1) How all visual cues captured
by different cameras can be shared? 2) For each view, how
can the intra-camera and inter-camera visual knowledge be
combined to yield a robust and accurate counting system?

To work with cameras that have different settings, we propose
a correspondence estimation algorithm that maps each seg-
mented group of pedestrians in one view to the corresponding
group in another view. We call these corresponding groups
matched blob clusters, each of which enables knowledge to
be shared between cameras. The intra-camera visual cues
(captured by one camera) and inter-camera visual knowledge
(transferred from other cameras) are included in each view. It
follows that we present a two-pass regression framework for
multiview people counting. Specifically, the first-pass regressor
uses the visual features extracted from the intra-camera video
frames to estimate the size of a crowd. Then, the second-pass
regressor estimates the residual obtained in the first pass by
considering the inconsistency in the knowledge provided by
multiple cameras (i.e., inter-camera knowledge). Because the
second pass is based on the conflicts between the predictions
derived from multiple views, we formulate the training of the
second-pass regressor as a transfer learning problem [9]. We
investigate the properties of each matched blob cluster, i.e.,
having the same numbers of pedestrians in all views, with the
objective of transferring useful knowledge and preventing error
propagation.

The contributions of this work are as follows. First, we
introduce a novel regularized regression method to evaluate
the size of a crowd. The method is highly scalable because it
can count people in crowds that are unseen in the training set,
and it outperforms comparable techniques. Second, we present
an algorithm that can estimate cross-camera correspondence
accurately and combine multiple cameras with different settings
by matching the blob clusters. Third, we utilize a pair of
collaborative regressors to transfer cross-camera knowledge.
The regressors are elegantly coupled so that intra-camera
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visual features and inter-camera view knowledge are considered
simultaneously to derive an accurate people counting system.
To the best of our knowledge, this work gives the first machine
learning algorithm that integrates visual knowledge captured
by multiple cameras for people counting.

II. RELATED WORK

In this section, we review the research on topics related to
the development of the proposed framework.

A. People Counting

The literature on people counting is quite comprehensive [10],
[11]. However, we only consider computer-vision-based meth-
ods, which can be divided into two categories, counting-by-
detection and counting-by-regression methods.
Counting-by-detection. In this category, the methods determine
the number of people in an image by locating the position
of each individual and then counting the total number. The
methods proposed in [12]–[15] utilize various low-level features
to search for human heads or moving entities. Inspired by
the progress of designing powerful pedestrian detectors [16]–
[19], methods in this category often employ a pedestrian
detector to find people [20], [21]. Since the training samples
are usually of a high resolution without occlusions, the
detectors’ performance deteriorates significantly when the
targeted pedestrians are partially occluded or in blur images.
Moreover, the computational cost of the detection stage is
typically too high to support real-time responses.
Counting-by-regression. The methods in this category are
relatively efficient. They estimate the size of a group by
extracting low-level features to represent the corresponding
region, which is usually generated by background subtraction
or motion segmentation [3]–[5], [22]. However, these methods
can not solve the localization problem or determine the exact
number of people. They are only suitable for estimating the
level of crowdedness. Following the methods that linearly
map a set of perspectively normalized features to the number
of people [22]–[24], nonlinear regression models, such as
neural networks, Gaussian process models, and Poisson process
models, have been utilized recently to enhance the performance
of people counting systems [1], [3], [25], [26].

While aforementioned approaches to people counting address
ROI (region of interest) counting, there exist approaches
to LOI (line of interest) counting. For instance, Ma and
Chan [27] presented an integral programming method for
counting pedestrians crossing a line. Cong et al. [28] developed
an approach to both ROI counting and LOI counting.

Despite the use of discriminative visual features and powerful
machine learning techniques, the systems in the above two
categories still suffer from the problems caused by occlusions,
low-quality images, and large variations in the appearance of
pedestrians. We try to resolve these problems by integrating
information captured by multiple cameras. It is worth noting
that the most similar work to our approach is probably that
of Ma et al. [7], which fuses visual cues from two cameras
to improve the performance of people counting. The authors
emphasize reliable detection by two single-view cameras, and

average the counting results provided by the two camera
views. Because the approach utilizes an off-the-shelf pedestrian
detector, its ability to handle occlusions may be restricted in
crowded environments. In contrast to [7], we investigate the
conflicts between predictions based on the views of multiple
cameras in each matched blob cluster, and determine the
reliability of the information derived from the views. As a result,
only useful knowledge is transferred and error propagation is
mitigated. We also extend our previous work [29] by defining
the perspective normalization and regressor learning tasks as
a joint optimization problem. It turns out that the resulting
model can deal with the problem caused by the inconsistency
between the training and testing data, and is more accurate
than the previous one [29].

B. Correspondence between Multiple Cameras

To enable multiple cameras to share visual knowledge, we
must establish their correspondence. Generally, conventional
methods for determining camera correspondence can be di-
vided into two categories: homographic-based methods and
calibration-based methods.

Most homographic-based methods, such as [30]–[32], esti-
mate plane homographies by matching salient regions across
images, e.g., SIFT features [33] or people heads, and then
determine the correspondence between multiple cameras. In
general, these methods are sensitive to large variations in the
appearance of objects, camera settings, and video qualities. To
be effective, the approaches require consistent matching, but
this may not be possible if the above problems occur.

The objective of calibration-based methods, e.g., [34]–[37],
is to derive the model of a camera, including 1) the extrinsic
parameters, i.e., the position and orientation of the camera
relative to the real-world coordinate system; and 2) the intrinsic
parameters, i.e., the image center, focal length, and distortion
coefficients. Having a precise planar transformation between
multiple cameras would facilitate people counting in crowded
environments. Generally, calibration-based methods provide
more precise camera transformations than homographic-based
methods; hence, they are more suitable for our work.

C. Transfer Learning

Transfer learning refers to an information delivery process
that tries to improve the target task by exploiting the abundant
knowledge available in the source tasks. The exploration of
auxiliary knowledge derived from different tasks has generated
a great deal of interest among researches in the field of machine
learning. The methods that utilize additional knowledge sources
to accomplish a task can be divided into four categories [9]:
transfer 1) by model parameters [38], [39]; 2) by data
instances [40], [41]; 3) by feature representation [42]; and
4) by contextual information [43], [44]. All of these methods
are based on the assumption that the data sets of the source
and target tasks have the same domains for knowledge transfer.
In this work, we consider the visual cue captured by each
camera as an information source, and try to establish a robust
counting system by sharing knowledge across cameras. To
compensate for the variations resulting from heterogeneous
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cameras with diverse perspective settings, we integrate the
cameras by matching the blob clusters, which serve as the
common domains for knowledge transfer.

