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Abstract—We present an algorithm that integrates image co-segmentation into feature matching, and can robustly yield accurate
and dense feature correspondences. Inspired by the fact that correct feature correspondences on the same object typically have
coherent transformations, we cast the task of feature matching as a density estimation problem in the homography space.
Specifically, we project the homographies of correspondence candidates into the parametric Hough space, in which geometric
verification of correspondences can be activated by voting. The precision of matching is then boosted. On the other hand, we
leverage image co-segmentation, which discovers object boundaries, to determine relevant voters and speed up Hough voting. In
addition, correspondence enrichment can be achieved by inferring the concerted homographies that are propagated between the
features within the same segments. The recall is hence increased. In our approach, feature matching and image co-segmentation
are tightly coupled. Through an iterative optimization process, more and more correct correspondences are detected owing to
object boundaries revealed by co-segmentation. The proposed approach is comprehensively evaluated. Promising experimental
results on four datasets manifest its effectiveness.

Index Terms—Image feature matching, correspondence problems, Hough transform, co-segmentation, energy minimization.
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1 INTRODUCTION

E Stablishing correspondences among two or more im-
ages has attracted great attention in the field of com-

puter vision. Being a key component for image analysis,
they are essential for a wide range of applications, such as
object recognition [1], image retrieval [2], 3D reconstruc-
tion [3], image enhancement [4] and patch-based synthe-
sis [5]. Despite the great applicability, two main difficulties
hinder the advance in establishing correspondences of high
quality. The predominant paradigm starts from analyzing
local features to yield the candidates of correspondences.
Although much progress has been made on the local feature
descriptors, methods of this category often suffer from per-
spective changes, illumination changes, or cluttered back-
grounds in the images. Thus the corrupted correspondences
lead to low precision in feature matching. Many advanced
methods, such as [6], [7], [8], [9], tackle this problem
by ensuring the geometric consistency, which typically
do not scale well due to high-order geometric checking.
Hence, they often work on preselected, small subset of
correspondence candidates, and result in low recall.

In this paper, we aim to address the aforementioned
problems simultaneously. The proposed approach is devel-
oped upon the insight that nearby features on the same
object typically share similar homographies if they are
matched correctly. It follows that their homographies tend
to gather together in the transformation space. On the other
hand, each wrong matching is usually wrong in its own
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way. It implies that the density of each correspondence
in the transformation space can verify its correctness.
We leverage this property and cast the task of feature
matching as a density estimation problem. Specifically,
we identify correct correspondences by comparing the
densities among mutually exclusive correspondences, those
violating one-to-one constraints. That is, Hough voting for
geometric checking is realized by computing the densities
of homographies from correspondence candidates. Besides,
it is also allowed to compile plausible correspondence
candidates by investigating the concerted homographies of
locally grouped features. We consider it as an inverted
process of Hough voting, and use it to dynamically enrich
potential correspondences for each feature. Furthermore, we
show that both Hough voting and its inverted variant can
be improved by integrating with image co-segmentation.
The hypotheses of object boundaries, discovered by co-
segmentation, facilitate the identification of relevant voters
and locally grouped features.

The proposed approach carries out Hough transform and
inverted Hough transform alternately to establish robust
feature correspondences. It can distinguish itself with the
following main contributions. First, every correspondence
candidate is projected into a Hough space spanned by trans-
formations. With the aid of image co-segmentation, corre-
spondences associated to features within the same segments
are considered for Hough voting. In this way, geometric
verification boosts the precision of matching. The process
of verification is also significantly speeded up, since only a
small, relevant subset of correspondence candidates is taken
into account in density estimation. Second, an inverted
Hough transform is developed, which can recommend each
feature point additional correspondences by investigating
high-density homographies from features covered by the
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same segments. It considerably increases the recall of fea-
ture matching. Third, the proposed approach couples Hough
voting and its inverted variant with image co-segmentation.
Through an iterative optimization process, more and more
correct correspondences are progressively detected owing to
object boundaries revealed by co-segmentation. Finally, our
approach is comprehensively evaluated and compared to the
state-of-the-art systems on several benchmark datasets. The
superior performance demonstrates its effectiveness.

2 RELATED WORK

In this section, related works are briefly reviewed.

2.1 Matching via feature descriptor
Point-to-point matching with local feature descriptors is
a principal way for correspondence problems. Some of
notable researches, such as [10], [11], [12], have brought
about significant progress in this area. Although these local
descriptors are distinctive and powerful, no descriptor in
general is sufficient for handling variation caused by com-
plex combinations of nonrigid deformations, illumination
and pose changes, in nowadays vision applications.

