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Abstract—We present a trajectory based approach to detect
salient regions in videos by dominant camera motion removal.
Our approach is designed in a general way so that it can be
applied to videos taken by either stationary or moving cameras
without any prior information. Moreover, multiple salient regions
of different temporal lengths can also be detected. To this end,
we extract a set of spatially and temporally coherent trajectories
of keypoints in a video. Then, velocity and acceleration entropies
are proposed to represent the trajectories. In this way, long-term
object motions are exploited to filter out short-term noises, and
object motions of various temporal lengths can be represented
in the same way. On the other hand, we are inspired by the
observation that the trajectories in backgrounds, i.e., the non-
salient trajectories, are usually consistent with the dominant
camera motion no matter whether the camera is stationary or
not. We make use of this property to develop a unified approach
to saliency generation for both stationary and moving cameras.
Specifically, one-class SVM is employed to remove the consistent
trajectories in motion. It follows that the salient regions could
be highlighted by applying a diffusion process to the remaining
trajectories. In addition, we create a set of manually annotated
ground truth on the collected videos. The annotated videos
are then used for performance evaluation and comparison. The
promising results on various types of videos demonstrate the
effectiveness and great applicability of our approach.

Index Terms—Video saliency map, trajectory, one-class SVM

I. INTRODUCTION

HE human visual system (HVS) perceives the world
and provides visual information for human beings. It
is known that only a small fraction of the observable area
is critical for humans to understand and interpret the world.
Hence, recognizing saliency maps, which record the distri-
bution of human’s attention, is helpful in understanding how
HVS works and analyzing the content of images/videos. Thus,
it becomes one of the most important research issues in the
fields of computer vision, image and video processing. As a
key component to image/video understanding, saliency maps
can be used in a wide range of applications, such as object
detection, image retargeting, and compression.
While most research effort has been made on saliency
detection in still images, one of the research trends has been
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shifted to discover saliency maps in videos. Comparing with
images, videos bring richer visual evidences, such as the
structural information and the motion patterns of objects.
These evidences help in object localization and noise removal,
and greatly benefit the task of saliency generation. However,
detecting saliency maps in videos is challenging owing to both
intrinsic and extrinsic factors. For example, videos can be
taken by either stationary or moving cameras, and objects in
videos may mutually occlude and appear with various temporal
lengths. The yielded variations of the appearances in salient
regions also complicate saliency map detection. Furthermore,
the large volume of video data in general cause inefficiency
in processing. It hinders the applicability of saliency maps in
real-time tasks.

In this work, we aim at developing a general and efficient
algorithm for video saliency map generation. We capture long-
term object motions to generate video saliency maps, and
develop a unified algorithm that can work on videos taken
by both stationary and moving cameras without any prior
information. Our approach can distinguish itself with the
following two contributions.

First, to solve the observation length problem, we track
salient keypoints in videos to yield trajectories. The trajec-
tories on objects naturally identify the observation lengths of
the corresponding objects. A compact and effective descriptor
based on the velocity and acceleration entropies is designed
to characterize the trajectories. In this manner, the task of
saliency detection is formulated as a binary classification
problem over trajectories, i.e., saliency vs. non-saliency.

Second, we utilize one-class SVM to perform the unsuper-
vised classification. Motivated by the observation that most
trajectories in backgrounds are consistently enclosed by the
dominant camera motion, one-class SVM, which separates
alike data from the outliers, is applied to removing non-salient
trajectories. As a result, our approach can work on videos
captured by both stationary and moving cameras without
knowing the dominant camera motion.

In addition, we selected a few videos, and manually an-
notated the salient regions in the videos. These videos were
taken by either stationary or moving cameras. Among them,
one or multiple salient regions of different temporal lengths are
included. They span a wide spectrum of practical conditions.
We will make the annotated ground truth publicly available,
and believe that it will be a good resource for performance
evaluation of video-based saliency detection methods.



II. RELATED WORK

In this section, we firstly review a few representative image-
based saliency models. Subsequently, some motion-aware ap-
proaches to video saliency detection are discussed.

A. Image-based Visual Saliency

One of the pioneering saliency models was proposed by
Itti et al. [L]. They computed low-level features, such as color,
intensity and orientations, to retrieve the basic elements of
contrast, which serve as the clues for highlighting the most
attractive regions in an image. Methods of attractive region
detection can be roughly divided into two categories. The first
category contains methods developed based on the center-
surround hypothesis 1], [2l], [3, [4], [S], [6], [Z], which
attributes the saliency as the distinctiveness of an image region
over its surroundings. Methods of the second categories, such
as [8]], [9], instead treat the distinctiveness of certain features in
a global fashion. These two manners are complementary, and
can also be jointly utilized in terms of local and global patches
to boost the detection results. However, Perazzi et al. [10]
asserted that the contributions of individual features still
remain obscure. They hence proposed to decompose an image
into perceptually homogeneous elements, and redefined the
contrast in terms of uniqueness and the spatial distribution of
those elements.

Apart from using low-level image features as stimulus
signals in a bottom-up scheme, fop-down approaches, e.g.,
[2], [L1], 8], [12], investigate learned class-dependent features
for specific pattern discovery. These approaches recognize the
most salient regions, which can distinguish themselves from
the rest, in a class-specific manner. Besides, Borji [[12] further
integrated the low-level features with the top-down cognitive
visual features, such as the outcomes of object detectors. Both
bottom-up and top-down visual evidences are then taken into
account. Top-down approaches have their restrictions, because
they are applicable by assuming that prior knowledge about
the salient regions is given. However, prior knowledge is not
generally available in practice.

In a bottom-up framework, images can be characterized in
diverse ways. For example, the information from image-level
spectrums in [13] is directly analyzed instead of extracting
features based on certain prior knowledge of the targets. In
most cases, using multiple kinds of features to jointly describe
images is appreciated, because salient regions are more likely
to be distinguished from the rest by at least one type of
features. It follows that the contrast in the salient regions yields
to draw human attentions.

Among off-the-shelf features, color-based features are quite
important, because they closely relate to human perception.
They are thus adopted by many works, e.g., [, [7], [14], [L5].
However, most conventional color histograms contain limited
information. For further enhancement, the color co-occurrence
histogram was introduced in [15] to extend traditional 1D
color histograms to 2D ones, in which not only the color
distributions but also their spatial configuration are recorded.
Furthermore, Borji and Itti [14] jointly employed RGB and
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Lab color spaces to lead to more clues for improving saliency
detection.

When video sequences are considered, a naive way of
saliency map detection is to directly apply one of the image-
based methods, such as [7], to video frames independently.
However, human visual systems determine salient regions in
still images and video sequences by different ways. It has
been pointed out in the study [16] that human attentions are
attracted by motions of video content between adjacent frames.
Consequently, the motions can provide strong evidences for
identifying saliency maps in videos [[L7]. In contrast, methods
that are developed for still images often result in incoherent
saliency maps because they fail to take the temporal informa-
tion between adjacent frames into account.