III. THE PROPOSED TWO-PASS REGRESSION FRAMEWORK

In this section, we describe the proposed MVPC system.
Suppose a set of M cameras, P = {Pm}Mm=1, is installed to
monitor a public environment; and let V = {Vm}Mm=1 be the
videos recorded by the cameras. Without loss of generality, we
assume that the videos are synchronized, and that each one
comprises T frames. The objective is to construct a matrix
Y = [ym,t]∈RM×T, where ym,t is the predicted number of
people present in I(m)

t , the t-th frame in Vm.
Although our approach is a counting-by-regression system

that maps a set of low-level features to the people count,
it differs from existing approaches because it considers intra-
camera visual features and inter-camera view knowledge jointly.
The proposed two-pass regression framework approximates the
number of people in an image in two parts—the regular part
and the residual part, as shown in Figure 1. Similar to other
counting-by-regression approaches, e.g., [1], [25], the regular
part infers the number of people in an image blob based on
the single-view, low-level features in the same way as other
counting-by-regression approaches. For various reasons, such as
partial occlusions or imperfect motion segmentations, inference
based on features grabbed from a single view typically yields
a residual. To resolve this problem, we match blob clusters
and borrow visual knowledge from a number of cameras.
As the pedestrians are identical in all the views of each
matched cluster, the clusters compensate for the variations
in the cameras, and serve as a common platform to deliver
additional knowledge from other views for residual estimation.
The two examples in Figure 1 demonstrate how occlusion
and a shadow result in underestimation and overestimation,
respectively. They also show how the two undesirable effects
are manipulated by the two-pass regression mechanism.

In the remainder of this section, we focus on the design
of regular estimation (Section III-A) and that of residual
estimation (Section III-B).

A. Regular Estimation (First-pass Regression)

It is difficult to construct a counting model that can simulta-
neously address two critical issues, accuracy and scalability.
Accuracy means the consistency between the predictions and
the ground truth. Scalability is the ability to estimate the size
of a crowd in the testing stage when the information is not
included in the training data.

In regular regression, we deliver the nonlinear dependence
between feature responses in various scales to improve the
accuracy, and train a linear regressor to enhance the scalability.
The two tasks are highly correlated, and we define them as
a joint optimization problem. The resulting people counting
system yields very accurate results without compromising the
scalability.

(a) (b) (c)

Fig. 2. Feature representation of blobs. (a) & (b) The perspective effect
makes the average height of a pedestrian being a function of where he/she is
in the frame. (c) Uniformly sampled scales in logarithmic space.

1) Blob Extraction and Representation: We represent a
video frame by a set of blobs, each of which is a group of
spatially connected foreground pixels. We apply a background
subtraction algorithm [45] to segment the foreground areas.
Then, spatially connected foreground pixels are clustered to
produce blobs.

Because our people counting system operates repeatedly
at every timestamp, for simplicity, we only consider frames
grabbed at time t. Thus, for frame I(m)

t taken by camera Pm,
the index t can be dropped without causing any ambiguity.
Assume that frame I(m) contains N̂ blobs, i.e., I(m) ={(

x
(m)
b , ŷ

(m)
b

)}N̂

b=1
, where x

(m)
b is the feature description

of the b-th blob, and ŷ
(m)
b is the number of people in that

blob. Note that ŷ(m)
b is given in the training phase, and we

want to estimate it in the test phase. With this representation,
the number of people in I(m) is calculated by summing the
numbers estimated in the blobs, i.e., y(m)=

∑N̂
b=1 ŷ

(m)
b .

Because of the perspective effects, the average height of
a pedestrian in an image depends on his/her location on the
ground plane [46], as shown in Figure 2(a) and Figure 2(b).
Therefore, perspective normalization of the features is required
to make the people counting task more accurate. To this end, we
uniformly sample a finite number of scales in logarithmic space,
as shown in Figure 2(c). Next, we extract the features of blob
x
(m)
b , and assign the feature responses to the corresponding

scales. The dimension of x(m)
b is equivalent to the number of

sampled scales, which is denoted as H; and the value of H
is determined as a trade-off between efficiency and precision.
We set the value at 30 in all the experiments.

To ensure that the performance of the people counting system
is satisfactory, we utilize the following low-level visual features
to characterize the properties of blobs:
Area. This attribute represents the total number of foreground
pixels occupied by a blob in each sampled scale. It approxi-
mates the size of moving objects in a scene.
Canny edge pixels. To calculate the total number of edge pixels
in each scale, we use the Canny edge detector, which captures
the structural properties of crowdedness.
Oriented gradients. Each scale contains two independent
features which represent the gradient magnitudes of vertical
and horizontal orientations, respectively.
As the features capture diverse characteristics of a blob, we treat
each one as a unique descriptor. Thus, each blob is represented
by four types of descriptors of the same dimension, i.e., H.
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Regular estimation 
(under-estimated) Residual estimationTwo-pass estimationRegular estimation 

(over-estimated) Residual estimationTwo-pass estimation

(a) Occlusion handling

Regular estimation 
(under-estimated) Residual estimationTwo-pass estimationRegular estimation 

(over-estimated) Residual estimationTwo-pass estimation

(b) Shadow handling

Fig. 1. Our two-pass regression framework is comprised of a regular estimation component and a residual estimation component. The former infers the
number of people in a blob based on intra-camera low-level features, while the latter estimates the residual by exploiting inter-camera information. The two
passes complement each other, and solve the difficulties of people counting, such as (a) occlusion and (b) shadows.

Algorithm 1 The proposed constrained linear regression.
(w1,w2, . . . ,wD) = CLR-TRAIN (X1,X2, . . . ,XD, y).
Given a set of N training examples with their D types of
feature descriptors, X1,X2, . . . ,XD, and a label vector y,
derive a regression model comprised of D sets of parameters,
w1,w2, . . . ,wD. T denotes the number of runs to be repeated.