2.2 Matching via graph partition
One way to address matching ambiguity with additional
geometric checking is to cast feature correspondence as
a graph matching problem. Promising results via graph
matching have been demonstrated [13], [9]. However, these
methods typically work well on one common object with
simple backgrounds, and do not deal with the cases where
multiple sets of common features appear. As mentioned
in [14], graph matching is sensitive to corrupt correspon-
dences and outliers. In addition, high computational cost
may restrict its applicability, especially when solving a
generalized eigenvalue problem is required.

2.3 Matching via clustering
Research efforts on clustering-based mechanisms have been
made to handle unconstrained matching cases. Bottom-up
clustering can adopt locally adaptive constraints to aggre-
gate coherent bundles of matches. Cho et al. [15] carried out
object-based image matching via hierarchical agglomerative
clustering. Yacov et al. [4] adopted a coarse-to-fine scheme
and the coherence property of images to achieve dense
matching. Liu and Yan [14] proposed a top-down clustering
approach to detect dense neighborhoods on an affinity
graph, and found common visual patterns. Despite the
effectiveness, one major weakness of these methods lies
in the high computational cost of clustering. Moreover, the
optimal cluster numbers, criteria of cluster merging, and
similarity thresholds typically vary from image to image.

2.4 Matching via voting
RANSAC [16], a geometric verification model, and its
variants, such as [17], can be incorporated with local
descriptors to enhance the performance. Yuan et al. [18]
treated each correspondence as a voter, and maintained
an affinity matrix to encode how these correspondences

vote each other according to their compatibilities. Tolias
and Avrithis [19] offered a variant of Hough transform for
multi-object matching. They ranked the correspondences
by adopting the mechanism of pyramid match [20]. Their
method evenly quantizes the transformation space for fast
matching. However, the transformations of correct corre-
spondences often distribute irregularly. It may result in
accuracy degradation. Our prior work [21] is a voting-based
system. It has the advantage of voter selection for speeding
up voting. It also supports correspondence enrichment.

In this work, we further integrate image co-segmentation
into feature matching. The object hypotheses by co-
segmentation facilitate not only relevant voter identification
but also plausible correspondence recommendation. In our
approach, feature matching and image co-segmentation are
nicely coupled, and jointly lead to better performance.

2.5 Correspondence enrichment

Most feature correspondence methods work with a small,
pre-selected subset of correspondences. Correspondence
enrichment hence becomes an important task. Match-
growing methods, [22], [23], propagate individual matches
to nearby regions based on local appearance, but their
performances heavily depend on the quality of initial
matching. On the other hand, Čech et al. [24] devel-
oped a region-growing algorithm to distinguish correct and
incorrect correspondences. Instead of using fixed shapes
of measurement regions, they progressively grew regions
by co-segmentation until reliable correctness identification
can be reached. Cho and Lee [25] instead described a
progressive graph matching framework to enrich initial
matching. However, the yielded correspondences by their
approach are biased to the density of features, and may be
noisy due to diverse feature distributions in the two matched
images. In contrast, our method works on feature bundles
guided by co-segmentation, so the concerted transforma-
tions with high probability are transferred through mutually
relevant features. It turns out that the information can be
propagated more efficiently and the resulting candidates of
correspondences are much more targeted.

2.6 Image co-segmentation

One line to address image co-segmentation is based on
Markov random field (MRF). Methods of this category,
e.g., [26], [27], often consist of an MRF model over
each image, and a global consistency term among the
foreground histograms. Another class of co-segmentation
methods, such as [28], [29], uses graph-partitioning to ob-
tain foreground/backgound labels. Recently, more strategies
have been introduced to address image co-segmentation.
For example, Faktor and Irani [30] considered a co-
segment good if it can be easily composed by other co-
segments, but is difficult to compose from the remain-
ing parts. Wang et al. [31] extracted the consistent func-
tional maps between image pairs to transfer segmentation
across images. Sun and Ponce [32] carried out image co-
segmentation with the aid of the detected discriminative
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parts of the object category. Despite these research ef-
forts and positive results shown in [33], [34], image co-
segmentation, in which common objects may exhibit high
appearance variations, remains very challenging. As men-
tioned previously, an object often covers correspondences
with coherent homographies. It also means that two adja-
cent regions with coherent homographies tend to belong to
the same object. Our approach uses this property to improve
co-segmentation with the matched correspondences.

3 PROBLEM DEFINITION

Given two images IP and IQ, two sets of feature points,
V P = {vPi }N

P

i=1 and V Q = {vQi }N
Q

i=1, are respectively
detected. The region and the center of feature vi ∈ V P∪V Q
are denoted by Si and xi, respectively. The appearance
of vi is described by descriptor ui, and its orientation θi
is estimated by the dominant orientation in the gradient
histogram [35]. The product C = V P × V Q represents all
the possible correspondences. Our goal is to find the correct
correspondences in C as many as possible.

