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Learning Discriminatively Reconstructed Source
Data for Object Recognition with Few Examples
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Abstract—We aim at improving object recognition with few
training data in the target domain by leveraging abundant
auxiliary data in the source domain. The major issue obstructing
knowledge transfer from source to target is the limited correlation
between the two domains. Transferring irrelevant information
from the source domain usually leads to performance degradation
in the target domain. To address this issue, we propose a transfer
learning framework with the two key components, discriminative
source data reconstruction and dual-domain boosting. The former
correlates the two domains via reconstructing source data by
target data in a discriminative manner. The latter discovers
and delivers only knowledge shared by the target data and
the reconstructed source data. Hence, it facilitates recognition
in the target. The promising experimental results on three
benchmarks of object recognition demonstrate the effectiveness
of our approach.

Index Terms—Object recognition, domain adaptation, transfer
learning, low-rank reconstruction, boosting, late fusion.

I. INTRODUCTION

BJECT recognition has always been a fundamental yet

critical problem in the fields of image processing and
computer vision, since it is essential to a broad spectrum of
applications, such as image retrieval, semantic image segmen-
tation, and scene understanding. However, object recognition
has become more and more challenging in nowadays applica-
tions owing to increasing numbers of objects to be identified,
large intra-class variations, as well as expensive manner efforts
for training data acquisition and labeling.

Conventional works employ various powerful hand-made
feature descriptors or machine learning methodologies to con-
quer these difficulties. One famous combination is multiple
kernel learning (MKL), e.g., [1]-[7], which can fuse multi-
ple, complementary descriptors to enhance object recognition.
Multiple kernel learning requires a large number of labeled
data. However, training data are often insufficient due to
the expensive manual efforts for training data collection and
labeling.

To reduce manual efforts, transfer learning [8] has been
largely developed and demonstrated its effectiveness for han-
dling classification with few data in various applications, such
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Fig. 1. Overview of our approach. (a) In the case where two target classes
and four source classes are given, data of each source class is reconstructed
by data of either target class, indicated by the arrows. (b) For each adopted
feature representation such as color in the green box, each target class is
augmented with the reconstructed source data. Dual-domain boosting is used
to learn the one-vs-one classifier. After learning the classifier for each feature
representation, late fusion is employed for prediction.

as object recognition [9]-[14], image segmentation [15], object
tracking [16], image denoising [17], and so on. The idea
behind transfer learning is to deliver the beneficial knowledge
in the source to improve the learning task in the farget. Recent
research advances, e.g., [10]-[13], design various ways to
transfer distinct source information, and are usually accompa-
nied by mechanisms for avoiding negative transfer, which is
caused by passing meaningless or harmful information from
source to target.

Existing transfer learning algorithms [10]-[13] have pre-
sented the efficacy of solving the problem of few labeled
data in object recognition, but most of them still suffer from
some limitations. First, they usually assume strong correlation
between the source and target domains. For instance, some
methods [18], [19] hypothesize that the conditional probabili-
ties of labels given the samples in the two domains are similar.
Second, they handle merely the knowledge transfer from either
a single class or multiple classes in the source to a single class
in the target. However, discriminative information over classes
in the target domains is preferred and even more important.
These restrictions reduce their performance and applicability
for object recognition, and might lead to the negative transfer.



In this paper, we propose a general transfer learning ap-
proach that delivers relevant information from multiple source
classes to multiple target classes for object recognition, and
solves the issues mentioned above. The main contributions of
this work are summarized as follows. First, we do not assume
that there exists strong correlation between source and target
domains. In our approach, data of the two domains can be from
either the same or different databases, and their respective
object categories may partially overlap or don’t overlap at
all. To enhance the correlation between the two domains, our
approach reconstructs source data by target data via a discrim-
inative, low-rank formulation. Only the reconstructed source
data are used for helping recognition in the target. In this
way, the inter-domain variations are reduced to correlate the
two domains. By discriminative reconstruction, we mean that
data of a source class is enforced to be reconstructed mostly
by data of a single target class. It enhances the discriminative
power in transfer. Second, after correlating two data domains,
we transfer knowledge from the reconstructed source data
to the target domain. The developed dual-domain boosting
can explore common knowledge in the two domains, and
leverages the extra knowledge to improve recognition in the
target. Specifically, it jointly learns two boosted classifiers, one
for each domain, in which the relatedness between domains
are modeled by the shared weak learners and the differences
are reflected by their respective ensemble coefficients. The
proposed boosting algorithm has its theoretic support. While
the shared weak learners are selected to best minimize the
total exponential loss of both source and target domains, the
ensemble coefficients are derived to optimally minimize the
respective loss. Third, multi-class recognition in the target is
carried out by using one-vs-one strategy in this work. We aug-
ment each one-vs-one classifier with a two-vs-rest classifier,
i.e., the two involved classes versus the rest, and show that
the performance can be further improved via diminishing the
influence of irrelevant votes in the one-vs-one scheme.

Fig. 1 gives the overview of our method. In Fig. 1(a), two
target classes and four source classes are considered. Data
of each source class are reconstructed by data of either target
class, as indicated by the arrows. In the green box of Fig. 1(b),
each target class is augmented with the reconstructed source
data before performing one-vs-one classification via dual-
domain boosting. The procedure is repeated for each adopted
feature, such as the color-based and shape-based features. A
late fusion is employed for final prediction.

We assess the proposed method on three benchmark
datasets, including Caltech256 [20], SUNO09 [21], and
MSRC [22]. The promising performance of within-database
transfer, i.e., the source and target classes coming from the
same dataset, and cross-database transfer, i.e., the source and
target classes coming from different datasets, demonstrates
the effectiveness of our approach, even when only few target
training data (ten or fewer examples per class) are available.

II. RELATED WORK

In this section, we review a couple of research topics that
are relevant to the development of our approach, including
object recognition and transfer learning.
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A. Object Recognition

Object recognition is typically formulated as a multi-class
classification problem. Vast research effort has centered on
minimizing intra-class variations while maximizing inter-class
variations by designing more powerful features to distinguish
objects of a class from another. Since there is no single
universal descriptor in general that can well represent all
objects to be recognized, multiple kernel learning algorithms
(MKL), e.g., [3], [5], are employed to investigate the optimal
fashion for integrating various features.

The major limitation of MKL is that they need a large
number of labeled training data to build stable classifiers.
Unluckily, it is usually hard to label or compile ample data,
particularly for new object categories. Therefore, exploring
the knowledge in correlated categories from different domains
to learn a new object category with limited supervision has
become an active research issue in object recognition, also
called transfer learning.