B. Motion-aware Visual Attention

Compared with spatial information, temporal motions can
also provide abundant information particularly for video
saliency map detection. However, the analysis of motion fea-
tures is challenging, since motions of salient objects and those
of backgrounds may be complicated and even mix together. In
the following sections, we review some video-based saliency
map detection methods with a stationary camera and a moving
camera, respectively.

1) Stationary Camera: When the camera is static, all the
present motions can potentially attract human attentions, and
this assumption has been extensively exploited in saliency
map detection, e.g., [18]], [19], [20], [21], [22]], [23]. Without
background motions, object motions as well as salient regions
can typically be identified based on two-frame differences,
e.g., [6l, (23], [18]], [19], [20], [24]. These approaches make
use of spatiotemporal cues for determining the salient regions
that are more consistent with human’s first sight.

However, there are still unsolved issues for approaches of
this category. First, the balance between spatial and temporal
information may not be deterministic [23]], because it is
most likely content-dependent. Second, these approaches may
suffer from the problem caused by short-term noise, and yield
incoherent saliency maps in successive frames. This is because
the salient regions induced by motions from merely two frames
are not sufficient to stably represent the saliency of the entire
video. As a solution, the temporal saliency map in [25] is
computed based on homographies of several frames. Yet the
assumption of planar motions, or homography, in videos is
too general to be true in practice, even though the long-
term temporal information rather than two-frame differences
is considered.

Motion pattern discovery over a certain range of consec-
utive frames is highly relevant to saliency map detection.
Adelson and Bergen [26] proposed an energy model, in
which oriented spatio-temporal filters are employed to detect
the oriented structures of motion patterns. Along this line,
Belardinelli et al. [27]] suggested using accumulated spatio-
temporal energy to detect saliency maps with the aid of Gabor
filtering. Cui et al. [28] presented a temporal generalization
of the work by Hou and Zhang [13]]. They detected saliency
maps by performing temporal spectral residual analysis on
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video slices along X — T and Y — T planes. Tiinnermann
and Mertsching [29] proposed a region-based approach to
saliency detection. They extended region-based attention to
the spatiotemporal domain to compile motion saliency, and
then presented a biologically inspired system that integrated
both spatial and motion saliency to grab static and dynamic
stimuli.

The observation lengths of salient regions are nondeter-
ministic. We tackle the foregoing issues by the analysis on
trajectories obtained from the tracking of feature points in
a video, where the trajectories can further be clustered or
classified. It is worth noting that trajectories of keypoints have
been explored in [21]] for anomalous video event detection.
In this work, we present a more fast and compact way
for trajectory extraction and description. Furthermore, our
approach can be used in videos taken by either a stationary or
a moving camera.

2) Moving Camera: If the video camcorder is not station-
ary, the self-movement, or the so-called ego-motion induced
by the camcorder, should be carefully handled since not
all of the motions in videos are salient. Motions induced
by the independent moving objects (IMOs) [30]], [31] are
rather crucial. Saliency detection with a moving camera can
be achieved by applying the aforementioned techniques for
stationary cameras, e.g., [6], [19], [20], [32], if a relatively
small ego-motion can be tolerated. Yet this is not always the
case, since both strong background motions induced by the
camera and foreground motions of IMOs may simultaneously
present in videos.

One intuitive way to address this problem is to include
ego-motion estimation [31]], [33] in preprocessing so that the
motions of IMOs can be separated from those of backgrounds.
It has been pointed out in [17] that the motions of IMOs
tend to be locally consistent. By exploiting this property, the
locally consistent motions of IMO as well as the prominent
motions of backgrounds can be jointly modeled by structural
tensors [34], [35], and the saliency map is subsequently
generated. Le Meur et al. [36] assumed that the dominant
motion is caused by the movement of cameras and performed
hierarchical block matching to estimate the dominant motion.
Moreover, the performance of motion estimation may be
unstable by various factors, such as illuminations, camera and
object motions. Because motion estimation is computationally
expensive, Georgiadis et al. [37] skipped motion estimation by
directly describing the saliency as the violation of co-visibility
in terms of epipolar equivalence induced from successive
frames. In addition, the trajectory cues can also be applied in a
moving camera system like [38] in the sense that trajectories
in foregrounds and backgrounds can be further grouped or
classified.

All of the above-mentioned frameworks for saliency map
detection in video sequences provide solid techniques in task-
specific settings of either a stationary or a moving camera.
In practice, the camera motions may be continuously varying
in some occasions, such as a vehicle event data recorder.
We are aware of the explosive growth of vehicle-mounted
cameras. There has been a strong demand for saliency de-
tection approaches that can adapt themselves to videos taken

by moving and stationary cameras. Compared with previous
works, our approach can be distinguished itself by the main
feature that it can work with stationary and moving cameras
in a unified manner without any prior information regarding
camera motions. Therefore, it leads to great flexibility and
applicability.

III. VIDEO SALIENCY DETECTION

In this section, we describe how to construct saliency maps
of a video clip by using extracted trajectories of keypoints.
For the sake of clearness, the details of extracting trajectories
will be given in the next section. Firstly, a compact and ef-
fective trajectory descriptor based on velocity and acceleration
entropies is introduced. Then, we present our algorithm that
can work with stationary and moving cameras in a unified way
and compile the saliency maps by referring to the trajectories.

A. Trajectory Descriptor

The design of our trajectory descriptor builds upon the fact
that human beings tend to put attention on moving objects.
This fact has been indicated in the seminal work by Egeth
and Yantis [16]. Besides, Gao et al. [5] also pointed out
that humans also focus on the strong differences between the
stimulus at a location and the stimulus in its neighborhood.
In videos, the attention is directed to moving objects, which
are continuously changing spatial locations. As concluded
in [3f], one of the representational bases of the visual attention
is to separate objects from their locations via motions. The
motions of objects can be more effectively represented by
continuous trajectories than by the differences of adjacent
frames. Cavanagh [39]] revealed that low-level signals alone
are not responsible when human perceives motions of tracked
objects, but the long-range motions attract the attention. Also
indicated in [40], when a person can predict the next location
of an object, the motion of the object can efficiently guide
attention. For a surveillance scenario, objects moving in a
straight line take on salience magnitudes that are significantly
larger than that of backgrounds [41]. These findings show that
human attention focuses on not only early vision but also
continuous motions of objects.

With the aim of deriving HVS-consistent saliency maps,
our approach simulates HVS by taking the diversities of
trajectories in both the aspects of velocity and acceleration
into account. This is because most important characteristics
of motions can be captured by the velocity and acceleration
diversities. Specifically, the entropy, a measure of the degree
of diversities, of each extracted trajectory is considered. These
psychological studies [3], [L6], [39], [40], [41] support the use
of the trajectories in the proposed method.