3.1 Transformation space
The local shape and the position of feature vi can be
described by a 3×3 matrix T (vi), which specifies an affine
transform of vi with regards to the normalized patch [35]:

T (vi) =

[
A(vi) xi
0> 1

]
∈ R3×3, (1)

where A(vi) ∈ R2×2 is a non-singular matrix.
Given a feature pair vPi ∈ V P and vQi′ ∈ V Q, the relative

transformation Hii′ from vPi to vQi′ can be derived as

Hii′ = T (vQi′ ) ∗ T (v
P
i )
−1. (2)

In this work, we represent a feature correspondence as
a triplet mii′ = (vPi , v

Q
i′ , Hii′), i.e., two features in the

opposite images and their relative transformation. The
correspondence can be also symmetrically specified as
(vQi′ , v

P
i , H

−1
i′i ). As Hii′ is a 6-dof affine homography, the

geometry configuration of mii′ can be considered as a
point in the 6-dimensional transformation space. It should
be mentioned that the local transformation in Eq. (2) is
not fully perspective but affine only. It has a better match
to widely-used affine invariant detectors, such as Hessian-
Affine detector [35]. Therefore, the computed transforma-
tions may not be reliable for objects with a significant 3D
structure or under severe perspective distortion.

3.2 Distance metric in the transformation space
Given two correspondences mii′ = (vPi , v

Q
i′ , Hii′) and

mjj′ = (vPj , v
Q
j′ , Hjj′), the projection error of mjj′ with

respect to mii′ can be defined as

djj′|ii′ = ||xQj′ − ρ(Hii′

[
xPj
1

]
)||, (3)

where ρ(
[
a b c

]>
) =

[
a/c b/c

]>
. (4)

It checks if Hii′ projects xPj around xQj′ .

For a pair of correspondences mii′ and mjj′ , they are
considered compatible if the corresponding homographies
are similar. We hence adopt the re-projection error for
dissimilarity measure, i.e.,

d(mii′ ,mjj′) =
1

4
(djj′|ii′+dii′|jj′+dj′j|i′i+di′i|j′j). (5)

Note that it is symmetric and can serve as the distance
function for correspondences in the transformation space.

4 THE PROPOSED APPROACH

We investigate the geometric distribution of feature match-
ings to determine their correctness with the aid of co-
segmentation. With the aim at identifying accurate and
dense correspondences, the proposed approach carries out
alternate Hough and inverted Hough voting. While the
former discovers the consistent homographies by projecting
correspondences into the transformation space, the latter
recommends potential correspondences by referencing the
concerted homographies within the same segments. The
procedure is repeated iteratively until convergence.

To begin with, we first describe the construction of initial
correspondences in Section 4.1. Next, co-segmentation is
performed. With the obtained co-segments, the Hough
transform for geometric verification and inverted Hough
transform for correspondence enrichment are introduced in
Sections 4.2 and 4.3, respectively. In Section 5, we will
describe how the generated correspondences improve the
image co-segmentation to lead to better co-segments, which
then help feature matching.

4.1 Initial correspondence candidates

Our approach starts from the construction of initial cor-
respondence candidates. For each feature vPi ∈ V P , we
find its r potential matchings {vQik}

r
k=1 in V Q according

to the descriptor similarity, i.e., ||uPi − uQik ||, and with the
constraint that the r matchings do not highly overlap. The
set of initial correspondences associated with vPi is

Mi = {miik = (vPi , v
Q
ik
, Hiik)}rk=1, (6)

where Hiik is the relative transformation from vPi to vQik .
This process is repeated for each feature in IP . Then the
set of initial correspondences is constructed by

M =

NP⋃
i=1

Mi. (7)

SetM is of size |M| = r×NP . It contains many corrupted
matchings, and may cover just a small subset of correct
matchings in C. We empirically set r = 5 in this work.