B. Transfer Learning

The spirit of transfer learning is to identify the domain-
specific and domain-sharing knowledge in the source domain
and transfer the latter to improve the task of the target domain
with little supervision. The recent survey of transfer learning
algorithms can be found in [8], [23]. Based on [8], these
algorithms can be divided into four categories according to
what kind of source information is transferred:

1) Transfer by data instances: Methods of this class, e.g.,
[10], [13], [24], aim to re-weight or re-sample source data
instances by measuring the correlation of samples between
the source and target domains via various techniques, such
as boosting [10], [13] or data distribution matching [24]. The
source training instances that are similar to the target ones
are given larger weights for increasing their impacts on target
model learning.

Knowledge transfer in this way relies on high correlation
between instances of source and target domains. Our approach
belongs to methods of this category, but can be distinguished
from others with the difference that the correlation in this
approach is reconstructed and hence enhanced by using a
discriminative, low-rank formulation in which source instances
are reconstructed by target instances. The reconstructed source
instances are leveraged by dual-domain boosting for transfer
learning. Thus, we can extend the feasibility of transfer
learning without worrying about whether there are enough
similar and correlated instances in source and target domains
in the beginning.

2) Transfer by model parameters: The model transfer for
object recognition is pioneered by Fei-Fei et al. [11]. They
suggest to learn an object category with a small training
set via updating the general knowledge, which is extracted
from previously learned categories and represented as a prior
probability function in the space of model parameters. Some
of research efforts for model transfer are based on the support
vector machine (SVM) or its variants [12], [25]-[27]. The
primary assumption of these methods is that the closely related
source and target domains will have similar parameters or
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priors of models. Hence, the target classifier can be obtained
by adjusting the pre-learned classifiers in the source domain
via the few training examples. Luo et al. [28] instead propose
distance metric transfer by assuming that the target distance
metric can be optimized by searching the space spanned by
the eigenvectors of source distance metrics.

These works assume that both source and target domains
share similar model parameters. The models adapt the existing
source classifiers by fitting target data. However, such schemes
may have limited applicability especially when source and
target domains are dissimilar.

3) Transfer by relational knowledge: This kind of transfer
learning is suitable for multi-label classification e.g., visual
concept detection [29]. The major hypothesis is that data
drawn from each domain is not independent and identically
distritbuted (i.i.d.) [8]. Instead, the visual concepts in an image
are often positively or negatively correlated. For instance,
fishes must be in water so that if we are given an image
with a fish, then the probability of seeing water is also very
high. Jiang et al. [29] exploit a semantic graph to capture the
correlation between concepts, and update it gradually based
on the concept relatedness in the target domain. Qi et al. [30]
introduce a cross-category transfer learning algorithm explor-
ing concept correlation between categories. One requirement
in this type of transfer is that these methods depend on a large
number of human-driven multi-label data.

4) Transfer by feature representation: Approaches of this
category attempt to find out more discernible feature rep-
resentations to recognize objects with the aid of auxiliary
source data. Various ways have been proposed to carry out
this type of transfer, such as learning intermediate feature
representations [31]-[37], e.g., attributes and binary codes,
exploring invariant domains or subspaces [18], [19], [38]-
[43], deriving a number of classifiers from auxiliary data [44]—
[46], and learning a cross-domain dictionary pair by which the
sparse codes of source and target data are correlated [47], [48].

Attribute-based transfer learning algorithms aim to bridge
the low-level image features and high-level concepts. However,
expensive human efforts on labeling attributes [32]-[34], [36]
are required. Research efforts [18], [19], [38]-[40] are cen-
tered on exploring invariant domains or subspaces that align
the feature distributions between source and target domains.
Nevertheless, these methods often address only cross-domain
object recognition with the same categories in the source and
target, and assume the conditional distributions of labels in
the two domains are similar. Another notable branch for this
type of transfer is to build a number of classifiers on source
data. New feature representations of target data are yielded
by applying these classifiers to the data, e.g., classemes [44].
However, exploring good features among such a rich set of
intermediate features to address the target task still relies on
a large number of training data in practice.

III. THE PROPOSED APPROACH

We formulate object recognition as a multi-class classifi-
cation problem in the target domain, and adopt one-vs-one
scheme to carry out it. It leads to CT(C% - M binary

classification problems, where C'r is the number of classes
in the target and M is the number of the adopted feature
representations. For each binary problem, we focus on learning
a binary predictor by using data in the fwo corresponding
categories in the target and all categories in the source. Specif-
ically, this task is carried out by the three components of our
transfer learning approach. First, we correlate the two domains
by discriminative reconstruction in the manner that data of
each source class is reconstructed mainly by data of either
target class. Each of the two target classes is then augmented
with the respectively reconstructed and correlated source data.
Second, we use the developed boosting algorithm to explore
and deliver knowledge from source to target. Further, a two-vs-
rest classifier is learned to exclude the influence of irrelevant
voters in the one-vs-one strategy for multi-class classification.
Third, a late fusion mechanism is used to fuse the predictions
for data in multiple feature representations.

The rest of this section is organized as follows. We give
the notations and the problem definition in subsection III-A.
To correlate the target and source domains by discrimina-
tive reconstruction, our formulation and its optimization are
introduced in subsections III-B and III-C, respectively. The
dual-domain boosting is specified in subsection III-D. Finally,
late fusion for working with multiple feature representations
is described in subsection III-E.

A. Notations and Problem Definition

We aim at improving image category recognition in the
target domain with few training examples by borrowing infor-
mation from an abundant set of data in the source domain.
We are given a training set in the target domain, Dy =
{xE e X,yI' € Yr)} of Cr classes, as well as a large
dataset in the source domain, Dg = {(x5 € X,y> € Vs}
of Cg classes. In this work, the categories of the target and
source datasets, Vr and )g, can partially overlap, or have
completely different categories. Even for data in a common
category, their feature distributions in the two domains may
be different. To deal with complex recognition tasks, we use
M descriptors to better characterize each sample in both two
domains, i.e., X, = {Xn,m € Xm }2_,. Our goal is to derive a
better classifier that gives low generalization error in the target
domain by leveraging not only information extracted from Dr
but also knowledge transferred from Dg.

B. Domain Correlation via Discriminative Reconstruction

In the one-vs-one scheme, two object classes in the target
and all classes in the source under one particular feature
representation are considered. The goal in this step is two-fold.
First, we need to correlate data in the two domains, since no
assumption about the correlation of the two domains is made
in advance. Second, we aim to enrich the training data in the
target by borrowing data in the source, so we divide each of
source object classes into either side of the two target classes
based on their data similarities, and carry out enrichment.