Assume that K trajectories are extracted in the video, where
the kth trajectory T} consists of a series of keypoints along the
space-time volume of the shot. Based on the tracking results,
the trajectory 7} can be represented by a time-ordered set of
points. Let x,(t) = [u(t) vx(t)]T denote the 2-D coordinate
of T} in frame t. The trajectory T}, is then represented by
X = [x5(7) xx(i +1) ... xx(j)], where ¢ and j (j > 4) are
the indices of the first and last frames which 7}, resides in,



respectively. Please note that trajectories of different lengths,
i.e., (j —i+ 1), are allowed in this representation.
Motivated by the fact that the velocity and acceleration of
motions are two perceivable elements in HVS, including these
two elements in trajectories generally benefits saliency map
detection. The time-ordered representation of T} supports the
efficient computation of velocity v (¢) and acceleration ay(t)
by
Xk(t + ].) - Xk(t)

vi(t) = At ’

6]

n
and vi(t+1) —vi(t) )
At ’
where At is the frame time. In this way, a video is represented
by a set of trajectories {1} } with T}, = {xx(t), vi(t),ar(t)}.
In [42], the color probability distribution of each pixel
along the temporal axis is introduced. Similar in spirit to [42]],
we propose the movement probability distribution to describe
the movement of each trajectory along the temporal domain.
In practice, the movement state of each keypoint can vary
arbitrarily frame by frame. The diversity of the movement at
all keypoints of trajectories represents the motions and the
positions of the object where trajectories resides.
To describe the diversity of Ty, the probability distribution
function of the trajectory velocity is used and defined as
follows:

ag (t) =

Ve @Il

voer [VE@I+ A

p(vi(t)) = 3)
2

The probability distribution function of the trajectory acceler-

ation can be similarly defined by

[la ()]l
ZaTETk ||ak(7-)‘| =+ ALL’

where A\, and )\, are small positive constants, and they are
empirically set as 10~ for the sake of numerical stability.

With (@) and @), the rrajectory velocity entropy and the
trajectory acceleration entropy of T}, are respectively defined
as follows:

plax(t)) = )

Efr =~ " p(vk(t))logp(vi(t)), ©)
v (1) €T
and
ElF =~ Y plax(t))logp(ax(t)). (6)

ay (t)eTy

EIx in and El* in (@) respectively represent the di-
versities of the trajectory T} in velocity and acceleration
along the temporal domain. In our empirical test, motions
along the horizontal and vertical axes also give rich infor-
mation for trajectory analysis. We hence characterize trajec-
tory 1) by a compact (six-dimensional) descriptor zp, =
[El, El%, EI, EI, El%, EI:] € R® where EJk is
the velocity entropy of T} along the horizontal axis. E.’ b
ET, and EI* are similarly defined. We will demonstrate in
the experimenis that such a compact descriptor not only sup-
ports fast saliency map generation but also captures sufficient
information about the motions in a video. Therefore, it can

compile saliency maps of high quality.
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B. Trajectory Classification

To utilize the trajectories to compile saliency maps, we aim
to pick salient trajectories that correspond to moving objects.
According to the study in [16], objects moving at a constant
velocity or a constant acceleration attract attention. It implies
that the larger the entropy, the more salient the trajectory.
However, this property is true only if the camera is fixed.
For videos taken by moving cameras, trajectories with large
entropies are not necessarily salient. Taking Fig. Bp for an
example where a camera focuses on the main character. Thus,
the salient parts, the motorbike and the rider, are with weak
motions, and thus have lower entropies.

For handling videos recorded by moving and stationary
cameras, our approach should be developed upon properties
that are invariant to camera motions. It can be observed that
trajectories on backgrounds are often consistent, dominant in
number, and enclosed by the camera motion no matter whether
the camera moves or not. In contrast, the salient trajectories
on moving objects in most cases are incompatible with the
dominant camera motion. We make use of the properties to
separate salient trajectories of moving objects from those of
backgrounds. Specifically, we use one-class SVM [43]], [44] to
carry out this idea, and extend the applicability of our approach
to handle videos with dominant camera motions. One-class
SVM is a classification methodology. It treats positive and
negative data in an asymmetrical way. Namely, positive data
are similar to each other, while negative data are different
in their own ways. In our case, trajectories on backgrounds
and on objects are respectively considered the positive and
negative data in one-class SVM. In this way, all the trajectories
inconsistent with the trajectories under the dominant camera
motion are supposed to be classified as negative data. Thus,
our approach can be applied to handle both the cases where
one or multiple moving objects present in a video.

Suppose that K trajectories, {T;}X ,, as well as their feature
vectors, {z;}X£ |, are extracted in a video shot. One-class SVM
predicts the labels of the trajectories by solving the following
constrained optimization problem

1 R
. 2
onin, §||WH +07;€i_y (7
subject to quﬁ(zq;) >¢—v, forl <i<K,
€ >0, forl <: <K,

where C' and v are the two parameters in one-class SVM. We
will discuss how to determine their values in the experiments.
As a kernel machine, function ¢ maps the data (trajectories)
from the input space to some Reproduced Kernel Hilbert Space
(RKHS), which is implicitly defined by the adopted kernel.
In this work, we select the RBF kernel function for its stable
performance, and the inner product of each pair of the mapped
data can be efficiently computed via the kernel trick. Namely,

k(zi,2;) = ¢(z:) " d(2;) (8)
— z;|? ©

— ||z

=exp ( ), for 1 <i,j <K,

where y is the hyperparameter. As suggested in [45], we set
7 as the mean of the pairwise distances among data {z;} ;.
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It turns out that the label of each trajectory is predicted via
f(z;) = sign(w' ¢(z;) —v), for 1 <i < K. (10)

LibSVM [46] is adopted in our implementation for both the
training and test phases of one-class SVM.

Note that our approach can distinguish itself from previous
works that involved the estimation of the dominant camera
motions. Since the estimation of the dominant motions is often
unreliable and computationally expensive, our approach skips
this step, and directly retrieves trajectories incompatible with
the dominant motions via one-class SVM. It turns out that the
retrieved trajectories reside in moving objects in most cases.
Furthermore, our approach makes no assumption about the
motions of backgrounds, so it can work with videos with
various kinds of camera motions in a unified way.

C. Saliency Map Construction

After completing the learning of one-class SVM, we collect
all the trajectories that are predicted as negative to con-
struct the temporal saliency maps. Let N' = {T}} denote
the set of the negative trajectories while [xx(tr/) X (trr +
1) ... xg(tx)] denote the coordinates of all the keypoints of
T, € N along the temporal axis. We propagate the saliency
from trajectories to their surroundings for generating saliency
maps. Specifically, for each T, € N, the corresponding
saliency map Sy is compiled by

— _ 2 .
Sk(x,t) = %exp(%)’ if tp <t <tyn,
o 0, otherwise,

(1)
for every time stamp ¢ and every location x in the video. We
repeat the procedure for each trajectory in A/. The temporal
saliency map St is constructed by

Sr(x,t) =min( Y Sk(x,t),255).
TeN

12)

Despite the simplicity in the saliency map construction, as
we will demonstrate in experiments, most moving objects,
captured by either stationary or moving cameras, are faithfully
highlighted in the maps. Besides, the resulting saliency maps
are coherent and smooth in adjacent frames. Note that unless
further specified, St in is regarded as the saliency maps
generated by our approach hereafter.