1: for i = 1 to D do
2: for j = 1 to T do
3: Select half of training data, X ′i and y′, randomly.
4: Solve the optimal wi,j in (8) with X ′i and y′.
5: Predict the whole dataset by yi,j = wTi,jXi.
6: end for
7: end for
8: Calculate the optimal combination weights α∗i,j by applying

the interior-point algorithm to solve
minαi,j

∥∥∥∑D
i=1

∑T
j=1 αi,jyi,j − y

∥∥∥
1

s.t. αi,j > 0 for i = 1, 2, . . . ,D and j = 1, 2, . . . ,T

9: return wi =
∑T
j=1 α

∗
i,jwi,j for i = 1, 2, . . . ,D

2) Learning with Intra-camera Visual Features: To compen-
sate for the perspective effect, existing approaches, such as [1]
and [25], use a geometric factor or a density map to weight the
features extracted from each scale, and then learn the regressor.
These approaches are simple, but have two drawbacks. First,
the weighting scheme is usually devised in an ad-hoc manner
and is determined by our prior knowledge. For example, we
assume that the edge-based features grow linearly with respect
to the scale. However, prior knowledge of all the features is not
usually available. Second, the local nonlinearities between the
weights and the scales are ignored. Because of the segmentation
and occlusion effects, the statistics of extracted raw features do
not follow a global relationship exactly, so performing feature
normalization and regressor construction separately could yield
suboptimal results. Thus, for people counting, we train a
model to consider perspective normalization and regressor
training simultaneously. In the experiments, we will show that
approaches based on feature weighting with powerful regression
models, e.g., neural networks and Gaussian processes, still
suffer from less accuracy. We will demonstrate that our method
is capable of alleviating the problem.

Consider a set of training instances described by the
feature X = [x

(m)
1 . . . x

(m)

N̂
] ∈ RH×N̂ and their labels

y = [ŷ
(m)
1 . . . ŷ

(m)

N̂
]T ∈ RN̂×1. We perform perspective

normalization by weighting the features, and carry it out by
solving

min
w

‖wTX − y‖1 (1)

subject to wi > 0, for 1 ≤ i ≤ H,

where w = [w1 w2 · · · wH ]T . In Equation 1, we choose
`1 norm minimization instead of `2 norm because it is less
sensitive to outliers and the objective function is consistent
with the performance evaluation metric for people counting.
We further consider the correction of geometric distortion so
as to avoid overfitting, in particular when the size of training
set is small and the observed instances do not locate and
cover all scales in logarithmic space. To this end, we introduce
exponential scaling law [47] into the training procedure of the
regressor. It states that the feature responses of a pedestrian
depend on his/her vertical position in an image. Since the
vertical space has been quantized into scales, according to the
exponential scaling law, feature responses at each scale si, i.e.,
f(si), can be represented as

f(si) = eλsi+µ, (2)

where λ and µ are two real-valued unknowns. Their values
are dependent on not only the camera perspective but also the
feature characteristic. In the following, we show how to utilize
this property to regularize regressor training.

Considering a crowd of people in a scene, the size of the
crowd stays constant no matter which scale the crowd belong
to. The prior information can be taken into account to relate
the regressor parameters, w. That is, wif(si)=c for each scale
si, where constant c is the crowd size. By taking the logarithm
of both sides, we obtain

ln(wi) = ln

(
c

f(si)

)
= ln(c)− λsi − µ. (3)

Since λ and µ are variables to be derived, for the ease of
representation we simply let two new variables replace −λ and
ln(c) − µ in the equation, i.e., λ ← −λ and µ ← ln(c) − µ.
Considering all scales, we have

λs1 + µ = ln(w1)...
λsi + µ = ln(wi)...
λsH + µ = ln(wH).

(4)
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Since a perfect solution to Equation 4 that fits best the local
nonlinearity of the training samples may not exist, we seek a
solution that allows a small amount of error, i.e.,∥∥∥∥S [ λ

µ

]
− ln(w)

∥∥∥∥2 < b, where S =

 s1 1
...

...
sh 1

, (5)

where ln(w) =
[
ln(w1) ln(w2) . . . ln(wH)

]T
. By nor-

mal equations, the optimal λ∗ and µ∗ would be[
λ∗

µ∗

]
=
(
STS

)−1
ST ln(w). (6)

By substituting λ∗ and µ∗ for λ and µ in Equation 5, the
inequality can be rewritten as

‖E ln(w)‖2 < b, where E = S
(
STS

)−1
ST − I. (7)

The fitting of data for regressor learning in Equation 1 and
the geometric regularization guided by the exponential scaling
law in Equation 7 are considered jointly, which leads to

min
w

‖wTX − y‖1 (8)

subject to ‖E ln(w)‖2 < b, wi > 0, for 1 ≤ i ≤ H.

The constrained optimization problem in Equation 8 is
nonlinear, so we use the interior-point algorithm [48] to solve
it. Because an initial solution is required in optimization, we
use package CVX [49] to solve the convex problem. We also
introduce a mechanism to avoid trapping in a local minimum.
Instead of using the whole training dataset, we solve the
problem in Equation 8 with different subsets. We randomly
select half of the training data in each run. As a result, we
obtain base regressors. We repeat the above process for each
feature descriptor. First-pass regressor is a linear combination of
the base regressors, and it is derived by minimizing the loss of
the training samples. The training procedure of this constrained
linear regression method is summarized in Algorithm 1.

For each camera Pm, we train a regressor via Algorithm 1,
and define a camera-specific function F (m) to determine the
number of people in a blob. To evaluate a blob with multiple
feature representations, x(m) = {x(m)

d }Dd=1, the size of the
regular part of the blob can be computed by

F (m)
(
x(m)

)
=

D∑
d=1

wTd x
(m)
d . (9)

Note that F (m) is determined by the training data collected
from one camera. Information captured by the other cameras
is not referenced. Besides F (m), we also derive D additional
regressors {F (m)

d }Dd=1 independently. F (m)
d is learned with

the same training blobs, but only the d-th feature descriptor is
considered. The reason of deriving {F (m)

d }Dd=1 will be clarified
later.

B. Residual Estimation (Second-pass Regression)

When multiple cameras with various perspective settings
are used, one of the most important tasks is to correlate the
cameras, so that view-specific knowledge can be transferred

between collaborative cameras. In the second-pass regression
phase, the objective is to estimate the residual, which could
not be derived in the first-pass regression phase.

1) Blob Localization and Matching: After extracting the
blobs from different camera views, we try to localize and
match the corresponding blobs. For this task, we propose a
blob matching algorithm for ground plane mapping and vertical
plane mapping.