We develop a formulation of discriminative reconstruction
to simultaneously accomplish the two aforementioned tasks,
i.e., domain correlation and data augmentation. Inspired by



the good performance reported in the pioneering work by
Jhuo et al. [40], reconstruction-based domain adaptation is
adopted in our approach. In this way, data of each source
class are reconstructed by data of the two target classes via
minimizing the reconstruction error. The correlation of the
two domains is then performed by borrowing information only
from the reconstructed part of the source data. We go beyond
the formulation [40] by using discriminative reconstruction.
It means that data of this source class are enforced to be
reconstructed by data of either target class, instead of both
classes. More discriminative information can be borrowed for
learning one-vs-one classifiers in this way. The procedure is
repeated for each source class. All source classes are then
binarized, and each source class is then assigned to the target
class reconstructing it.

Our approach to discriminative reconstruction is introduced
in the following. Without loss of generality, we assume that the
two target object categories are classes 1 and 2 and the single
source category is class c. Their object instances are under
feature representation m. We aggregate the data of two target
categories, and denote them by {X/ € R¥*Ne}2_  where d
is the dimension of representation m, and N, is the number of
data in target class /. The data of source class c are similarly
aggregated X° € R¥N, where N is the number of data in
source class c. The discriminative reconstruction is repeated
for each source class and each adopted feature representation.
The indices ¢ and m are hence omitted for simplicity.

The inter-domain variations may be large, and make knowl-
edge transfer infeasible. We assume that the unfavorable
variations can be modeled by a linear transformation, and the
related source data can be reconstructed by target data after
transformation. The idea can be specified by

WXx°=XTZ+E, (1)
A

—IxI xf1| 7

] + E, 2)

where W € R%¥d ig the transformation matrix, 7 =
[z1 2o -+ zy] € RWViTN2)XN g the matrix of the recon-
struction coefficients, and F = [e; e3 -+ en] € RN i the
matrix of the reconstruction errors. It can be checked column
by column in Eq. (1) that each transformed source sample
fo is well reconstructed by target data X ”'z;, if residue e;
is minimized. In Eq. (2), X7 and Z are divided into two parts
according to the target classes. These coefficients specify how
the source data are reconstructed by either the whole or part of
target data. Since we aim to improve the discriminative power
of reconstructed source data, the reconstruction coefficients of
data of each source class are restricted to be related to only
one side of target data.

It is not practical to solve W, Z, and E in Eq. (1) directly,
since there are infinite feasible solutions. Therefore, a low-
rank based formulation is adopted and serves as the prior to
solve these variables. Besides, we implement discriminative
reconstruction by minimizing the minimal norm of Z; and Z»
so that source data tend to be reconstructed by only data of
a single target class. The task can be cast as the following
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constrained optimization problem:

. . 2 2
Join rank(Z) + ol El|z,1 + min([|Z1 ||z, [ Z2]|7)  (3)
st. WX°=XTZ+E, 4)
wWw' =1, %)

where ||E||21 = Zfil |lei]l2 is the & 1 norm of E, o is a pos-
itive tradeoff parameter, and || Z;||% is the square of Frobenius
norm of Z,. Constraint WW T = I ensures that TV is a basis
transformation, i.e., an orthogonal matrix. Minimizing the rank
of Z helps the preservation of the intrinsic structure of X .
The use of > ; norm in the error measure enforces consistently
small errors in the features, but tolerates large reconstruction
errors caused by outliers, i.e., source data that cannot be pre-
cisely reconstructed. Thus, it alleviates the overfitting problem
caused by the outliers. The term min(||Z1]|%, || Z2||%) carries
out discriminative reconstruction. It minimizes the smaller
reconstruction coefficient matrix between || Z;| and || Z5] in
terms of Frobenius norm. Namely, this term encourages that
source data X are mainly reconstructed by either X7 or X1,
but not both.

Rank minimization in general is known as an NP-hard
problem, and there is no efficient algorithm to solve it. Hence,
we consider the convex relaxation of the optimization problem
in Eq. (3), i.e.,,

min_ | Z|l. + o B2y + min([| 2% |1 Z:]7) - ©)

st. WX5=XTZ+E, (7)
wWw' =1, ®)

where ||Z||. is the nuclear norm of Z, i.e., the sum of
its singular values. It serves as a convex approximation of
rank(Z7).

To solve the constrained optimization problem in Eq. (6), we
use the Augmented Lagrange Multiplier (ALM) method [49],
which deals with a constrained optimization problem by
solving a series of unconstrained ones. First of all, we convert
the optimization problem in Eq. (6) to an equivalent form

W’ng,ij%/,,E 12|« + || Ell2,1 + min(|| Z7 |7, |1 251%) (9)
st. WX°=XTZ+E, (10)
zZ=2, (11)

zZ=2", (12)

where Z' and Z" = [Z}'" ZJ"|T are the additional auxiliary
variables of Z, and they are required in the following opti-
mization procedure. Note that Z is the coefficient matrix for
source data X g reconstruction. The orthogonality constraint of
W is temporarily ignored. Nevertheless, W is orthogonalized
afterwards as in most orthogonality preserving methods.

We solve the optimization problem in Eq. (9) by the inex-
act ALM method, which minimizes the augmented Lagrange
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function of Eq. (9):
7 . 11012 11012
e A Z 4 al Bl + min( 2 F 122]7)

Y, Wwx® - xT7 - E)+ %HWXS X"z B|%
+ '\ z-2)+ 522k

+ (V"2 -2") + 512 = 2"k, (13)

where (-,-) denotes the inner product operator, y is a
positive penalty parameter, and Y, Y’ and Y are the Lagrange
multipliers. Refer to [50] for the details of the augmented
Lagrange function.

How to optimize Eq. (13) will be specified in the next
subsection. Suppose that the optimization is completed cur-
rently. The source data of this class is then assigned to target
class with the smaller reconstruction error, i.e., to target class
0 = argmingeqq 2y WX — XI'Zy||p. The reconstructed
part of the source data of this class is denoted by X? =
[xft x& ... xR = X[ Z,, where each reconstructed source
sample is assigned to class ¢. For each source class, we repeat
above optimization procedure, and assign the reconstructed
data of that source class to the target class with smaller
reconstruction error. It follows that all the reconstructed source
data are correlated with the target data and binarized, i.e.,
{(xF,yF € {1,2})}Y%, where Ng is the number of the all
source data.