D. Coupling with Spatial Saliency

The proposed approach explores temporal motions, and
identifies salient trajectories by removing alike ones. It can
be further improved by integrating with spatial contrast. We
suggest that various evidences of saliency are combined in
the domain of saliency maps. Specifically, we can impose
a frequency-tuned method, such as [7l], to compile spatial
saliency map Ss(x,t) for every location x and every time
stamp ¢. The fused saliency map S(x,t) is defined as follows:

S(x,t) = aSs(x,t) + (1 — a)ST(x,t), (13)

where « € [0, 1] controls the relative importance between the
two kinds of saliency maps.

IV. TRAJECTORY EXTRACTION IN A VIDEO

We compute trajectories within each shot, instead of the
entire video, to avoid the instability caused by the shot transi-
tions. A shot refers to a sequence of frames, in which object
motions in both space and time are continuous. It follows
that keypoints which locate on the same object will appear
in adjacent frames with similar appearances. It validates the
following steps, tracking the keypoints to yield the trajectories
of objects. The method in our prior work [47]] is used to detect
the shots in a video sequence. In the following, we describe
how to represent a video by a set of spatially and temporally
coherent trajectories. It consists of the three stages, including
1) keypoint detection, 2) keypoint description, and 3) keypoint
tracking. Each stage is detailed in the following.

A. Keypoint Detection

The goal of this stage is to efficiently and stably detect
keypoints in a given video. One can apply any off-the-shelf
corner detectors, e.g., [48], [49], to each frame of the video to
extract keypoints. Among various corner detection algorithms,
the FAST detector [49] has shown its superior results in both
accuracy and speed. It implements a heuristic rule and a
machine learning concept so that the non-corner points can
be efficiently filtered out.

However, the keypoints obtained via frame by frame de-
tection may be unstable due to various factors, such as the
continuous changes of video content and the motions of the
camera. These unfavorable factors often cause false detection
and missed detection between adjacent frames. This problem is
known as the repeatability problem [49] for corner detection.
During processing videos, the state-of-the-art detector, FAST,
still suffers from this problem. This is a serious issue in
our case, since unstable keypoint detection results in the
breaks of trajectories. To solve the problem, we propose a
spatial-temporal FAST (ST-FAST) detector, which combines
the temporal information between adjacent frames with the
spatial information to detect keypoints.

For a 2-D image point x, FAST considers x as a corner
by examining neighbor pixels on a circle surrounding x. Let
I(x) denote the intensity of x. If the intensities of most of
the neighbor pixels are brighter than I(x) + 6, x is then a
corner. # is a positive offset to avoid the inference of noise. If
the intensities of most of the neighbor pixels are darker than
I(x) — 0, x is also a corner.

Comparing the intensity of x with those of its neighbors
provides the spatial information to determine if x is a corner or
not. In this paper, we further explore the temporal information
to identify if a point x(¢), which is located at x in the tth
frame, is a keypoint. We treat the video as a 3-D spatio-
temporal volume with each x(t) as a 3-D voxel. For each
voxel x(t), we consider the set of its neighboring voxels as
the union of the voxels that locate on a r X r tube centered on
x(t). To examine if x(¢) is a spatio-temporal extreme or not,
one of the three states is assigned to each v € Nx(t) by

d, if I(v) <I(x(t))—9,
S(v)=4qb, if I(v)>I(x(t))+0,

s, otherwise,

(14)
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Fig. 1. The galaxy sampling pattern [S0].

where I(v) and I(x(t)) are the intensities of v and x(t),
respectively. If most of the voxels in Ny have state d or have
state b, x(¢) is regarded as a detected keypoint, i.e., a spatio-
temporal FAST corner. Since the temporal evidences have been
taken into account in verifying keypoints, the repeatability
problem in adjacent frames is significantly alleviated.

B. Keypoint Description

After retrieving keypoints, the next step is to match key-
points between adjacent frames for generating long-term
trajectories. Researches on invariant local descriptors, e.g.,
[48], [50], [51], are quite extensive. These descriptors can
effectively solve the matching problem between images. Based
on the property of repeatability in the detected keypoints,
these descriptors are suitable for matching and tracking the
keypoints of objects in consecutive video frames. Specifically,
we use a new binary descriptor galaxy [50] to match keypoints
between adjacent frames because it is robust to lighting
changes and has good performance. The descriptor consists
of a galaxy sampling pattern and a binary encoding scheme.

The structure of the galaxy descriptor contains four levels
including the center of the galaxy (level 0), the fixed stars of
the galaxy (level 1), the planets of the solar systems (level 2)
and the satellites of the planets (level 3). As shown in Fig. 1,
a keypoint x(t) represents the center G (red circle) of the
galaxy. Several fixed stars F' (yellow circle) surround G. Each
fixed star may contain several planets P (green circle) to form
its own solar system. Satellites S (black cross) may exist for
each planet.

The galaxy sampling pattern is applied to describing the
local region R centered on each detected keypoint x(t).
According to the hierarchical structure in the pattern, we firstly
set the location of G as x(¢), and then sequentially determine
the sampled pixels in F, P, and S. The galaxy sampling
pattern defines which pixels in R will be sampled to construct
the descriptor. Let {x;;(t)} be the set of the sampled pixels,
where [ and ¢ denote the level and the index of the pixels,
respectively. Each sampled pixel x;;(¢) will be compared to
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x;,;(t) that has the same ancestor and is on its opposite side.
We call (x;,(t),x,.(t)) an opposite pair hereafter.

As indicated in [52], color information often enhances the
discriminability of descriptors. Thus, the galaxy descriptor is
computed on the transformed color space {R', B',G'} [52],
which has been shown to be an efficient and effective color
invariant space. A naive way is to apply the descriptor to
each color channel independently, and encode the relative
relationships in each of the opposite pairs. Benefiting from
that the transformed color space supports cross-channel com-
parisons, we can further increase the discriminative power of
the descriptor by retrieving information across color channels.
Specifically, the cross-channel relative relationship between an
opposite pair (x;;(t),x;(t)) is defined as

L,
b
(15)
where C,, € {R,G' B’} and C, € {R G, B'}.
Chn(x4,(t)) is the pixel value at the location x; ;(t) in channel
Chy,. Similarly, C,,(x;,(t)) is defined.