Figure 3(a) illustrates the procedure of ground plane mapping.
We first compute the convex hull of each blob in Pi to determine
its bottom boundary. Figure 4(a) shows some examples of
detected bottom boundaries highlighted in different colors.
Then, based on the assumption that a blob’s bottom boundary
touches the ground plane, its correspondence across cameras
can be derived by the image-to-world and world-to-image
coordinate transformations. This two transformations are based
on a reverse variant and the original of Tsai’s camera calibration
model [36], respectively. While the details of Tsai’s model are
given in [36], we describe its reverse variant, derived by us, in
the supplementary APPENDIX for more thorough explanation.
In addition, in our implementation, the calibration between Pi
to camera Pj is done in advance.

Figure 4(b) shows the bottom boundary correspondence
results, every pixel on the bottom boundary in camera Pi
are mapped to the image plane of camera Pj . It follows
that the mappings between blobs taken by different cameras
are obtained. We use the set of mappings to make an initial
estimation of the correspondence between two cameras.

However, in our empirical tests, the bottom boundary of a
blob does not always touch the ground plane due to imperfect
blob segmentation. We further establish mappings on the
vertical plane of each blob, which is illustrated in Figure 3(b),
to validate the correctness of the estimated correspondence.
The image height of a pedestrian at every position is required to
compute mappings on the vertical plane of each blob. Based on
the work by Hoiem et al. [46], the image height of a pedestrian
(denoted as h) is assumed to be linearly dependent on his/her
bottom location (denoted as v) in the vertical position of the
image, i.e.,

h(v) = α · v + α0, (10)

where α and α0 are the two parameters of the camera model.
They control the linear dependency between the image height
and the image location of a pedestrian. We adopt the procedure
described in [29] to determine the values of the two parameters
of each camera via employing an off-the-shelf pedestrian
detector [50]. On the one hand, the detected pedestrians can
be used to estimate the camera model. On the other hand, the
estimated model can filter out false detections. The two steps are
done alternately until convergence. It is worth mentioning that
our approach, developed based upon the camera model [46],
assumes that pedestrians in the scene have similar heights.
Namely, their image heights are only dependent on their
locations in the image.

After having the bottom boundary of each blob, the head
positions of the blob are available according to the estimated
camera perspective model. We then take both the mappings
of the bottom boundary and the head positions of each blob,
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Ground plane

Image-to-world
World-to-image

(a) Cross-camera ground plane matching

Mappings on 
vertical plane

Ground plane

(b) Ground plane matching vs. Vertical plane matching

Fig. 3. The proposed approach to cross-camera blob localization and matching.

(a) (b)

Fig. 4. Blob mapping on the ground plane: (a) the bottom boundaries of
the blobs; (b) their mappings.

(a) (b)

Fig. 5. Blob mapping on the ground and vertical planes from (a) Camera
Pi to (b) Camera Pj .

and apply the direct linear transformation [51] to calculate the
planar homographies. It follows that every pixel in the blob
can be projected across cameras. An example of the estimated
mappings of blobs on the vertical planes is shown in Figure 5.

2) Matched Blob Cluster Extraction: After establishing the
correspondence between the blobs derived from two cameras,
we can group the blobs into clusters so that each cluster contains
minimal and identical entities that are present in both camera
views. The example in Figure 6 illustrates the grouping process.
Suppose that {b(i)1 , b

(i)
2 , . . . , b

(i)
7 } and {b(j)1 , b

(j)
2 , . . . , b

(j)
5 } are

the two sets of blobs extracted from camera Pi and Pj ,
respectively. First, we construct a bipartite graph of twelve
nodes, as shown in Figure 6(a). An edge is added between two
nodes on opposite sides if the corresponding blobs are matched
in any direction. By computing the connected components
in the graph, we obtain blob clusters {c(i)1 , c

(i)
2 , . . . , c

(i)
4 } and

{c(j)1 , c
(j)
2 , . . . , c

(j)
4 } for cameras Pi and Pj , respectively. Note

that each corresponding component refers to the same group
of pedestrians in both images, which implies that the feature
distributions in both views, as well as pedestrian counts, can
be compared directly.

3) Blob Cluster Representation: A video frame can also
be represented by the set of matched blob clusters. Since
the corresponding clusters of different views refer to the same
entities, the number of people in each cluster should be identical.
The conflict between predictions based on multiple views
indicates that a residual occurs. Therefore, knowledge like
intra-camera estimation results shared among matched clusters
can be used directly without further transformation or adaption.
Suppose frame I(m) contains Ñ matched blob clusters, it can
be expressed as {(z(m)

c , ỹ
(m)
c )}Ñc=1, where ỹ(m)

c is the residual
of the c-th blob cluster derived in the first pass, and z

(m)
c is the

feature representation. As in the first pass, ỹ(m)
c is given in the

training phase, we need it to make predictions. The residual
ỹ
(m)
c and the feature representation z

(m)
c are defined in the

next subsection.
4) Learning with Inter-camera Knowledge: Consider a

matched blob cluster C(m)=(z(m), ỹ(m))={(x(m)
b , ŷ

(m)
b )}Nb=1

taken by camera Pm and comprised of N blobs. The residual
of C(m) in the first stage is defined as

ỹ(m) =

N∑
b=1

ŷ
(m)
b −

N∑
b=1

F (m)(x
(m)
b ). (11)

The first term in the right-hand side of Equation 11 is the ground
truth of the people count in C(m); and the second term is the
prediction in the first pass. We use inter-camera knowledge to
design the feature representation of cluster C(m). Initially, the
people count of C(m) estimated by all the developed unifeature
regressors {F (m)

d }Dd=1 is evaluated, i.e.,

v(z(m)) = [F (m)
1 (z(m)),F (m)

2 (z(m)), · · · ,F (m)
D (z(m))]T ∈ RD×1

(12)

where the value of each element of the vector is given by

F (m)
d (z(m)) =

N∑
b=1

F (m)
d (x

(m)
b ), for d = 1, 2, . . . ,D. (13)

This blob cluster is matched across cameras; therefore, we
have {v(z(m))}Mm=1. Because C(m) refers to the same entities,
the estimated people counts, {v(z(m))}Mm=1, can be compared
directly. In our previous work [6], we show that the conflicts
between predictions based on different features by a single
camera enable us to infer the residual caused by occlusions.
Here, we generalize the concept for multiple cameras, and
develop the following four descriptors for cluster C(m).
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(a) (b) (c) (d)

Fig. 6. The procedure for matching blob clusters across cameras. (a) A bipartite graph constructed for two camera views that contain seven and five blobs
respectively. (b) Matching blob clusters by computing the connected components. (c) and (d) The resulting blob clusters, each of which is highlighted by the
same color in both images. Note that, in both images each cluster contains the same group of pedestrians.