C. Domain Correlation Optimization

We give the details how the objective function Eq. (13) is
solved in this subsection. Starting with a small value of u, the
inexact ALM method iteratively solves Eq. (13) by gradually
enlarging p. The procedure is repeated until all the constraints
in Eq. (10) ~ (12) are satisfied. At each iteration, the strategy
of alternating optimization is adopted for solving variables
{Z',Z" , W, E, Z}. Namely, we optimize one of the variables
by fixing the rest, and then switch roles of the variables
sequentially. Lagrange multipliers, Y, Y/ and Y, are updated
accordingly. The subproblems for variables {Z', Z"", W, E, Z}
and the optimization methods are introduced as follows:

a) On optimizing Z': We fix all the optimization vari-
ables except Z’, and yield the subproblem w.rt. Z’. The
singular value shrinkage operator D, in [51] serves as the
solver to optimize Z’ with D1 (Z + YT/)

7 =agmin L2+ 217 — 2+ D3 as
= argmin — «+ = — — .
gmy 1 9 [ F
b) On optimizing Z": The resulting subproblem w.r.t.
Z" is given below:
7" = argmin min([| 27 |[%, | Z5|I%)
Y Z— 2"+ gnz — 7% (5)

We would like to solve this subproblem by using gradi-
ent descent methods. However, the min operation applying
to || Z7||% and ||Z)||% makes the objective function non-
differentiable. To address this issue, we adopt the Log-Sum-
Exp (LSE) trick, which gives the differentiable surrogate of

the min operation by
min(|| 27| %, 125 ||7) =~
-1
— log{exp(—r|| 21 [7) + exp(—r|Z5 7)), (16)

where the smoothness parameter r is a positive constant. It
follows that the subproblem in Eq. (15) can be approximated
by

o1
2" = argmin — log (exp(—r||2{||%) + exp(—r|| Z5||%))

+ <Y”,Z—Z”>+%||Z—Z”||2F. (17)

We then solve Eq. (17) by using gradient descent.

c) On optimizing W : For the subproblems w.r.t. W, there
exists a closed-form solution derived by setting the partial
derivative to zero. That is,

W=X"Z+FE - %)(XS)T(XS(XS)T)‘l.
Besides, we use QR-decomposition to orthogonalize the ob-
tained W such that WW T = I holds.

d) On optimizing E: The subproblem w.r.t. E requires
the {5 1 norm minimization. Following [52], it can be updated
with the analytical solution, i.e.,

(18)

. 1 Y

E =argmin S||E|a1 + = |E -~ (WX® = XTZ+ )%, (19)
E L 2 iz

e) On optimizing Z: For the subproblem w.r.t. Z, we

derive the closed-form solution by setting the partial derivative
to zero:

Z=2I+XDH)TXT) X" (WXS - E)

+ i((XT)TY ~Y' -Y")+(Z'+2")]. (0

The optimization procedure is summarized in Algorithm 1.
Parameter ;1 in Eq. (13) determines the relative importance
of the constraints. When iteratively running Algorithm 1, u
is gradually enlarged until all the constraints are satisfied.
Thus, p should be set as a small value, and gradually enlarged
until all constraints are satisfied. p is introduced to control the
step size of iteratively enlarging p. When the initial value of
w and the value of p are set as 1072 and 1.2 respectively,
the optimization procedure in Algorithm 1 converges with
45 ~ 62 iterations in our experiments. The computational
bottleneck of Algorithm 1 lies in step 3 and step 4. Hence, the
running time can be significantly reduced by using principal
component analysis (PCA) to preprocess data. In the case
where X7 contains 20 target data, 10 for each target class,
X has 50 source data, and each pre-processed data sample
is of dimension 300, the running time of Algorithm 1 is about
1.48 seconds on a modern PC with an Intel Core 7 3.4 GHz
processor.

D. Knowledge Transfer via Dual-Domain Boosting

After discriminative reconstruction, the transformed source
data are correlated with target data in the feature space, and
aligned as well in the labels. Namely, the set of the binary-

class target data is {(x7,y7 € {1,2})}Y7%, and the set of
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Algorithm 1: Inexact ALM for Solving Problem in Eq. (13)

Algorithm 2: Dual-domain Boosting

Input: Binary-class target data X7, source data X of a
single class, parameter o.

Initialize: £ =0;W =1;Y =Y’ ' =Y" =0;
Z = ((XT)T(XT) M (XT)TWXS; p= 107"
while not converged do
1. Update Z’ in Eq. (14) by using singular value
thresholding.
2. Update Z" in Eq. (17) by using gradient descent.
3. Update W with the closed-form solution in Eq. (18).
4. W < orthogonal(WW).
5. Update E with the analytical solution Eq. (19).
6. Update Z with the closed-form solution in Eq. (20).
7. Update the Lagrange multipliers:
Y=Y +uWX%-XTZ - E),
Y'=Y'+u(Z-2"),
Y// — Y// +M(Z _ Z//)'
8. Update x by p = min(up, 101°), where p = 1.2.
9. Check the convergence conditions:
WXS—-XT7 - E—0,
Z—-7Z"—0,
L Z-Z"—0.
Output: £, W, Z.

the reconstructed source data is {(x,yf € {1,2})}Y%. Our
goal here is to learn an effective classifier in the target domain
by utilizing both the target data as well as the discriminately
reconstructed source data.

To avoid the negative transfer problem, we adopt the
principle of classifier sharing [49], [53], [54]. Based on
it, we develop dual-domain boosting, which discovers and
delivers truly useful reconstructed source knowledge to target
domain. This learning process can be considered as a multi-
task learning problem. Specifically, two boosted classifiers
are learned simultaneously in our approach. One classifier is
for the target data, while the other is for the reconstructed
source data. To leverage the abundant data in the source to
regularize the learning process in the target, the principle of
classifier sharing assumes that the two boosted classifiers share
commonly selected weak learners. On the other hand, the
two classifiers have their own ensemble coefficients of the
weak learners. This property is used to model the underlying
differences between the two domains. In the following, the
construction of weak learner candidates is firstly introduced,
and the algorithm of dual-domain boosting is then described.

1) Weak learner construction: We employ the RBF kernel
function to measure the similarity between data from the target
dataset and the reconstructed source dataset. That is,

—[l%i — Xj||2)

o ’
where x; and x; can be target and reconstructed source data,
and v is a positive constant. We empirically set v as the

k(x;,%x;) = exp ( 2n

Input: reconstructed source data {(x, y? € {1,2})}7,

target data {(x7,y7 € {1,2})}7,, iteration V.
Output: source classifier f% and target classifier f7,
where

FUx) = 31, Bfhy(x) for £ € {R, T}.
Initialize: w{ = w} = --- = wy, = - for £ € {R,T}.
fort +— 1,2,...,V do

1. Select the optimal dyadic hypercut h; by
. N,
hy = argminy, Z@e{R,T} >im1 wi[he(x§) # yi]-
2. Compute coefficient 3{ = max (0, 3 In 1;—;2) for ¢ €
{R, T} where
e = 500 wilhe(x)) # y]-
3. Update data weights {w!}¥*, for £ € {R, T} by
wy, = wj, exp (=26 [he(x7) # y;])-
| 4. Normalize data weights {w!}\*, for £ € {R, T}.

average of the pairwise distances.