4.2 Hough transform for homography verification

The goal at this stage is to detect the correct correspon-
dences inM, which is either the initial correspondence set
or the enriched set by the following stage. We investigate
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(a) (b) (c)

(d) Hough voting: 245/275 (e) (f) CoSeg-HV: 464/526

Fig. 1: Feature matching by our approach. (a) Input images IP and IQ together with all the detected feature points. (b) Initial co-
segmentation results by [36]. (c) Correspondences in the Homography space. (d) Hough voting and its comparison with SIFT. 245 out
of 275 correct correspondences inM are identified via Hough voting. White lines denote the correct correspondences detected by both
approaches. Red and cyan lines are the correct correspondences by only Hough voting and the nearest SIFT searching, respectively.
(e) The refined co-segmentation results by taking feature matchings into account. (f) Our approach CoSeg-HV. It recommends 251
(= 526 − 275) correct candidates in M and leads to additional 219 (= 464 − 245) correct correspondences (green lines) detected
by the successive Hough voting.

the property that the transformations of correct correspon-
dences are concerted while those of incorrect correspon-
dences are different in their own ways. Hough voting for
homography verification is employed since it can handle
a high percentage of incorrect correspondences and detect
correct correspondences via density estimation. Specifi-
cally, the relative transformation of each correspondence is
treated as a point in Hough space, and it is considered as
a hypothesis about the underlying homography of interest.

Despite its robustness, Hough transform is developed
upon the assumption that the hypotheses are a sum of
independent votes, and thereby neglects the spatial depen-
dence among features. As pointed out in [37], choosing
proper voters is critical in Hough transform, especially
when voters are dependent. Inspired by the fact that nearby
features on the same object are mutually dependent, we
group relevant correspondences via co-segments detected
by a co-segmentation algorithm, e.g., [36] or [27] in this
work. It turns out that the performance of Hough voting is
remarkably boosted. Furthermore, only relevant, small-size
correspondences are involved in density estimation, instead
of the whole M. It significantly speeds up the process.

To formalize, let B = {b`} be the set of the segments in
image V P obtained via co-segmentation. For each feature
vPi ∈ IP , we use π(vPi ) ∈ B to denote the segment that
covers the center of vPi . We then collect features relevant
to vPi by checking if they reside in the same segment, i.e.,

G(vPi ) = {vPj |π(vPi ) = π(vPj )}. (8)

We assume that the grouped features with high probabil-
ity undergo similar transformations in matching. It follows
that the correspondences relevant to vPi in Hough voting
can be collected by

R(vPi ) =
⋃

vPj ∈G(vPi )

Mj . (9)

Given in Eq. (6), Mi consists of at most one correct
correspondence. Hough voting as well as voters R(vPi )
are adopted to pick the most plausible correspondence
associated with feature vPi . Specifically, it is accomplished
by normalized kernel density estimation (KDE):

m∗ii′ = argmax
mii′∈Mi

1

|R(vPi )|
∑

m∈R(vPi )

exp (−d(mii′ ,m)

σ
), (10)

where σ is a positive constant whose value is set as the
average distance among the existing correspondences. Note
that the normalization term 1/|R(vPi )| does not affect the
result in Eq. (10), but it is required in comparing densities
across feature points.

The procedure of correspondence selection is repeated
for each feature in image IP . It results in NP selected
correspondences M∗ = {m∗ii′}N

P

i=1. We then sort them
according to their associated densities in Eq. (10), and
return the top correspondences by a proper threshold. In
the experiments, our approach is evaluated by precision-
recall curves, plotted with various thresholds.

An example of the verification results by Hough voting is
shown in Fig. 1. The detected feature points are plotted in
Fig. 1(a). The segments by co-segmentation algorithm [36]
are displayed in Fig. 1(b). We use the re-projection error
to measure the distance between two correspondences, and
adopt multi-dimensional scaling (MDS) [38] to visualize
points in the six-dimensional transformation space in a 2D
plane. The homographies of the initial correspondences in
the transformation space are shown in Fig. 1(c), in which
incorrect correspondences are drawn in black while correct
correspondences in the three common objects, including
cup noodles (red), book (green), and Mickey (yel-
low), are drawn in the particular colors. It can be observed
that correct correspondences on the same object often
gather together. The detected correspondences by Hough
voting and by the nearest neighbor search are compared in
Fig. 1(d).
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4.3 Inverted Hough transform for correspon-
dence recommendation
Hough transform identifies correct correspondences M∗ ⊆
M and boosts the precision. The resulting correspondences
can help image co-segmentation in finding more object-
aware co-segments. This step for refining co-segmentation
will be given in Section 5 for the sake of clarity. Assume
that the refined co-segments are available. The goal of
inverted Hough transform is to enrich M so that the recall
can be increased. The grouped features by co-segments
often have consensus transformations and can assist each
other in finding plausible correspondences. We investigate
this property and develop the inverted Hough transform,
in which grouped features propagate their homographies to
each other. It follows that concerted correspondences are
recommended.