Cross-camera Conflict. For each adopted visual feature,
this descriptor captures the conflict between camera Pm and
the other cameras directly, i.e.,

z(m).cc =

∑M
m′=1,m′ 6=m v(z(m

′))

M− 1
− v(z(m)). (14)

Negative Trim. The people counts of some cameras tend
to be underestimated because of the camera angle relative
to the motion direction of the pedestrians or the distance to
the monitored environment. In such cases, the positive part
of Equation 14 is useful for residual estimation. Hence, this
descriptor is defined as follows:

z(m).nt = max (z(m).cc, 0). (15)

Positive Trim. Similar to z(m).nt, we have the descriptor

z(m).pt = −min (z(m).cc, 0). (16)

Intra-camera Conflict. The visual features have different
degrees of sensitivity to occlusions, so extrapolation on the
conflicts between predictions based on the features can recover
the residual. This descriptor is defined as follows:

z(m).ic = [F (m)
i (z(m))−F (m)

j (z(m))], for 1≤ i<j≤D. (17)

In the training phase, we match the blobs across cameras,
and obtain a set of blob clusters.

After measuring the residual in Equation 11 and extracting
the above four descriptors for each matched cluster, it becomes
a task of multiple kernel learning, such as [52], [53], with
four kernels (one for each descriptor) here. In this work, we
use SimpleMKL [53] to derive a multi-kernel support vector
regressor, S(m), by taking the four kernels as input.

At the end of the training procedure, we have the final
regressors of the two passes {F (m),S(m)} in each camera
view m. In the testing phase, suppose there is a frame taken by
camera Pm, and its blob representation {x(m)

b }N̂b=1 and cluster
representation {z(m)

c }Ñc=1. Our approach estimates the number
of people in the frame by

ym =

N̂∑
b=1

F (m)
(
x
(m)
b

)
+

Ñ∑
c=1

S(m)
(
z(m)
c

)
. (18)

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of the proposed
framework and compare it with that of existing approaches.
First, we describe the experimental settings, and then discuss
the quantitative results of the compared methods. Finally,
comprehensive studies on some components of this framework
are carried out.

A. Experimental Settings

Video data. To evaluate the performance of the proposed system,
we conducted experiments on the PETS 2010 Benchmark data-
set [54], which contains videos captured by several stationary
camcorders set up in different positions to monitor the same
environment. All of video frames used as training and testing
data were picked from regular flow of S0 in PETS 2010. We
chose three representative video clips of two views, denoted
as SPARSE, MEDIUM, and HEAVY respectively. The SPARSE
and MEDIUM videos only have a few individuals and small
groups of pedestrians (i.e., minor or moderate occlusions),
and the HEAVY video contains densely packed groups (i.e.,
heavy occlusions). Note that the monitoring regions by the
different camera views do not fully overlap. For the ease
of comparing multi-view and single-view people counting
approaches in the experiments, we considered only video
frames whose people counts in the different views are almost
the same. Specifically, a synchronous frame was selected if
|pc1 − pc2|/min(pc1, pc2) ≤ 0.2, where pc1 and pc2 are the
numbers of people counts of this frame in the two views,
respectively. The selected videos span a wide spectrum of
occlusion levels; therefore, they provide a good test bed to
assess how effectively our people counting approach handles
occlusions. As the ground truth, we used the publicly avail-
able manually-annotated pedestrian labels for this benchmark
dataset1 [29]. Details of the experimental data are given in
Table I.
Experimental setup. For quantitative evaluations of the com-
pared people counting approaches, we divided each video clip
into non-overlapping training and test sets. We used the first
half of frames of each video as training data and assessed an
approach’s performance on the remaining frames. To determine

1Downloaded from http://research.twnct.net/MCPC/.
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TABLE I
DESCRIPTION OF THE PETS 2010 VIDEO CLIPS USED IN OUR EXPERIMENTS AND THE PERFORMANCE OF THE PROPOSED BLOB MATCHING ALGORITHM.

Video Clips SPARSE MEDIUM HEAVY

View 1 View 2 View 1 View 2 View 1 View 2

Total number of frames 360 190 40

Minimal number of pedestrians in a frame 4 4 4 4 40 40
Maximal number of pedestrians in a frame 8 8 17 19 41 41

Mean of the number of pedestrians 6.8 6.8 10.7 11.9 40.5 41.0
Standard deviation of the number of pedestrians 0.9 1.1 3.8 4.9 0.5 0.2

Total number of segmented blobs 1854 1554 744 670 195 197

Precision of blob matching (%) 98.5 96.4 98.0

the stability of the approaches, we conducted experiments in
four settings; specifically only SPARSE, only MEDIUM, only
HEAVY, and a mix of them (denoted as MIXED in the following
discussion) are used as training data. Hence, we were able to
evaluate 1) how changes in the training data affect an approach’s
performance; 2) the generalization ability of downscaling (i.e.,
training on large crowds, while testing on smaller crowds) and
upscaling (i.e., training on small crowds, while testing on larger
crowds); and 3) the ability of dealing with the complex mix
of crowd sizes.
Evaluation criteria. In the experiments, we used the mean
absolute error (MAE) as the criterion to measure the perfor-
mance of the people counting methods on a single test video.
Furthermore, we use the average MAE to reflect the overall
performance of the compared systems.
Parameter determination. There are two main parameters in
the proposed method, one in the first pass and the other in
the second pass. We empirically determine a suitable value
for the upper bound in Equation 8 and demonstrate that it is
insensitive to the final performance. Note that the reported
results, except those for the parameter sensitivity, are based
on the same parameter, i.e., b = 2−5 in all the experiments. In
addition, we set the regularization parameter of the SimpleMKL
package [53] to the optimal value, which is selected from a
reasonable parameter space via three-fold cross validation.