To learn a boosted classifier with kernel function k, we
adopt the method proposed in [55]. The discriminant power
of a kernel is first converted into a set of weak learners, called
dyadic hypercuts. It turns out that the transfer learning can be
achieved by boosting over the pool of dyadic hypercuts yielded
from the kernel function.

A dyadic hypercut h is composed of two elements here,
including a pair of samples, x, and x,, from the opposite
classes, i.e., y, = 1 and y,, = 2. Note that x,, and x,, can
be from the target or the reconstructed source domains. The
yielded dyadic hypercut h is

i — —b>
hx) = {;, if k(xp,x) — k(xn,x) —b >0,

. (22)
otherwise,

where b is a threshold, whose value is determined by error

minimization in boosting. The size of the weak learner pool

is |H| = NP x N", where N? and N™ are the numbers of

data of class 1 and 2, respectively.

2) Boosting algorithm: To transfer knowledge from the
reconstructed source domain to the target domain, we follow
the strategy of classifier sharing in [49], [54] where the
relatedness between tasks are modeled by the shared weak
learners while the differences between tasks are reflected by
their respective ensemble coefficients. The binary classifiers
f® and f7 in the two domains are respectively given by

v
Fix) = Bihi(x), for £ € {R,T}, (23)
t=1
where {h;} are the shared weak learners, V' is the number
of the selected weak learners, and {3/} are the respective
coefficients.
Algorithm 2 shows a systematic way used to learn f? and
fT simultaneously. It can be proved that the dyadic hypercut
h; selected in step 1 minimizes the sum of the exponential loss
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in the two domains, while the ensemble coefficients given in
step 2 are determined to minimize the exponential loss of the
corresponding domains, respectively. Thus, our approach is
developed with the theoretical support of AdaBoost, since the
exponential loss is monotonically decreased. By sharing weak
learners, it turns out that the high risk of overfitting caused by
insufficient samples in the target domain can be considerably
alleviated, because knowledge extracted from the correlated
source domain can regularize the selection of weak learners
in the target. Furthermore, the intrinsic differences between
the two domains can be modeled through their respective
ensemble coefficients whose values are set by considering
data in individual domains. Hence, we relieve the unfavorable
effect of negative transfer, which typically happens if the
differences between the source and target domains are not
properly addressed during knowledge transfer.

We notice that the performance of using one-verse-one
scheme for multi-class classification can be further improved.
The observation is that a one-verse-one classifier is learned
by using training data of the corresponding two classes in
the stage of training. However, this classifier is applied to
all testing data, which can be of any classes, in the stage
of testing. It is not reasonable, especially in our cases of
transfer learning, since all the source data may be diversely
transformed and reconstructed in learning these one-verse-
one classifiers. To address this issue, we associate each one-
verse-one classifier with one additional two-verse-rest (2vsR)
classifier, which is designed to separate data of the two target
categories from the rest target data. In our implementation,
the two-verse-rest classifier is also a boosted classifier which
combines dyadic hypercuts, and it is derived with only target
domain data. That is, x, in Eq. (22) can be a data sample
of target classes 1 and 2, while x,, in Eq. (22) can be one
sample of the rest classes. With the pool of dyadic hypercuts
generated in this way, AdaBoost is employed to learn the two-
verse-rest classifier. The yielded classifier is denoted by 7. In
sum, a one-verse-one classifier f7 coupled with a two-verse-
rest classifier g7 is derived for data in the target domain.

E. Multiple Feature Combination via Late Fusion

Our approach can work on data in multiple feature rep-
resentations. Given M feature descriptors, we repeat the
aforementioned procedure of classifier learning, and have a
set of one-verse-one classifiers {2} _| and a set of two-

verse-rest classifiers {gZ }M_,,

each feature representation.

Late fusion is adopted for feature combination in this
work. Specifically, one-verse-one classifiers {fL}M_, are
firstly normalized by applying the sigmoid function to the
outputs of these classifiers. Then, the normalized outputs are
concatenated, and an SVM classifier with the RBF kernel is
derived to work on the concatenated vectors. In this way,
features are combined in the classifier level. The same pro-
cedure for feature combination is applied to two-verse-rest
classifiers {gL }M_ . except the SVM classifier is derived
with probability outputs. After late fusion, the two resulting
classifiers are denoted by F'7" and G7, respectively. For multi-
class classification with the one-verse-one strategy, the output
of FT is weighted by that of G”' in voting. The class with the
maximal value in voting is then predicted.

Fig. 2 illustrates how late fusion works for feature combi-
nation in this work. For each pair of target classes and each
feature m, a one-verse-one classifier fgl and a one-verse-rest
classifier g1, are firstly learned. Late fusion then performs over
{fEYM_ and {gL}M_, for feature combination, and yields
fused classifiers F7 and G7, respectively. The output of FT'
is weighted by that of G7' in final prediction.

i.e., one pair of classifiers for

IV. EXPERIMENTAL RESULTS

The proposed method is evaluated in this section. We
describe in turn the adopted datasets, features, approaches for
comparison, the within-database and cross-database transfer
learning settings along with their results, and the effects of
using late fusion and two-verse-rest classifiers.

A. Datasets

To evaluate the performance of the proposed method, we
conduct experiments on three publicly available datasets, Cal-
tech256 [20], SUNO09 [21], and MSRC [22]. Although each
of these datasets has its own emphasis [56], they are popular
benchmarks of object recognition due to their broad coverage
of object characteristics and divergent appearances of objects
within a single category.

B. Features

Generally speaking, there is no universal feature that can
be effectively used to recognize diverse object categories.
Hence, we select four representative features to capture various
characteristics of images, including:

GIST: We apply the gist descriptor [57] to the resized
images with a 128 x 128 pixel prior. For normalization, we
firstly compute the mean and the standard deviation of all
training data in each feature dimension. For both training and
unseen testing data, normalization is then performed by using
the computed mean and standard deviation of training data.

BoW-SIFT: We randomly sample interest points detected in
an image and describe them by the SIFT descriptor [58]. With
a dictionary of 1,000 visual words, each image is represented
as a histogram using this dictionary.

Color histogram: We use a 166-bin color histogram ex-
tracted from the HSV color space to represent an image, where
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the hue, saturation, and intensity channels are divided into 18,
3, and 3 bins, respectively, and there are four additional scales
of intensity for describing gray images.

Texton: We consider 99 filters from three filter banks to
generate the vocabularies of texture prototypes [59]. Hence,
an image can be represented by a histogram that records its
probability distribution over all the generated textons.