For each vPi ∈ V P , we search the relevant features,
G(vPi ) in Eq. (8). Each of these features delivers a hy-
pothesis about the homography of vPi . These hypotheses
are collected in

M̃i = {m∗jj′ |vPj ∈ G(vPi )}, (11)

where m∗jj′ is the selected correspondence of vPj through
Hough voting. The set M̃i may contain outliers caused
by corrupted matchings. Hence, we pick the homography
of the most plausible correspondence m̃jj′ ∈ M̃i for
recommendation, where

m̃jj′ = argmax
m∗
jj′∈M̃i

∑
m∈M̃i

exp (−
d(m∗jj′ ,m)

σ
). (12)

Suppose that the relative transformation of m̃jj′ is Hjj′ .
The projected region of vPj from IP to IQ through Hjj′ is
denoted by S. The matching feature in IQ is obtained by

vQk = argmax
vQk ∈V Q

S ∩ SQk
S ∪ SQk

. (13)

It follows that correspondence mik = (vPi , v
Q
k , Hik) is

recommended, i.e.,Mi ←Mi∪mik. This process is done
for each feature in IP . The resulting correspondence set
M in Eq. (7) is incrementally enriched.

Hough voting and its inverted variant are tightly coupled.
While the former detects correct correspondences from the
enriched candidates, the latter gives harmonic enrichment
owing to better detection results. The alternate voting
procedure is guaranteed to finish. It can be observed that
the number of all the correspondences, i.e., |C|, is finite
and fixed. At each iteration, the number of correspondence
candidates, i.e., |M|, is monotonically increasing. Since
M is a subset of C, the iterative procedure must stop. In
implementation, we terminate the procedure when |M| no
longer increases or the maximum number of iterations is
reached. Empirically, our approach rapidly converges after
a few iterations, typically 2 ∼ 4, as shown in Section 6.5.4.

As our approach performs Hough voting by taking co-
segmentation results into account, we term our approach
as Co-Segmentation guided Hough Voting (or CoSeg-HV

Algorithm 1 The procedure of the proposed framework

1: Input: Feature sets V P and V Q; Max iteration T
2: Output: Matched correspondences M∗
3: Initialize correspondence sets {Mi}N

P

i=1 via (6);
4: Apply image co-segmentation to IP and IQ;
5: while t < T do
6: M∗ ← ∅
7: for all vPi ∈ V P do
8: Detect correspondence m∗ii′ ∈Mi via (10);
9: M∗ ←M∗ ∪m∗ii′ ;

10: end for
11: Filter corrupt correspondences in M∗ via (15);
12: Cluster the remaining correspondences for co-

segmentation initialization;
13: Generate refined co-segments via (22) or (26);
14: for all vPi ∈ V P do
15: Identify recommended feature vQk via (13);
16: Construct mik = (vPi , v

Q
k , Hik);

17: Mi ←Mi ∪mik;
18: end for
19: end while
20: Sort elements in M∗ with thresholding;

for short). Fig. 1(f) shows the matching results by CoSeg-
HV. Compared with Hough voting, CoSeg-HV detects more
accurate and dense correspondences, and hence improves
the performance in terms of precision and recall. It is
worth mentioning that the co-segmentation results can be
further refined by considering the correspondences. We
will describe it in the next section. Fig. 1(e) displays the
refined co-segmentation results. We conclude this section
by summarizing our approach in Algorithm 1.

5 ENHANCED IMAGE CO-SEGMENTATION
WITH FEATURE MATCHING
In this section, we show how the progressively accurate
and dense correspondences by our approach improve co-
segmentation. First, we use one-class SVM [39], [40] and
spectral clustering [41] to filter corrupt correspondences
and group the remaining ones, respectively. The results
can serve as a good initialization of co-segments, which
is essential to many existing co-segmentation algorithms.
Second, based on feature matching, we introduce a ho-
mography regularization term and a descriptor consistency
term into co-segmentation. While the former encourages
intra-object geometric coherency, the latter encodes inter-
image photometric consistency. We show the benefits from
feature matching with two powerful co-segmentation al-
gorithms, including the graph-partition model for multi-
class co-segmentation [36] and the MRF-based two-class
co-segmentation algorithm [27].

5.1 Corrupt correspondence filtering
Inspired by the observation that correspondences residing
in the same object often have similar homographies, group-
ing correspondences based on their homographies helps
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in finding more object-aware co-segments. However, two
issues arise if we directly cluster the correspondences found
by our approach, i.e., those in M∗. First, M∗ consists of
one correspondence for each feature point in image IP ,
but only a fraction of feature points reside in common
objects. Clustering correspondences in backgrounds does
not make sense, because strong variation in their homogra-
phies presents. Second, spatially smooth co-segments are
preferred in co-segmentation. However, the construction of
M∗ in Eq. (10) neglects the spatial positions of corre-
spondences in the image. To address the two issues, we
utilize one-class SVM with a designed distance to identify
geometrically and spatially coherent correspondences from
M∗. The identified correspondences are then used to en-
hance co-segmentation in the forms of a good foreground
initialization, the homography regularization term, and the
descriptor consistency term.