B. Experimental Results

Accuracy of blob matching. We evaluated the accuracy of
our blob correspondence estimation algorithm by manually
checking the consistency of the matched components in two
views, and calculated the percentage of the returned matches
that are correct. The results in Table I show that, for the
three videos with different levels of crowdedness, the proposed
algorithm yields 96.4% to 98.5% accuracy for cluster matching.
Some of the matching results are shown in Figure 8, where
we assigned the same color and the same number to identify
the matched clusters in the two views.
Baseline and comparison. We compared the proposed method
with a Gaussian process method that is similar to Chan et al.’s
state of the art approach [1]. We used a radial basis function
and a linear function as kernels to learn a nonlinear estimation
model and a linear estimation model respectively. Therefore,
we have two sets of estimation results (RBF and LIN) to
compare with our first-pass regression results (FPR). We used

Gaussian processes, a kernel machine, to derive the regressors
in both baselines RBF and LIN. The above approaches only
use intra-camera visual cues; they do not transfer knowledge
between different camera views. To determine if the proposed
MVPC system outperforms conventional single-camera people
counting systems, we used FPR as our baseline and applied
the designed residual regressor to it. In the literature, the only
MVPC system is a fusion approach that combines the results
of detecting humans in multiple frames taken by different
cameras [7]. However, the method is not suitable for handling
scenes with dense crowds like the data used in our experiments.
Therefore, we developed a variant of the approach in [7] to
fuse complementary information. The variant averages the
estimation results by FPR in the two views, and we denoted it
as AVG; and the final results yielded by our two-pass regressor
are denoted as TPR.

Overall performance. Table II lists the estimation errors (MAEs)
made on the SPARSE, MEDIUM, and HEAVY videos by the
proposed first-pass regression approach (FPR) and the two-pass
regression framework (TPR). It also shows the results of the
RBF, LIN, and AVG methods. If we only consider intra-camera
visual features, FPR outperforms the RBF and LIN approaches in
most settings. Comparing the results in View 1, both baselines
RBF and LIN perform much poorly in View 2. The main reason
could be that the variation of pedestrian heights in View 2
is obviously larger than that in View 1 due to the camera
perspective, thus increasing the difficulties of counting. It is
worth noting that FPR does not suffer from the problem, since
it considers the exponential scaling law to regularize regressor
learning. This case shows the advantage of our approach FPR,
which joints perspective normalization and regressor learning.
The results also demonstrate that FPR can 1) more accurately
estimate the number of people in the test frames that contain
similar sizes of crowds in the training ones; and 2) estimate
downscaling and upscaling effectively.

Furthermore, Table II shows that the performance gains of
multiview people counting systems that use an average fusion
approach are modest because the approach interpolates the
estimation results derived from different camera views and
errors are often propagated, thereby degrading the performance.
While the performance of the average fusion approach AVG
improves on one view, the errors may increase on the other.
In contrast, our approach casts visual knowledge transfer as
a learning problem, and tries to deliver useful information
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TABLE II
THE ESTIMATION ERRORS, MAE, OF VARIOUS APPROACHES WITH FOUR DIFFERENT SETTINGS OF TRAINING DATA.

Training Data Test Data
View 1 View 2

RBF LIN FPR AVG TPR RBF LIN FPR AVG TPR

SPARSE

SPARSE 1.35 0.86 0.52 0.68 0.52 0.65 0.46 0.78 0.54 0.64
MEDIUM 6.08 1.94 2.20 2.78 1.70 7.09 4.51 5.75 5.17 4.10
HEAVY 39.80 10.11 10.86 10.47 8.22 40.15 10.73 10.08 10.47 5.09

MIXED 15.74 4.30 4.53 4.65 3.48 15.96 5.23 5.54 5.39 3.28

MEDIUM

SPARSE 1.28 0.81 0.77 0.76 0.56 2.08 3.31 1.45 0.60 0.72
MEDIUM 4.22 2.34 2.41 0.93 1.12 7.64 0.83 1.33 2.22 1.06
HEAVY 39.52 11.13 10.01 6.79 8.96 39.84 2.83 3.58 6.79 4.57

MIXED 15.01 4.76 4.40 2.83 3.55 16.52 2.32 2.12 3.20 2.12

HEAVY

SPARSE 5.71 4.80 4.40 3.66 2.29 9.48 18.49 2.90 3.64 3.41
MEDIUM 1.40 3.65 2.63 4.37 3.69 8.90 11.41 3.72 2.06 2.73
HEAVY 1.24 3.16 0.72 0.98 0.75 4.93 6.92 2.48 0.89 0.99

MIXED 2.78 3.87 2.58 3.00 2.24 7.77 12.27 3.04 2.20 2.38

MIXED

SPARSE 1.15 2.74 0.62 1.39 0.85 0.86 0.95 2.12 1.31 0.85
MEDIUM 1.94 1.36 1.05 1.20 0.99 4.25 1.26 1.14 1.30 1.07
HEAVY 9.04 0.98 2.93 1.33 0.63 15.79 11.72 0.85 1.31 0.45

MIXED 4.05 1.70 1.53 1.31 0.82 6.97 4.64 1.37 1.31 0.79

OVERALL 9.39 3.66 3.26 2.95 2.52 11.80 6.12 3.01 3.03 2.14

and avoid error propagation simultaneously. It turns out that
TPR reduces the MAEs in both the two views. Comparing with
baseline AVG, our approach TPR leads to relative improve-
ment 14.5%

(
2.95−2.52

2.95

)
on View 1 and 29.3%

(
3.03−2.14

3.03

)
on

View 2.
Figure 7 shows the number of people frame-by-frame in

the three test videos, including the manually annotated ground
truth and the estimations made by RBF, LIN, FPR, AVG, and
TPR in the three experiments. We observe that the performance
gain of the proposed TPR is significant on HEAVY, while the
improvement on SPARSE is moderate. There are two possible
reasons for this outcome. First, the video frames of HEAVY
often contain occlusions. Therefore, people counting based on
a single camera is not sufficient, and information from the view
captured by other cameras is valuable for residual compensation.
Second, variations in the appearance of small groups of
pedestrians is usually modest, but the variations may be large in
highly occluded crowds. Thus, complementary information and
inter-camera knowledge are more useful for handling densely
crowded scenes than sparse scenes. To illustrate this point, we
provide several examples of video frames with the estimations
based on extracted clusters in Figure 8.

C. Comprehensive studies

In the subsection, we further evaluated the performance of
a few individual components in the framework.
Effect of parameters. To evaluate the performance of the con-
strained linear regression algorithm, we conducted experiments
by using the same settings on a range of values (from 2−7.5

to 2−0.5) of parameter b in Equation 8. First, the impact
of randomness in Algorithm 1 is considered. Because the
algorithm randomly selects instances as training data at each
iteration and yields different results, each experiment was
performed five times to evaluate the first-pass regular part.
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Fig. 9. The means and standard deviations of MAEs of the proposed approach
with various values of the parameter b in Equation 8.