For a specific keypoint x(t) as well as two channels C,,, and
C,,, we now define the feature vector D¢, ¢, (x(t)) generated
by the galaxy descriptor. Let ¢/ denote the set of the opposite
pairs in all the three levels F, P, and S. Feature vector
Dc,, .c, (x(t)) corresponds to a binary string, whose value
is computed as follows:

Cm (x4,1(1)) < Cn(x5,(1)),
otherwise,

d(Cr(xi4(t)), Cr(x;.(1)))

||
Dcm,cn (X(t)) = Z 271 x d(Cm (Xil,iz (t))v Cn(xi'z-,iz (t)))a

(16)
where the ith opposite pair in ¢/ consists of two points x;, ;, ()
and x;, 4, (¢) in level ;. U] is the cardinality of U.

Since each of C,, and C,, belongs to {R',G’, B'}, there
are totally nine cross-channel combinations. By excluding the
redundant ones, we consider six channel combinations, includ-
ing {(R, k'), (R', "), (R, B'), (G, &), (G", BY), (B', B')}.
The final feature vector D(x(t)) extracted by the galaxy
descriptor is the concatenation of the six binary strings,
each of which corresponds to one particular cross-channel
combination.

C. Keypoint Tracking

Since the galaxy descriptor characterizes detected keypoints
in form of binary strings, Hamming distance can be used to
very efficiently measure the similarity between keypoints. For
compiling trajectories in a given video, we firstly extract the
ST-FAST keypoints for each shot. For a keypoint in frame t—1,
we find the most similar keypoint in frame ¢ via Hamming
distance. If the spatial distance between the two keypoints is
small enough, we deem that the corresponding point in frame
t has been found for the keypoint in frame ¢ — 1. Based on
the matching results, we can track each keypoint of the video.
The linked list of each tracked keypoint yields a trajectory.
By repeating the procedure, the trajectories in the video are
extracted.
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TABLE I
DATASET SUMMARY.
Index  Video Frame # Resolution Camera Object #
1 Motorbike 79 320 x 240 Moving 1
2 Auto_race 21 320 x 240 Moving 1
3 Soccer 74 320 x 240 Moving 5
4 Surveillance 106 320 x 240  Stationary 4
5  Crossroad 3019 320 x 240  Stationary 51
6 Indoor 564 320 x 240 Rotation+Scale 1

V. EXPERIMENTAL RESULTS

A comprehensive study of the performance evaluation and
analysis for the proposed approach is conducted in this section.

A. Dataset

We collected and manually annotated six video sequences
for evaluating approaches to video saliency detection. The first
three and the last videos were captured by moving cameras,
so dominant camera motions presented in the four videos. The
fourth and the fifth videos were taken by stationary cameras.
The first video motorbike captured a motorbike rider on
the road. The fixation point focuses on the rider. Therefore,
the rider as well as the motorbike keeps stationary, while the
backgrounds, such as the sky and the bus, move. The second
video is a clip of auto racing. Similar to the first video, the
camera in the video auto_race focused on a white car,
and tracked it. The first two videos contain one single salient
object. In contrast, the third video soccer captured several
salient objects, where the soccer players are walking in the
soccer field. The focus of the camera followed them. It is
worth pointing out that the motions of the soccer players are
inconsistent, and their observation lengths are also different.
The fourth video surveillance was selected from the
PETS2001 dataset [S3]], and it was captured by a stationary
surveillance camera. A white car moved along the road and
several people walked from the bottom-left side to the right-
hand side. As a surveillance video, moving foregrounds are
considered as salient objects. To evaluate the proposed method
in long-term surveillance videos with illumination changes, we
used the crossroad dataset [54]. The last video indoor
included camera rotation and scale changes of the foreground
object at the same time. The foreground object moved toward
the camera and thus caused scale changes. In addition, the
object turned right and the camera rotated to keep on the focus
of the object. It is a very challenge dataset because both the
rotation of the camera and scale change of the object involve
in the video clip.

The properties of these videos are summarized in TABLE[]]
Some frames and their annotated ground truth of these videos
are shown in Fig. B] ~ Fig. [I0] respectively. These videos
span a wide spectrum of practical conditions, such as different
camera settings and motions, numbers of salient objects, and
the observation lengths. Thus, the dataset can serve as a good
test bed for performance evaluation and analysis.

B. Evaluation Metrics

We use the same evaluation metrics suggested in [55]] to
measure the quality of a pixel-level saliency map. Let nTP
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Fig. 2. The F-measure scores (y-axis) by our approach with different
combinations of parameter v (z-axis) in OCSVM and parameter o in saliency
propagation. The six figures correspond to videos (a) motorbike, (b)
auto_race, (¢) soccer, (d) surveillance, (¢) crossroad, and (f)
indoor, respectively.

denote the number of true positives, which are the detected
salient pixels. Let nFP and nFN represent the numbers of false
positives and false negatives, respectively. The false positives
here correspond to the non-salient pixels that are predicted
salient, while the false negatives correspond to the salient
pixels that are predicted non-salient. With nTP, nFP and nFN,
the precision and the recall of a saliency map can be computed.
While the former is the fraction of the detected pixels that are
salient, the latter is the fraction of the salient pixels that are
detected. Specifically, we have

nTP
PRECISION = ——, 17
nTP + nFP
and TP
RECALL = ——. (18)
nTP + nFN

Precision and recall are two conflicting goals. One can
trivially optimize one of them by ignoring the other. Thus, pre-
cision and recall are usually referred jointly for performance
evaluation. For the sake of compactness, we use F-measure to
consider precision and recall at the same time. Its definition
is given as follows:

PRECISION - RECALL
PRECISION + RECALL

We will use F-measure as the primary metric in the experi-
ments, though precision and recall are also given for reference.

F-MEASURE = 2 - (19)

C. Parameter Selection

In our approach, two main parameters will affect the results
of temporal saliency map generation. The first one is v in
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Fig. 3. The F-measure scores (y-axis) of the combined saliency maps with
respect to « (x-axis) in six videos.

one-class SVM (OCSVM) in (7), which controls the upper
bound on the fraction of training errors. The other one is the
band width o of the Gaussian mask in when propagating
saliency from a trajectory to its neighborhood. The OCSVM
tends to predict trajectories negative (salient here) with larger
values of v. Thus, larger v will result in higher recall and
lower precision. On the other hand, ¢ determines the extents
of saliency propagation. Larger o means that the saliency will
be diffused to a broader neighborhood. Therefore, larger o
also leads to higher recall as well as lower precision.

We compiled the saliency maps by applying our approach
with various combinations of the two parameters to the six
videos. It is difficult to find out the optimal ranges of the
parameters by merely referring to either precision or recall.
We hence adopt F-measure, which is the harmonic mean of
the recall and precision rates. As shown in Fig. 2] the values of
F-measure converge toward the optimal results, if v is larger
than 0.85. Moreover, the higher F-measure values are achieved
on all the six videos, when ¢ = 12 and v > 0.8. For a fair
evaluation, we set v = 0.9 and o = 12, and report the results
in all the following experiments.