One-class SVM is the state-of-the-art methodology for
unsupervised classification. It works based on the assump-
tion that positive data are similar to each other, while
negative data are different in their own ways. We utilize
one-class SVM for classifying matchings in M∗, since it
is analogous to feature matching where correct matchings
are spatially and geometrically consistent with each other,
while the incorrect matchings distribute irregularly. Specif-
ically, we construct a graph G = (V, E) to model both the
spatial and geometric relationships among correspondences.
A node vi is created for each correspondence ci ∈ M∗,
while an edge eij ∈ E is added to connect vi and vj
if their endpoints in IP are within δ pixels. (δ is set as√
imgh×imgw

10 in this work, where imgh and imgw are the
height and the width of IP , respectively). We assign weight
wi,j to edge ei,j as follows:

wij =

{
d(ci, cj), if eij ∈ E ,
∞, otherwise,

(14)

where d(ci, cj) is the geometric dissimilarity between cor-
respondences ci and cj as given in Eq. (5). With the
weights on the edges, the geodesic distance dgeo(ci, cj)
between each pair of correspondences ci and cj can be
computed by Floyd-Warshall’s algorithm. Compared with
d(ci, cj), dgeo(ci, cj) further integrates spatial continuity
into the estimation of geometric coherence. Thereby it
more faithfully reflects the relationships between correspon-
dences. With the kernel function K(i, j) = k(ci, cj) =

exp(−d
2
geo(ci,cj)

σ2 ), one-class SVM predicts the correctness
of each correspondence c ∈M∗ by sign(f(c)), where

f(c) = wTφ(c)− ν =

|M∗|∑
j=1

αjk(c, cj)− ν. (15)

The value of σ is set as the average distance between all
correspondences to their nearest neighbors. With training
set M∗, their coefficients, {αj}, in Eq. (15) are optimized
by using package LibSVM [42]. We tune parameter ν by
uniformly sampling from a large range, and set ν = 0.8
in all the experiments. We denote the set of the correspon-
dences selected by one-class SVM as M̃∗.

5.2 Information transfer from feature matching to
image co-segmentation
We describe our representations of information transferred
from feature matching to image co-segmentation, including
the initial seeds, the homography regularization term, and
the descriptor consistency term.

For image co-segmentation, a set of images I = {Ii}Bi=1

containing instances of common objects is considered. The
goal is to partition the pixels of all images into meaningful
K ≥ 2 classes, where K (K−1 common objects with one
background class) is assumed to be known. For efficiency,
the over-segmentation algorithm [43] is firstly applied to
partition each Ii into Si superpixels, i.e., {sij}S

i

j=1. Pixels
of a superpixel share the same label in co-segmentation.

To have good initial co-segments, correspondences in
M̃∗ are clustered into (K − 1) classes via spectral cluster-
ing [41] with their pairwise geodesic distances as input. The
clustered correspondences can then serve as the initial seeds
in the generation of the initial co-segmentation results. For
each superpixel that covers at least one correspondence in
M̃∗, its initial label is set as the majority cluster label of the
correspondences falling into that superpixel. The remaining
superpixels are initialized as background.

The homography regularization term is yielded by ex-
ploiting the geometric information carried by the homo-
graphies of the correspondences. Specifically, an affinity
matrix [γig,h] is used to represent how well two superpixels
sig and sih in image Ii are grouped together according to
the homography coherence:

γig,h =
∑

maa′∈Qig

∑
mbb′∈Qih

exp(−
d2geo(maa′ ,mbb′)

σ2
γ

), (16)

where dgeo(maa′ ,mbb′) is the geodesic distance between
correspondences maa′ and mbb′ . Qig and Qih contain corre-
spondences whose endpoints in image Ii fall in superpixels
sig and sih, respectively. The value of σγ is set as the average
geodesic distance between the correspondences in M̃∗.

While the homography regularization term considers
intra-image geometric coherence between superpixels, the
descriptor consistency term encodes inter-image photomet-
ric consistency between superpixels by considering the
similarity between matched feature points. Specifically,
another affinity matrix [ψi,jg,h] is complied to measure the
likelihood that superpixels sig in image Ii and sjh in image
Ij belong to the same class:

ψi,jg,h =
∑

maa′∈Qig∩Q
j
h

exp(−
‖uia − uja′‖2

σ2
ψ

), (17)

where σψ is set as the average descriptor distance between
matched feature points in matchings belonging to M̃∗.