C. Baselines

Our approach is compared with a few baselines and the
state-of-the-art approaches to transfer learning. Based on the
information used for model learning, we roughly divide these
methods for comparison into the following three categories:

Target Only: Neither auxiliary source data nor prior knowl-
edge are involved in the baselines of this category. Since
kernel methods working with multiple features are powerful
methodologies for object recognition, we adopt two multi-
kernel extensions of SVMs, including the average kernel
(AK) suggested in [5] and the ensemble kernel learned by
the multiple kernel learning (MKL) software [4]. The two
baselines are respectively denoted as AK [T Only] and MKL [T
Only]. In the two methods, data under each adopted feature are
represented as a kernel, and the resulting four kernel matrices
then serve as the input.

Source Only: We implement the classemes [44], a set of
powerful features designed for transfer learning, to deliver
knowledge from source to target. To this end, an SVM-based
classifier with probabilistic outputs is learned for each source
object class. The classemes are the probabilistic estimates ob-
tained by applying these classifiers to the target data. While the
procedure is performed for each of the adopted features, four
new kernels based on classemes are constructed. Baselines
classemes+AK [S Only] and classemes+MKL [S Only] are
then respectively established by coupling AK and MKL to the
four new kernels.

Target + Source: To fuse information from both the two
domains, we jointly consider the kernels yielded by visual
features and classemes. Similarly, baselines classemes+AK
[T+S] and classemes+MKL [T+S] are established. Besides,
our approach is compared with multi kernel transfer learning

(MKTL) [46] and High level-Learning2Learn (H-L2L) [60],
which are two of the best transfer learning algorithms and
support heterogeneous transfer from different kinds of priors.
For H-L2L, there are two ways of implementation, including
SVM-DAS and LP-3. We implemented the former, termed H-
L2L (SVM-DAS), where the output confidences from target
and source domains are augmented into a new feature repre-
sentation. Refer to [60] for the details. Besides, we adopt one-
verse-one strategy for multi-class classification and late fu-
sion, and implement robust domain adaptation with low-rank
reconstruction (RDALR) [40] for comparison. Our approach
is established upon RDALR for reconstruction-based transfer
learning. Our approach further carries out the reconstruction
of source data in a discriminative manner.

D. Within-database transfer learning

We first carry out within-database transfer learning on
SUNO9 and Caltech256 datasets. In this setting, data in the
source and target domains come from the same dataset. Thus,
the collection setup and the imaging style of the source and
target data are similar, but the source and target categories
are completely different. For Caltech256 dataset, 30 target
categories and 90 source categories are randomly selected. We
pick 1 to 10 samples as well as 50 samples from each target
class for training and testing respectively. For SUN(Q9 dataset,
10 target categories and 20 source categories are randomly
selected. We pick 1 to 50 samples as well as 50 samples from
each target class for training and testing respectively. For both
datasets, the number of samples in each source class is set as
50. All experiments are repeated ten times to reduce the effect
of sampling.

For parameter tuning, o in Eq. (13) controls the relative
importance of the reconstruction errors. In the experiment,
we conducted two sets of within-database transfer learning
here, and six sets of cross-database transfer learning in the
next section. Each experiment set is repeated ten times by
using different splits of training and testing data. We set the
value of o as {1073,1072,...,10%}, and chose the optimal
value of « for each experiment set. The optimal value of « is
10~ for all the six experiment sets of cross-database transfer



P-H. HSIAO et al.

Source: Caltech256, Target: MSRC
T T

80

-~
o

@
=)

" AK [T Only]
vo® o MKL [T Only]
classemes+AK [S Only]
classemes+MKL [S Only]
classemes+AK [T + S]
= # = classemes+MKL [T + S]
= %= MKTL
= RDALR
=——t— H-L2L (SVM-DAS)
== Ours

Recognition Rate [%)]

i

3 5 7
# of training samples per class

(a) Source: Caltech256, Target: MSRC

Source: MSRC, Target: Caltech256

@
=}

: :
55}
— 50
&
© 451
= ™
O 4ot ' AK [T Only]
S " MKL [T Only]
%‘ 35 classemes+AK [S Only]
(2] classemes+MKL [S Only]
8 30 classemes+AK [T + S]
&’ = % = classemes+MKL [T + S]
254, = %=1 MKTL
i == RDALR
207 —w— H-L2L(SVM-DAS)
= Ours
15 L

1 3 5 7 9
# of training samples per class

(c) Source: MSRC, Target: Caltech256

Source: Caltech256, Target: SUNO9
T T

40t

35

30

" AK [T Only]
rr® 0 MKL [T Only]

classemes+AK [S Only]
classemes+MKL [S Only]
classemes+AK [T + S]

= * = classemes+MKL [T + S]

= %= MKTL

RDALR

=t H-1 2L (SVM-DAS)

== Ours

25

Recognition Rate [%)]

20} %

15

10 H H
1 3 5 7
# of training samples per class

(e) Source: Caltech256, Target: SUN0O9

Source: SUN09, Target: MSRC
80 T T T

~
o
T

@
=}
T

" AK [T Only]

' MKL [T Only]
classemes+AK [S Only]
classemes+MKL [S Only]
classemes+AK [T + S]

F = # = classemes+MKL [T + S]

I = %= MKTL

= RDALR

=——t— H-L2L (SVM-DAS)

== Ours

N
o
Pén

Recognition Rate [%)]
wu
o

w
=}

20 i i
1

3 5 7
# of training samples per class

(b) Source: SUN09, Target: MSRC

Source: SUN09, Target: Caltech256

@
=}

a
a
T

a1
=}
T

IS
a
T

IS
=)

" AK [T Only]

" MKL [T Only]
classemes+AK [S Only]
classemes+MKL [S Only]
classemes+AK [T + S]

= # = classemes+MKL [T + S]
= %= MKTL

== RDALR

——#— H-L2L(SVM-DAS)

= Ours

Recognition Rate [%]
58 &

N
o
T

i
3 5 7 9
# of training samples per class

-
o

(d) Source: SUNQ9, Target: Caltech256

Source: MSRC, Target: SUNO9
T T

451
40
X
5‘ 35
©
nc: 30 * AK [T Only]
o © % MKL [T Only]
‘é‘ 25 classemes+AK [S Only]
8) classemes+MKL [S Only]
o classemes+AK [T + S]
& 20 3 = = = classemes+MKL [T + S]
S = ®= MKTL
15 = RDALR
== H-L 2L (SVM-DAS)
10 i i | === Ours
1 9

3 5 7
# of training samples per class

(f) Source: MSRC, Target: SUN0O9

Fig. 4. Cross-database transfer learning on Caltech256, MSRC and SUNO09 datasets. (a) ~ (f) Six source-target combinations on the three datasets. Recognition

rates are plotted as a function of the number of training samples per class.

learning. The optimal values of « vary in the two sets of
within-database transfer learning. The performance of dual-
domain boosting in Algorithm 2 typically converges when the
number of weak learners, V/, is more than 10. We set V' as 25
in all the experiments.