Figure 9 shows the means and the standard deviations of the
performance of FPR on the test videos when SPARSE, MEDIUM,
HEAVY, and MIXED are used as training data. The standard
deviations of the errors are quite small in the cases of learning
from the MIXED set, which varies from 0.0454 to 0.1303 in
View 1 and from 0.0062 to 0.1891 in View 2. The results
demonstrate that 1) the proposed algorithm stably generates
models; and 2) the randomness does not have a large impact
on the algorithm’s performance. Then, we assessed the impact
of the specified values of b. As shown in Figure 9, the results
indicate that good performance is achieved with a wide range of
b, i.e., 2−6 ∼ 2−2. This finding confirms that the performance
of the proposed method is stable.
Effect of the exponential scaling law. In this study, we
evaluated the benefit of introducing the exponential scaling law
into people counting. We considered MIXED as training data in
this set of experiments, because it stands for a general scenario.
The first-pass regressor FPR, which adopts the exponential
scaling law via Equation 8, is compared with two different
methods. The first one is the regressor learned with Equation 1.
It is the same as FPR except that the exponential scaling law
is not taken into account. The second one is the method given
in [1], which learns the regressor by weighting the features and
respecting perspective deformation. Note that all the methods



10 IEEE TRANSACTIONS ON IMAGE PROCESSING

S40 S80 S120 S160 M20 M40 M60 M80 H5 H10 H15 H20
0

5

10

15

20

25

30

35

40

45

video frame

nu
m
b
er

of
p
eo
p
le

View 1

 

 

GT

RBF

LIN

FPR

AVG

TPR

S40 S80 S120 S160 M20 M40 M60 M80 H5 H10 H15 H20
0

5

10

15

20

25

30

35

40

45

video frame

nu
m
b
er

of
p
eo
p
le

View 2

 

 

GT

RBF

LIN

FPR

AVG

TPR

(a) Using SPARSE as training data
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(b) Using MEDIUM as training data
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(c) Using HEAVY as training data
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(d) Using MIXED as training data

Fig. 7. The estimated number of people in frames of the four test videos (SPARSE, MEDIUM, HEAVY, and MIXED) reported with the ground truth. Note that
the RBF, LIN, and FPR methods only use intra-camera visual features, while AVG and TPR utilize additional knowledge derived from different cameras.
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View 1 View 2

ID GT RBF LIN FPR TPR ID GT RBF LIN FPR TPR

1 41 1.1 31.5 31.3 34.2 1 40 0.8 30.8 31.1 36.6

(a) A sample frame of HEAVY. The results are yielded by estimation models
trained on SPARSE.

View 1 View 2

ID GT RBF LIN FPR TPR ID GT RBF LIN FPR TPR

1 13 12.6 15.6 13.4 13.7 1 15 21.7 27.4 18.3 15.7
2 3 2.6 4.6 3.5 3.5 2 3 2.5 1.5 0.3 2.1

(b) A sample frame of MEDIUM. The results are yielded by estimation models
trained on HEAVY.

Fig. 8. Sample frames selected from the videos used in our experiments. The quantitative results reported on the components demonstrate the effectiveness of
our first-pass regression approach and the proposed two-pass regression system.
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Fig. 10. (Upper) The average MAEs of three methods in View 1 and
View 2, when different numbers of training data are available. (Lower) The
corresponding running time in the training phase.

work with the same features in the experiments. Figure 10
plots the average MAEs as well as the training time of the three
methods, when different numbers of training instances are used
for both View 1 and View 2. The proposed FPR consistently
yields better results than the other two methods, especially
when fewer training instances are available. It validates that
the scaling law can regularize the learning procedure, and
compensate for the lack of training data. As the size of training
data becomes larger, the task of perspective normalization
can be done more reliably. Therefore, the performance gain
gradually shrinks to almost zero. It is worth noting that the
performance gains of FPR in View 2 is more significant, since
the variation of pedestrian heights is much larger there due
to the camera perspective. FPR takes longer training time in
the iterative optimization procedure, but it is still within 15
seconds in the experiments. In the testing phase, the running
time of our approach and the method using only Equation 1
are almost the same, since both the two approaches use the
learned weight vector w, via either Equation 1 or Equation 8,
of the same dimension.
Features in the second-pass regression. In this work, we sug-
gested four types of features to learn a residual estimator in the
second pass; they are respectively termed as Positive Trim (P.T.),
Negative Trim (N.T.), Cross-camera Conflict (C.C.), and Intra-
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Fig. 11. (Upper) The individual performance of the four feature types adopted
in the second-pass regression. (Lower) Their corresponding kernel weights
optimized by SimpleMKL.

Fig. 12. Two examples of the detected blobs on a clip of PETS2007-REASON.

camera Conflict (I.C.). We conducted two experiments to know
their individual contributions to the second-pass regression.
First, four second-pass regressors, each of which is learned with
one specific type of features, are derived, and their performance
in terms of MAE is shown in the top row of Figure 11. Although
feature types N.T. and C.C. returned with better results, there is
no significant performance difference among the four types of
features. Second, their corresponding kernel weights, optimized
by SimpleMKL, are plotted in the second row of Figure 11.
It can be observed that feature types N.T. and C.C. get higher
weights in most cases, while feature type P.T. is almost ignored.
This may result from that P.T. is less complementary to the other
feature types. It is known that the optimized kernel weights in
multiple kernel learning are related to not only their individual
powers but also their diversity.
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TABLE III
PERFORMANCE EVALUATION ON THE VIDEO OF A CHALLENGING SCENE.

Camera RBF LIN FPR AVG TPR

Veiw 1 26.0 9.6 14.4 9.5 3.0
Veiw 4 17.2 6.0 6.4 9.2 4.0

Blob extraction sensitivity study. In this study, we examined
the performance sensitivity to the accuracy of blob extraction
in challenging scenes using the PETS2007-REASON 2 dataset.
In this dataset, the video clips film a near view of a departure
lobby. The challenges are its poor video quality and some non-
pedestrian moving objects such as luggage and trolleys, leading
to error counting of each extracted blob. Based on the blob
extraction results, we evaluate the performance of FPR as well
as two recently proposed approaches, i.e., Gaussian process
regression [1] and neural networks [25] for comparison. The
experimental setups are the same as those used on PETS 2010.
Namely, the first half of frames of each video serve as training
data, while the rest as test data. The MAE over all test frames
yielded by Gaussian process regression, neural networks, and
FPR are 1.81, 0.99, and 0.85, respectively. The result show that
our FPR yields superior performance to the feature weighting
approaches which coordinate powerful machine learning tools
to learn a people counting model. Moreover, as revealed in
Figure 12, we note that fusing feature weights together with the
regressor, the approach couples well with the extracted blobs
in the cases where clutter backgrounds or partial occlusions
due to the camera perspective appear.