Most co-segmentation algorithms perform by taking the
pair-wise similarities (or dissimilarities) between superpix-
els (pixels) into account. For example, the graph-based
co-segmentation algorithm [36] formulates this informa-
tion in form of graph Laplacian, and the MRF-based
algorithm [27] model it in form of energy functions. As
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two kinds of similarity measure between superpixels, the
homography regularization term and the descriptor consis-
tency term can be easily incorporated into co-segmentation.
Two examples are given in the next two subsections.

5.3 Graph-partition co-segmentation model
The model by Joulin et al. [36] partitions image set I =
{Ii}Bi=1 of N pixels (or superpixels here) into K classes,
and uses y ∈ {0, 1}N×K to represent the results, i.e.,

ynk =

{
1, if the nth superpixel is of class k,
0, otherwise.

(18)

The co-segmentation model [36] jointly infers the segment
label y and nonlinear separating surface (A, b) by minimiz-
ing the following energy function:

min
y,y1K=1N ,A,b

EU (y,A, b) + EB(y)−H(y). (19)

It includes a discriminative term EU that maximizes class
separability, a spatial consistency term EB that encodes
both the visual and spatial similarity, and a regularization
term H that balances the cluster sizes. In this work, we
follow the original definitions of EU and H given in [36],
and modify EB to take the results of feature matching into
account. Specifically, EB in [36] is defined as

EB(y) =
µ

N

∑
Ii∈I

∑
g,h∈Si

K∑
k=1

ygkyhkLgh, (20)

where µ is a free parameter, and Si is the index set
of superpixels in Ii. L ∈ RN×N is a normalized graph
Laplacian, and it is constructed with an affinity matrix,
whose elements record the pair-wise similarities between
superpixels in color and spatial position. Function EB(y)
encourages clustering superpixels into homogeneous re-
gions. It forces segmentation to preserve strong edges,
which might not necessarily correspond to object bound-
aries especially when large intra-object color variability or
cluttered backgrounds present. We leverage the information
from feature matching to address this issue. With the
affinity matrices [γig,h] in Eq. (16) and [ψi,jg,h] in Eq. (17),
two extra normalized graph Laplacian Lγ ∈ RN×N and
Lψ ∈ RN×N are constructed, respectively. The modified
function EB′(y) is then defined as

EB′ (y) =
µ

N

∑
Ii,Ij∈I

∑
g∈Si,h∈Sj

K∑
k=1

ygkyhk(Lgh + λ
γ
L
γ
gh + λ

ψ
L
ψ
gh).

(21)

Via Eq. (21), feature matching is integrated into co-
segmentation. Multi-type information, including color, spa-
tial position, geometric, and descriptor similarities, are
fused in the domain of graph Laplacian. With EB′(y) in
Eq. (21), the new formulation for co-segmentation becomes

min
y,A,b

EU (y,A, b) + EB′(y)−H(y). (22)

In the experiments, we tune and fix parameters λγ and λψ

in Eq. (21) for each adopted dataset. The same optimization
procedure in [36] can be used to solve Eq. (22).

5.4 MRF-based co-segmentation model
The MRF-based co-segmentation algorithm [27] performs
figure-ground separation over I = {Ii}Bi=1. The co-
segmentation results on Ii is represented by binary vector
xi ∈ {0, 1}Si . The algorithm by Chang et al. [27] optimizes
{xi}Bi=1 by minimizing the following energy function:

F (xi) =

B∑
i=1

Li(x
i) + λ

B∑
i,j=1

G(xi, xj , Ii, Ij), (23)

where Li(x
i) is the intra-image energy for the labeling

xi on Ii, and G(xi, xj , Ii, Ij) is the inter-image energy
measuring the inconsistency between Ii and Ij under the
labeling xi and xj . Refer to [27] for the details of the two
energy functions.