In Fig. 3, we plot the average recognition rates of our ap-
proach and other methods. For the sake of clearness, only the
standard deviation of our approach is shown. The consistent
trend of curves in both two datasets indicates that our approach
outperforms the other baselines mostly. Although baselines
with only source priors, e.g., classemes+AK [S only], don’t

perform well, incorporating the source knowledge indeed helps
in constructing more accurate classifiers, e.g., classemes+AK
[T+S]. Besides, baselines with multiple kernel learning work
better than baselines with average kernel in most of the cases.
This is because SimpleMKL [4] can effectively select the
better kernel combination to emphasize discriminant features
for the given data.

On the other hand, compared with RDALR [40], our method
achieves better recognition accuracy. The results confirm the
advantage of using both discriminant reconstruction and two-
verse-rest classifiers. With regard to MKTL, it works better
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TABLE I
THE PERFORMANCE [acc + std%] OF DIFFERENT APPROACHES ON EIGHT SOURCE-TARGET COMBINATIONS WHEN THE NUMBER OF TARGET TRAINING
DATA PER CLASS IS SET AS TEN.

Type Within-database Cross-database
Tartget dataset SUNO09 Caltech256 MSRC Caltech256 SUNO09
Source dataset SUN09 Caltech256 Caltech256 SUN09 MSRC SUN09 Caltech256 MSRC
AK [T Only] 34.46+0.94% 34.27+1.04% 73.16£2.61% 73.04+2.51% 45.84+2.76% 46.14£1.88% 40.02+£2.44% 39.244-2.06%
MKL [T Only] 35.08+2.37% 38.304+2.22% 74.28+3.19% 73.02+2.37% 53.844+2.62% 54.36+2.21% 42.26+£2.45% 41.96+2.57%
classemes+AK [S Only] 28.12+3.03% 32.374+0.33% 65.06+£1.81% 66.74+1.69% 38.344+2.37% 41.24£1.94% 35.26+2.41% 36.32+1.71%
classemes+MKL [S Only] 29.58+3.12% 34.2040.19% 66.841+1.41% 66.841+1.77% 40.58+2.71% 42.24+3.05% 36.08+1.82% 37.284+1.94%
classemes+AK [T + S] 28.54+2.46% 33.201+0.38% 74.38+2.37% 74.00+2.62% 47.26+£2.80% 47.64£1.51% 40.62£2.73% 39.92+1.87%
classemes+MKL [T + S] 26.04+4.20% 34.274+0.19% 74.62+£2.90% 73.72+2.04% 54.84+1.48% 56.16£1.71% 43.12+2.58% 42.24+42.22%
H-L2L(SVM-DAS) 26.56+1.95% 17.93+7.07% 70.92+£4.27% 70.30+2.79% 24.68+3.43% 24.96+2.78% 35.524+2.43% 32.3243.55%
MKTL [46] 38.18+1.76% 38.20+1.51% 75.46£3.00% 73.42+1.96% 53.56+2.23% 53.64+£1.20% 41.94£2.15% 41.82+1.71%
RDALR [40] 34.17+2.08% 35.0042.00% 73.77+£1.74% 70.68+2.82% 50.59+3.50% 52.40+2.25% 41.51£2.56% 40.14£1.55%
Ours 38.64+1.98% 38.87+2.00% 76.83+2.39%  75.47+2.22% 55.04+2.17% 55.89+2.22% 43.98+1.96 % 43.01+1.15%

than all other baselines. In within-database transfer learning,
our approach obtains slightly better performance than MKTL.
Nevertheless, we will show that the performance gain of our
method over MKTL will become notable in cross-database
transfer learning, where the variations between source and
target data are larger, and correlating the two domains in
advance is hence more crucial.

E. Cross-database transfer learning

We then evaluate the proposed approach for cross-database
transfer learning. The data in the source domain and the target
domain are from different databases. With three datasets Cal-
tech256, MSRC, and SUNO9, totally we have six source-target
combinations. For each source-target combination, 10 target
categories and 20 source categories are randomly selected.
The number of samples in each source class is set as 50.
The number of training data per target class varies from 1 to
10, while the number of testing data is fixed as 50 per class.
All experiments are repeated ten times to reduce the effect of
sampling.

In Fig. 4, the recognition rates of our approach as well
as all approaches for comparison are shown. In the six
settings of cross-database of transfer learning, our approach
achieves the best results in most cases, similar to what we
have observed in within-database transfer learning. Compared
with RDALR [40], which transfers knowledge by low-rank
reconstruction only, our method with the proposed discrimi-
native term and two-verse-rest classifiers achieves remarkable
performance improvement. In cross-database transfer learning,
the advantage of our approach becomes more obvious own-
ing to the larger inter-database variations. When Caltech256
and MSRC datasets yield the source-target combination, our
method has considerable performance gains over MKTL,
which is one of the state-of-the-art methods for transfer
learning. The main reason is that objects in the two datasets
are too dissimilar to directly transfer knowledge across them.
Correlating the two domains via adapting the inter-database
variations is helpful for the successive knowledge transfer. On
the other hand, our method and MKTL achieve very similar
performance, when transferring knowledge from MSRC to
SUNO09, because variations between the two datasets are
smaller.

We report the mean accuracy and the standard deviation
of our approach and the competing approaches in TABLE 1.
Both the mean and the standard deviation of each method
in eight sets of experiments, including two sets of within-
database transfer learning and six sets of cross-database trans-
fer learning, are given in the case where the number of samples
per target class is set as 10. Note that using few randomly
selected training data leads to the large performance variations
of each approach. Our approach in most settings give the best
mean accuracy.

Our approach is compared with nine competing approaches
in this work. Among them, MKTL on average gives the
best performance. For significance test, we report the relative
improvement of our approach with respect to MKTL on the
eight experiment sets in TABLE II. Each entry in this table
is computed via @ x 100% where A and B are the
mean accuracy rates of our approach and MTKL, respectively.
Compared with MKTL, our approach gets the comparable
performance for within-database transfer learning, and is supe-
rior to MKTL for cross-database transfer learning. The results
show that our approach can work relatively well when the
correlation between the source and target domains is weak.

We have conducted the experiments with two main settings,
i.e., within-database transfer learning and cross-database trans-
fer learning, for comparing our method with other methods.
The correlation between source and target domains is higher
in the former setting, while it is lower in the latter setting.
Comparing the results in Fig. 3, Fig. 4, and TABLE 1, it
can be found that our approach shows its superiority to the
completing methods in the latter setting. In the setting where
higher correlation between source and target domains exists,
our approach and the state-of-the-art method, MKTL [46],
give similar performance, but our approach needs the extra
computational cost for source data reconstruction.