To evaluate the effect of a in (I3) on combining the
temporal and spatial saliency maps, we varied the value of
a from 0 to 0.9. Fig. 3] shows the F-measure scores of the
combined saliency maps with respect to different values of
a. Note that when « equals to zero, the combined saliency
maps are the same as the temporal saliency maps. As shown
in Fig. 3] combining the temporal and spatial saliency maps
achieve worse F-measure scores in videos motorbike and
auto_race, because the spatial contrast of backgrounds is
visually significant in colors and edges. In contrast, human
beings can focus on foreground objects based on the temporal
cues. Thus, how to properly combine temporal and spatial
saliency maps remains a problem. Here, we set & = 0.4 in
the experiments. It indicates that we put more emphasis on
temporal cues. This finding is consistent to [56], which also
suggests higher weights over temporal cues.

D. Comparative Baselines

The primary comparison of interest is to validate whether
our approach is comparable to the state-of-the-art approaches
to video saliency detection. In addition, we would like to
identify the contributions of each developed component in this
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work. To this end, our approach is compared with the state-
of-the-art methods including the image-based frequency-tuned
(FT) approach [7]] and two video-based methods using phase
spectrum of quaternion Fourier transform (PQFT) [24]] and
textural contrast (TC) [56]. We also compared our methods
with two famous background subtraction methods: the first
one is based on Gaussian mixture model (GMM) [18] and
the second one is Vibe [57]]. In addition, some variants of
our approach are considered to identify the contributions of
some individual components in our approach. We respectively
replaced the proposed ST-FAST keypoint detector by other
spatial-temporal keypoint detectors, including space-time in-
terest points (STIP) [58] (denoted by Ours w STIP) and
FAST [49] (Ours w FAST). We also replaced one-class
SVM (OCSVM) by a degenerate variant Ours w/o OCSVM,
in which thresholding is used to classify the entropy of a
trajectory. We computed the average entropy of each trajectory
in velocity and acceleration. Trajectories with higher entropies
are considered salient. Another variant, which fuses both the
temporal and spatial saliency maps, is referred as Ours w SC.

E. Quantitative Results

TABLE [[I| shows the recall, precision and F-measure scores
by applying the baselines and our approach to the video
clips. Note that we compute the nTP, nFP and nFN of all
of the frames at first, and then compute the recall, precision
and F-measure scores. For each dataset, our method (Ours)
or its variant (Ours w SC) achieves the highest F-measure
scores except video crossroad. The F-measure scores of
FT [7], PQFT [24] and TC [56l] methods are lower due to
the lack of long-term motions. GMM [18] and Vibe [57]]
are background modeling methods which assume that the
cameras are static. Thus, when the cameras move as shown in
videos motorbike, auto_race, soccer and indoor,
their F-measure scores are significantly lower than those
of the proposed method. Nevertheless, Vibe [57]] achieved
the best F-measure scores in video crossroad. Although
baselines Ours w STIP and Ours w FAST also take long-
term motions into consideration, the instability of the STIP
and FAST keypoints leads to lower F-measure scores. Thus,
it is important to extract stable spatial-temporal keypoints for
video saliency map generation. Also shown in TABLE [[I} the
F-measure scores of baseline Ours w/o OCSVM are lower in
the videos with dominant camera motions, because it simply
applies thresholding to the entropy of a trajectory, and hence
cannot account for dominant camera motions. Our method
(Ours) and the variant (Ours w SC) perform well in most
cases.

Fig. |4 shows the frame-wise F-measure scores for each
video, respectively. As we expect, the results of FT [7] are
worse than those of the other methods. Such results indicate
the importance of motion information for video saliency
map generation. In contrast, the motion based methods [24]]
and [56] get better results by imposing the motion informa-
tion between two frames. Nevertheless, the long-term motion
information, such as trajectories, is not considered. As a
result, its performance is worse than that of the proposed
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TABLE II
PERFORMANCES, IN PRECISION, RECALL, AND F-MEASURE, OF THE BASELINES AND OUR APPROACH.
. Evaluation . Ours w  Ours w  Ours w/o Ours w
Video metric I PQFT  TC GMM  Vibe  qmp pasT  ocsvM 9% 5c
Precision | 0.102 0851  0.190 0308 0381 0617  0.702 0932 0814  0.787
Motorbike Recall 0243 0439 0538 034 0333 0472 0952 0478 0812 0727
F-Measure | 0.144 0579  0.808 0281  0.80 0340  0.522 0632 0813 0748
Precision | 0.139  0.871 _ 0.31 0203 0211 0722 0.642 0935 0852  0.831
Auto_race Recall 0210 0583 0923  0.85 0498  0.401 0.928 0342 0695  0.667
F-Measure | 0.167  0.699 0228  0.193 0294 0507  0.759 0501 0766  0.737
Precision | 0.110 0780 0513 0933  0.686  0.763  0.562 0916 0719  0.857
Soccer Recall 0014 0568 0910 024 0495 0271  0.638 0264 0626 0462
F-Measure | 0026  0.657 0656 0218 0568 0394 0598 0410 0670 0775
Precision | 0.695  0.286 0390 0968 0590  0.618 0306 0887 0637  0.599
Surveillance |  Recall 0047 0486 0592  0.180 0475 0742 0.99% 0555 0878 0775
F-Measure | 0.088 0360 0468 0301 0518  0.672 0468 0.683 0738 0.768
Precision | 0943 0517 0221 0784 0654 0577  0.735 0766  0.718  0.861
Crossroad Recall 0267 0342 0945 0692 0917 0500 0544 0433 0550 0525
F-Measure | 0415 0404 0354 0735 0763 0533  0.624 0552 0622 0.651
Precision | 0.154 0080  0.106  0.158  0.111 _ 0.171 0.236 0368 0369 0417
Indoor Recall 0.128 0045 0371 0184 0457 0831 0707 0704  0.664  0.579
F-Measure | 0.140  0.057  0.165 0.70  0.78 0284 0354 0483 0477 0485
D_: Ov: TABLE III
os . os - NUMBERS OF BACKGROUND AND FOREGROUND TRAJECTORIES.
07 —TC 07 —TC
Zz o Z§ } — e Video Background  Foreground  Total
04 oursw TP 04 ourswsTe Motorbike 1412 156 1568
e Y O ———— Auto_race | 618 68 686
Zj —ours zj 7  —om Soccer 1550 170 1720
0 o 0 o Surveillance 6440 1176 7616
! ? : = Crossroad 16048 1783 17831
(a) (b) Indoor 3316 368 3684
1 1
09 —— 09 —FT
: —parT —paFT TABLE IV
os "o T AVERAGE COMPUTATION TIME PER FRAME.
05 —Vibe —Vibe
j; o ot Video TE() SD(s) Total (5)
w ouectsn e Motorbike | 0.0338  0.0018  0.0336
s —ourswsc Auto_race 0.0398  0.0018 0.0416
’, 74 Soccer 0.0337  0.0016 0.0353
Surveillance | 0.0347  0.0013 0.0360
(© Crossroad | 0.0578  0.0097  0.0675
K R Indoor | 0.0548 0.0035  0.0583
0s — 08 -
o —PQFT 07 —PQFT
06 ;[MM 06 LCMM
05 —Vibe 05 —Vibe
. owvste o oty keypoint locations between adjacent frames easily occurs, and
” oo |03 = ——— —owweosn - corrupts the computation of the entropies. As a result, false
ol L, o or o, o alarms occur due to the instability of the keypoints. Similar
problems occur in Ours w STIP. Because Ours w/o OCSVM
(e) ® applies a simple threshold for retrieving trajectories with

Fig. 4. The F-Measure scores of the comparative baselines and the proposed
method along the frames of videos (a) motorbike, (b) auto_race, (c)
soccer, (d) surveillance, (¢) crossroad, and (f) indoor.

method. Because cameras have dominant motions in video
clips motorbike, auto_race, soccer and indoor, the
F-measure scores of GMM [ 18] and Vibe [57] are lower than
those of our method. In contrast, GMM and Vibe achieve better
performance in clips surveillance and crossroad,
since these cameras are static, and the constraints of back-
ground modeling are satisfied.