Robustness in challenging scenes. To evaluate the robustness
of the proposed method in challenging cases, we conducted
an additional experiment on a synchronous clip captured by
two cameras whose official labels are View 1 and View 4 in
PETS 2010. We used the video frames with timestamps 14-06 in
regular flow of S0. The challenges of the videos result from the
large discrepancy between the two camera views as well as the
heavy occlusions in View 4, as shown in Figure 13. Therefore,
the estimated sizes of matched blobs in the different views
were usually inconsistent. Following the previous experiments,
we took the first half of frames as training data and evaluated
the performance on the rest. Only video frames with nearly
the same people counts in the two views were selected. Thus,
the training and evaluation frames used in this experiment are
different from those in the previous experiments. As displayed
in Table III, the MAE of FPR for View 1 and View 4 are 14.4
and 6.4, respectively; the method FPR outperforms the RBF
baseline significantly and is worse than the LIN approach. As
for the performance degradation of FPR, we considered the main
reason is that there are fewer training data in this experiment,
but there are more optimization variables to be determined in
FPR than baseline LIN. Nevertheless, our approach TPR can
effectively leverage the information from the two camera views,
remarkably reduce the counting errors in the first pass, and
achieve promising results.

2http://www.cvg.rdg.ac.uk/PETS2007/.

(a) View 1 (b) View 4

Fig. 13. Sample frame of the detected blobs in View 1 and View 4 on a clip
of PETS2009.

V. CONCLUSIONS

To resolve the difficulties of people counting, we have
proposed a multiview system that transfers knowledge between
multiple cameras. The contribution of this work is threefold.
First, we propose a technique for counting the number of
people in images captured by multiple cameras. Integrating
corrections of the perspective effect and estimation of the
size of a crowd, makes the intra-camera visual features more
effective and yields an accurate and scalable counting model.
Second, to explore inter-camera knowledge, we present a
two-pass regression framework that has shown promise in
exploiting and adapting heterogeneous information to handle
the difficult aspects of people counting, such as mutual
occlusions, imperfect foreground segmentations, and shadows.
Finally, we match blobs to compensate for the variations among
cameras, and propose a blob matching algorithm that derives
a set of consistent entities from different views. The algorithm
ensures that knowledge sharing is successful. Furthermore, the
results of experiments on the PETS 2010 benchmark dataset
demonstrate that our first-pass regression method and two-
pass regression framework enhance the performance of people
counting significantly.

APPENDIX

Suppose that f (i) and k(i) denote the focal length and the
radial lens distortion coefficient of camera Pi, respectively. Let(
σ
(i)
x , σ

(i)
y

)
represent the center of radial lens distortion, and

let S(i)
x represent the image scale factor which accounts for

any uncertainty caused by imperfection of hardware timing
and digitization. The reverse variant that transforms from the
image coordinate system of camera Pi to the world coordinate
system is described step by step as follows.

1) Transform computer image coordinate
(
u
(i)
f , v

(i)
f

)
into

real image coordinate
(
u
(i)
d , v

(i)
d

)
by

u
(i)
d =

(
u
(i)
f − σ

(i)
x

)
· d(i)x

S
(i)
x

and (19)

v
(i)
d =

(
v
(i)
f − σ

(i)
y

)
· d(i)y , (20)

where d(i)x and d(i)y are the distances between adjacent
sensor elements in x and y directions, respectively.

2) As indicated in [36], to avoid causing numerical insta-
bility, only radial distortion is considered for machine
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vision application. In other words, we only need one term
here. Therefore, we transform distorted image coordinate(
u
(i)
d , v

(i)
d

)
into un-distorted one

(
u
(i)
n , v

(i)
n

)
by

u(i)n = u
(i)
d ·

(
1 + k(i) ·

(
u
(i)
d

2
+ v

(i)
d

2))
and (21)

v(i)n = v
(i)
d ·

(
1 + k(i) ·

(
u
(i)
d

2
+ v

(i)
d

2))
. (22)

3) Compute the transformation from undistorted image co-
ordinate

(
u
(i)
n , v

(i)
n

)
to its real world coordinate (uw, vw)

on the desired ground plane using an inverted perspective
projection with pinhole camera geometry, i.e.,

uw =
1

λ(i)

(
v(i)n

[
r
(i)
2

r
(i)
8

]T [
T

(i)
Z

−T (i)
X

]
+ u(i)

n

[
r
(i)
8

r
(i)
5

]T [
T

(i)
Y

−T (i)
Z

]

−f (i)

[
r
(i)
2

r
(i)
5

]T [
T

(i)
Y

T
(i)
X

])
and (23)

vw =− 1

λ(i)

(
v(i)n

[
r
(i)
1

r
(i)
7

]T [
T

(i)
Z

−T (i)
X

]
+ u(i)

n

[
r
(i)
7

r
(i)
4

]T [
T

(i)
Y

−T (i)
Z

]

−f (i)

[
r
(i)
1

r
(i)
4

]T [
T

(i)
Y

T
(i)
X

])
, (24)

where the scalar λ(i) is defined as

λ(i) =v(i)n

[
r
(i)
1

r
(i)
2

]T [
r
(i)
8

−r(i)7

]
+ u(i)

n

[
r
(i)
5

r
(i)
4

]T [
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7
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− f (i)
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(i)
1
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(i)
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r
(i)
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, (25)

while

R(i) =

r(i)1 r
(i)
2 r

(i)
3

r
(i)
4 r

(i)
5 r

(i)
6

r
(i)
7 r

(i)
8 r

(i)
9

 and T (i) =

T (i)
X

T
(i)
Y

T
(i)
Z

 (26)

are the rotation matrix and translation vector defined
in [36], respectively.

Once the image-to-world transformation between
(
u
(i)
f , v

(i)
f

)
and (uw, vw), and the world-to-image transformation between
(uw, vw) and

(
u
(j)
f , v

(j)
f

)
are determined, every pixel on the

bottom boundary in camera Pi can be mapped to the image
plane of camera Pj .
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