F. Running time

The efficiency of the compared approaches is evaluated
here. We consider the setting where within-database transfer
learning is conducted on SUNO09 dataset and the number of
target training data per class is set as 10. The training time of
our approach and the competing approaches on a modern PC
with an Intel Core ¢7 3.4 GHz processor is given in TABLE III.
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TABLE II
THE RELATIVE IMPROVEMENT (%) OF OUR APPROACH W.R.T. MKTL.

Type Within-database Cross-database
Tartget dataset SUNO09 Caltech256 MSRC Caltech256 SUNO09
Source dataset SUN09 Caltech256 Caltech256 SUNO09 MSRC SUNO09 Caltech256 MSRC
Ours vs. MKTL 1.20% 1.75% 1.81% 2.79% 2.76% 4.19% 4.86% 2.84%
TABLE III of the one-verse-one classifiers. The numbers of source data

TRAINING TIME OF VARIOUS APPROACHES FOR WITHIN-DATABASE
TRANSFER LEARNING ON SUNQ9 DATASET WITH TEN TRAINING SAMPLES
PER TARGET CATEGORY.

Method Time (seconds)
AK [T Only] 1.46
MKL [T Only] 1.41
classemes+AK [S Only] 41.66
classemes+MKL [S Only] 397.88
classemes+AK [T + S] 43.24
classemes+MKL [T + S] 730.36
H-L2L (SVM-DAS) 682.41
MKTL [46] 41.3
RDALR [40] 627.66
Ours 1045.01

The proposed approach is implemented in Matlab, except
that support vector machines (SVMs) which are used in late
fusion and is implemented in C. Approaches, including MKL,
classemes+MKL [S Only], classemes+MKL [T + S], RDALR,
and H-L2L (SVM-DAS), are mainly implemented in Mat 1ab,
while the rest are mainly implemented in C. Some MKL-based
approaches, e.g., classemes+MKL [T + S], and reconstruction-
based approaches, e.g., RDALR and ours, are less efficient in
training.

G. Effects of using late fusion and two-verse-rest classifier

In this work, we adopt multiple feature representations for
better data description, and combine them via late fusion.
We hence evaluate the effectiveness of the fusion process in
our approach. Our approach can work with a single feature
representation and multiple ones. For fair evaluation, our
approach to training the one-verse-one classifiers is repeatedly
applied to the four adopted representations five times, one for
each representation and one for the four representations jointly.
On the other hand, we also aim to measure the effect of using
the two-verse-rest classifiers, especially when abundant source
data are transformed and included in the training process.
Thus, we compare the recognition accuracy with and without
using the two-verse-rest classifiers in the cases where the four
representations are jointly used.

Fig. 5 shows the results in cross-database transfer learning.
We can observe that late fusion is indeed helpful in improv-
ing the performance. It is understood that a single feature
representation does not suffice for recognizing objects over
diverse object categories and on different datasets. Late fusion
in our approach effectively leverages the four complementary
feature representations to consistently boost the recognition
rates. It is worth mentioning that the advantage of using
the two-verse-rest classifiers is very significant in our cases.
We investigate into the effect, and find that the source data
are diversely transformed and reconstructed in learning each

reconstructed by the two target classes are probably different.
The unbalanced training data makes the learned one-verse-
one classifier tend to have bias towards some target class for
test data of the irrelevant classes. The developed two-verse-
rest classifiers alleviate this problem, and hence improve the
accuracy.

H. Visualization

To gain insight into the quantitative results, we visualize
how the proposed discriminative reconstruction behaviors for
source class partition. Fig. 6 shows eight examples of how the
source classes are divided into the two target classes, each
example in one row of this figure. There are four feature
representations are considered, and two examples are picked
for each representation. All the eight examples are selected,
when Caltech256 and MSRC datasets serve as the source
and the target datasets, respectively. It is due to that the
inter-database variations are large between the two datasets.
Consider the first example, i.e., the first row of Fig. 6. The one-
verse-one classifier is derived for target classes buildings
and scenes—urban. Sample images of the two classes are
shown in columns (a) and (h) respectively. Through discrim-
inative reconstruction in Algorithm 1, the top three source
classes, i.e., those with the lowest reconstruction errors, that
are assigned to target class buildings are shown in columns
(b) ~ (d), respectively. Similarly, the top three source classes
assigned to scenes-urban are given in columns (g) ~ (e),
respectively.

As can be seen in the first two examples, each target class
is augmented with the source classes with high similarity
in terms of spatial texture layout, which is characterized by
GIST. In the fifth and sixth examples where color histogram
is adopted as the data representation, each target class and
its augmented source classes have similar color distributions.
The similarity between the target and source classes in terms
of local texture can be found in the rest four examples.

The results in Fig. 6 demonstrate that the proposed discrimi-
native reconstruction can effectively correlate the two domains,
and associate each target class with appropriate source classes
faithfully based on the adopted feature representation. We
consider that it is the reason why the successive dual-domain
boosting can achieve successful knowledge transfer across
different domains. It is also worth pointing out that our
approach works in an interpretable way, since how the sources
classes are partitioned is known, as those shown in Fig. 6.

V. CONCLUSIONS

We have presented an effective approach that can leverage
useful knowledge in the source domain to facilitate classifier
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Fig. 5. Effects of using late fusion and two-verse-rest classifiers in the six settings of cross-database transfer learning.

learning in the target domain, especially when few training
examples in target are available. Our approach makes no
assumption about the correlation between the source and
target domains, since it can correlate the two domains via
reconstructing source data by target data in a discriminative
manner. During the process of reconstruction, the source
data are firstly transformed to adapt inter-domain variations,
and only the reconstructed part is borrowed to enrich the
corresponding training set in target. The developed dual-
domain boosting then casts knowledge transfer as a multi-task
learning problem. It derives the boosted classifier in target,
and regularizes it via joint weak learner selection for both the
target and the reconstructed source data. In addition, we have

presented the two-verse-rest classifiers, which alleviate the
problem in the one-verse-one voting strategy for multi-class
classification, and improve the performance. The proposed
approach is comprehensively evaluated on three benchmark
datasets of object recognition with both the settings of within-
and cross-database transfer. The effects of using the proposed
components, including discriminative reconstruction, feature
fusion, and two-verse-rest classifiers, have been evaluated.
Both the quantitative and visualization results demonstrate that
our approach can significantly improve the performance of the
learned classifiers in target by making the most of the abundant
data in source.
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