As shown in Fig. @, the F-measure scores of Ours w
FAST are much worse than those of the proposed method,
because Ours w FAST only extracts keypoints frame by
frame, and neglects temporal consistency. Thus, the jittering of

higher entropies as salient trajectories, false alarms frequently
occur in baseline Ours w/o OCSVM for moving cameras. The
proposed method considers the long-term motion information,
so it can extract more accurate video saliency maps. More
importantly, our method (Ours with the aid of OCSVM is
applicable to videos taken by either a moving or a stationary
camera without any prior information.

TABLE [ reports the numbers of the extracted foreground
(salient) and background trajectories. There are more back-
ground trajectories. OCSVM in these cases can effectively
remove the dominant and consistent background trajectories.

The proposed method is implemented by using Microsoft
Visual C++ 2010 and OpenCV 2.4.4 on a personal computer
with an Intel Core i7 3.4GHz CPU and 16GB main memory.
We did not perform any additional hardware optimization or
support, such as GPU, in the implementation. TABLE [[V]



shows the average running time per frame of the proposed
method with respect to trajectory extraction (TE) and one-class
SVM based video saliency map detection (SD). The proposed
method supports real-time detection of saliency maps, because
it effectively applies the binary descriptors [S0] for trajectory
extraction. Moreover, the low-dimensional (six-dimensional)
representation of each trajectory not only faithfully models
the motions of trajectories but also significantly reduces the
running time of one-class SVM. Because more trajectories are
extracted in crossroad, more computation time is required.
Nevertheless, our method detects about 15 ~ 29 frames per
second.

FE. Detected Saliency Maps

To gain insight into the quantitative results, some detected
saliency maps of the six videos are displayed in Fig. [5] ~
Fig. [I0] respectively. In Fig. [ the first two columns show
the frame indices and the corresponding frames in video
motorbike. The detected ST-FAST keypoints are marked
in Fig. [5k. These keypoints were repeatedly detected along
the video frames. This property facilitates the generation of
spatially and temporally coherent trajectories. The manually
labeled ground truth is shown in Fig. 5[, in which regions in
white denote saliency.

Fig.[5k, Fig.[5f. and Fig.[5 give the saliency maps generated
by FT [7], PQFT [24], and TC [56], respectively. Although
FT can effectively discover salient regions in still images, it
fails in this video. This is because the important information of
motions is ignored. The complex backgrounds of high contrast,
such as the sky and the road, caused the numerous false posi-
tives. In contrast, the motorbike and the rider can be detected
by PQFT, because motion features extracted in adjacent frames
were taken into account. The temporal information in TC is
computed from the differences of the current frame and the
next three frames, so the lamppost of the background in the
58th frame is detected. The detected salient objects of both
PQFT and TC are broken into pieces due to the lack of long-
term temporal information.

As we expect, the saliency maps shown in Fig. Sh and
Fig. B}, which are detected by the two background modeling
methods GMM [18] and Vibe [57]], are broken. Because the
camera moves and tracks the rider and the motorcycle, the
backgrounds change with time. As a result, the two methods
fail to model the backgrounds that are assumed to be static,
and obtain broken saliency maps.

The saliency maps yielded by the variants of our approach,
Ours w STIP and Ours w FAST, are displayed in Fig. |5j and
Fig. Bk, respectively. STIP [58] considers only the gradients
of keypoints in the z, y and ¢ directions. In contrast, ST-
FAST takes the neighbor voxels surrounding a keypoint into
account, so it can then detect more reliable keypoints. Because
the FAST detector identifies keypoints frame by frame, the
locations of the same keypoints of an object in adjacent
frames may jitter. Although we can still track the keypoints
using STIP and FAST to generate trajectories, such instability
will affect the computation of entropies and result in sub-
optimal saliency detection results. Fig. 5] shows the results
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by another variant, Ours w/o OCSVM, in which trajectories
are classified by thresholding their velocity and acceleration
entropies. Implied by [16l], the entropies in our trajectory
descriptor help the detection of objects that move with a
constant velocity or acceleration, but this property holds only
in videos taken by stationary cameras. Thus, the results given
in Fig. [5] are not good enough. In addition, the background
clutters may be moving at a more constant speed than the
foreground objects. Nevertheless, they are not identified as
salient regions. This is because background trajectories in the
videos are of short lengths, and the foreground trajectories are
of relatively longer lengths. According to the definitions of
(3) and (6), trajectories of longer lengths tend to have larger
entropies. As a result, background trajectories can be separated
by baseline Ours w/o OCSVM.

The results of our method are shown in Fig. [5jn. Compared
to the baselines, our method can more precisely identify both
the rider and the motorcycle as salient objects. It can be
observed in this video that most of the extracted trajectories
in the backgrounds are consistently enclosed by the dominant
camera motion. Moreover, the trajectories in the backgrounds
are more than those in the foregrounds. We leveraged the
two observations, and employed one-class SVM to remove
the background trajectories. It turns out that the remaining
trajectories faithfully reveal the salient regions, i.e., the rider
and the motorbike. Fig. [5h shows the results of combination
of the proposed temporal saliency map and spatial saliency
map detected by [[7]. Because the spatial saliency map contains
many non-salient backgrounds, the combined results are not as
good as the results of the temporal saliency map. This founding
indicates that it needs to find a good way to properly combine
temporal and spatial cues instead of simply combining both
cues by addition as shown in [36], [S6].

Fig. [6] shows some of the detected saliency maps in video
auto_race where the camera followed a racing car. Similar
to the results in Fig. E}a, the race field was also detected as
saliency by FT owing to the strong color contrast in it. Both
the methods PQFT and TC took the short-term motion features
to yield better outcomes. However, the salient object is still
broken as shown in Fig. [6f and Fig. [fg. GMM and Vibe again
failed to detect the salient race car as shown in Fig. [6h and
Fig. [6}, respectively. As shown in Fig. [6], baseline Ours w/o
OCSVM still suffered from the same problem, i.e., the camera
motion, and resulted in the unsatisfactory saliency maps. Our
approach and its variant Ours w FAST performed well in the
video. The white car was accurately detected in the saliency
maps as shown in Fig. [fm and Fig. [6k. It is worth noting
that a corner recognized by the ST-FAST detector must be
recognized by the FAST detector, but not vice verse. Thus,
the extracted trajectories in baseline Ours w FAST are usually
denser. It follows that there are more false positives in Ours w
FAST, while there are more false negatives in our approach.
The railing in the 5th and 8th frames and the black windshield
in the 14th frame are the examples.

Detecting saliency maps in video soccer is challenging
in the sense that there are multiple moving soccer players,
each of which has a distinct pattern of motion. Even the
motions of the local parts of a player are different. Fig.
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Fig. 5. A few saliency maps of video Motorbike. (a) Frame indices. (b) Videos frames. (c) Detected ST-FAST keypoints. (d) Annotated ground truth. (e)
~ (i) The saliency maps detected by various approaches, including (e) FT [7], (f) PQFT [24], (g) TC [56], (h) GMM [18], (i) Vibe [S7], (j) Ours w STIP,

(k) Ours w FAST, (1) Ours w/o OCSVM, (m) Ours, and (n) Ours w SC.
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Fig. 6. A few saliency maps of video Auto_race. (a) Frame indices. (b) Videos frames. (c) Detected ST-FAST keypoints. (d) Annotated ground truth. (e)
~ (i) The saliency maps detected by various approaches, including (e) FT [7], (f) PQFT [24], (g) TC [56], (h) GMM [18], (i) Vibe [S7], (j) Ours w STIP,

(k) Ours w FAST, (1) Ours w/o OCSVM, (m) Ours, and (n) Ours w SC.
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Fig. 7. A few saliency maps of video soccer. (a) Frame indices. (b) Videos frames. (c) Detected ST-FAST keypoints. (d) Annotated ground truth. (e) ~
(i) The saliency maps detected by various approaches, including (e) FT [7], (f) PQFT [24], (g) TC [S6], (h) GMM [18], (i) Vibe [57], (j) Ours w STIP, (k)

Ours w FAST, (1) Ours w/o OCSVM, (m) Ours, and (n) Ours w SC.

shows some of the saliency maps compiled by the baselines
and our approach, respectively. It can be observed in Fig.
that the baselines caused either numerous false positives or
numerous false negatives. The saliency maps in Fig. by our
approach and Fig. [/p by Ours w SC are still HVS-consistent.
This is because our approach is designed in a general way. It
makes no assumption about the motion patterns of moving
objects. Since the backgrounds in this video are enclosed
by the dominant camera motion, one-class SVM in our ap-
proach can still identify the trajectories in the backgrounds.
In addition, the developed ST-FAST detector is helpful in
extracting trajectories in the regions with complex motion,

since it suppresses noises in each single frame by checking
temporal consistence across frames.

The fourth and the fifth videos are surveillance videos se-
lected from the PETS2001 dataset [53] and [54], respectively.
As shown in Fig. [8¢ and Fig. Ok, the image-based method [[7]
did not accurately detect moving vehicles and pedestrians
due to the lack of motion information, though it successfully
suppressed false negatives in the backgrounds. The video-
based methods PQFT, TC, and our variant Qurs w STIP and
Ours w FAST suffered from the problem of instability caused
by the change of lighting as well as the low quality of the
video. There were many false positives in the resulting saliency
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Fig. 8. A few saliency maps of video surveillance. (a) Frame indices. (b) Videos frames. (c) Detected ST-FAST keypoints. (d) Annotated ground truth.
(e) ~ (i) The saliency maps detected by various approaches, including (e) FT [7]], (f) PQFT [24], (g) TC [56], (h) GMM [18], (i) Vibe [57], (j) Ours w STIP,

(k) Ours w FAST, (1) Ours w/o OCSVM, (m) Ours, and (n) Ours w SC.

maps, which can be seen in Fig. [§f and also in Fig. Of and D.
Since GMM and Vibe are background modeling methods,
their performance is expected to outperform methods based on
saliency detection in surveillance videos. Compared with the
results of GMM, Vibe achieved better foreground extraction
results as shown in Fig. 8} and Fig. Of. Our approach explored
long-term object motions that were captured by tracking ST-
FAST corners. The yielded saliency maps, given in Fig. [§m
and Fig. Om, are much better. The good performance of Ours
w/o OCSVM in videos taken by stationary cameras manifests
the effectiveness of the proposed compact trajectory descriptor.

Fig. [I0] shows the detected saliency maps of the sixth
video, indoor. Because the person walked from the door
to the camera and turned right, significant scale variation of
the person presented in the video. It leads to the difficulty
of consistently identifying the person as a salient foreground
object. Moreover, when the person turned, the camera also
rotated to track the person at the same time. It resulted in two
different camera motions in the video. As a results, all of the
compared methods failed to identify the person as a salient
object. In contrast, Ours and Ours w SC can still identify the
person as shown in Fig. [IOm and Fig. [I0p, respectively. Note
that the motions of background trajectories are still consistent
and dominant, when cameras zoom or rotate. In addition, the
motions of foreground trajectories are different from those of
background ones. Thus, our approach still works in the cases,
since it removes the consistent and dominant trajectories by
one-class SVM, and uses the remaining trajectories to compile
the saliency map.

The promising results on these testing video sequences
demonstrate the effectiveness and large applicability of our
approach. It is also worth noting that our approach does
not require any pre-training and any prior knowledge about
videos. Thus, our approach also provides an efficient solution
to background modeling. Our demo video is available at
http://www.cs.nchu.edu.tw/~crhuang/file/VSD.avi.

VI. CONCLUSIONS

We have presented an effective approach that utilizes long-
term trajectory activities to construct the video saliency maps,
and is applicable to videos taken by stationary and moving
cameras. In this approach, features invariant to camera motions

are exploited by one-class SVM, and are used to identify
the salient trajectories that are in most cases incompatible
with the dominant camera motion. We have also introduced
a compact trajectory descriptor based on motion diversity, and
it allows us to detect moving objects of various observation
lengths. Besides, the ST-FAST detector, which locates corners
by jointly using spatial and temporal cues, is designed to
stabilize the tracking of keypoint trajectories. Our approach
elegantly combines these components, and leads to spatially
and temporally coherent saliency maps.

In the future, we will use the yielded saliency maps, and
investigate their impacts on video content analysis, such as
video abstraction, retrieval and event recognition. Recently,
we are also aware the explosive growth of vehicle-mounted
cameras. Videos captured by vehicle-mounted cameras often
contain continuously varying camera motions. That is, the
dominant camera motion is smoothly changing when the
vehicle is moving, and is stationary when the vehicle stops. We
would like to leverage the merits of our approach in efficiency,
effectiveness, and great applicability, and apply it to analyzing
videos taken by vehicle-mounted cameras.
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