Except for the initialization, we further boost the perfor-
mance of [27] by leveraging the results of feature matching.
Note that the geometric regularization term in Eq. (16) and
the descriptor consistency term in Eq. (17) respectively
describe the intra-image and the inter-image interaction
between superpixels. Thus, we integrate them into the intra-
image energy and the inter-image energy, respectively. The
modified intra-image energy L′i(x

i) becomes

L′i(x
i) = Li(x

i) + λγ
∑

(g,h)∈Ei
γig,hδ[x

i
g 6= xih], (24)

where λγ is a nonnegative constant, and E i contains the
pairs of adjacent superpixels in Ii. The extra homography
regularization term γig,h in Eq. (24) encourages label coher-
ence especially when superpixels sig and sih share similar
homographies in feature matching. On the other hand, the
modified inter-image energy G′(xi, xj , Ii, Ij) is given by

G′(xi, xj , Ii, Ij) = G(xi, xj , Ii, Ij)

+ λψ
∑

g∈Si,h∈Sj
ψi,jg,hδ[x

i
g 6= xjh], (25)

where λψ is a nonnegative constant. Si and Sj are the
index sets of superpixels in images Ii and Ij , respectively.
The second term in Eq. (25) penalizes label inconsistence in
particular when there exist strong correspondences between
superpixels. With L′i(x

i) in Eq. (24) and G′(xi, xj , Ii, Ij)
in Eq. (25), the new energy function becomes

F ′(xi) =

B∑
i=1

L′i(x
i) + λ

B∑
i,j=1

G′(xi, xj , Ii, Ij). (26)

Similarly, the parameters λγ and λψ in Eq. (24) and
Eq. (25) are tuned and fixed for each adopted dataset in
the experiments. Like [27], graph-cut [44] is used to solve
Eq. (26), which is still submodular.

6 EXPERIMENTAL RESULTS

The performance evaluation and analysis of the proposed
approach are reported in this section. Totally four sets of
experiments are conducted. First, we visualize the transfor-
mation space to verify our assumption that correct corre-
spondences gather together in that space, while incorrect
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(a)

(b)
Fig. 2: (a) The matching results of our approach in an image pair.
The incorrect correspondences are drawn in black. Each correct
correspondence is shown in a particular color according to the
object that it belongs to. (b) The corresponding 2D homography
space generated by using multi-dimensional scaling.

ones distribute more dispersedly. Second, our approach
is compared with some of the state-of-the-art approaches
to matching multiple common objects in cluttered back-
grounds. Third, we show that our approach can collabo-
rate with different feature detectors and descriptors, and
establish accurate correspondences across images where
dramatic variations or deformations present. Finally, a few
important issues regarding our approach are discussed, such
as image co-segmentation initialization, the number of co-
segments, the running time, and the convergence property.

6.1 Homography space visualization
We visualize the transformation (or homography) space,
and check whether the assumption that correct correspon-
dences tend to gather together in the space holds or
not. As mentioned in Section 3, each correspondence is
considered as a point in the homography space that is
six-dimensional in this work, and the re-projection error
measures the distance between two correspondences. We
adopt multi-dimensional scaling (MDS) [38] to visualize
the six-dimensional space in a 2D plane. MDS summa-
rizes high-dimensional data in a low-dimensional space by
approximating their pair-wise distances, i.e., re-projection
error here. In Fig. 2(a), the matching results by approaches
are shown, where the correspondence with the highest
density in each detected feature of the left image is plotted.
While wrong correspondences are drawn in black, each
correct one is displayed in a specific color according to the
common object that it resides in. The corresponding 2D
plane generated by MDS is shown in Fig. 2(b). It can be
observed that correct correspondences on the same object

typically have consistent transformations, while the incor-
rect correspondences are irregularly distributed. It also in-
dicates that geometric consistency among correspondences
is highly relevant to their correctness.

6.2 Evaluation metrics
In this work, we analyze the performance of a matching
algorithm by jointly considering precision and recall. While
the former is the fraction of detected correspondences that
are correct, the latter is the fraction of correct correspon-
dences that are detected. In more detail, the two terms are
respectively defined as

PRECISION =
nTP

nTP + nFP
, (27)

and
RECALL =

nTP

nTP + nFN
, (28)

where nTP and nFP are the numbers of detected correspon-
dences that are correct and incorrect, respectively. nFN is
the number of correct correspondences that are not detected.
In other words, (nTP + nFP) is the number of correspon-
dences returned by a specific algorithm. (nTP+nFN) is the
number of the all correct correspondences in set V P ×V Q.

For a feature point in the first (left) image to be matched,
its matching is considered correct if the distance between
the other endpoint and the ground truth is within ε pixels.
We set ε as 15 in this work. For each matching approach,
including ours and the adopted baselines, all the detected
correspondences are ranked by its own criterion, such as the
element values of the eigenvector in spectral matching [13]
or the estimated density, Eq. (10), in our approach. With
a set of thresholds, the performance of each approach can
then be presented by a precision-recall curve. We deter-
mine the thresholds by uniformly sampling the returned
correspondences in the ranked list.

6.3 Matching with multiple common objects
The performances of our approach as well as the adopted
baselines are evaluated on the co-recognition dataset [22].
This dataset contains six image pairs, and each pair has
multiple common objects. The large appearance variations
of common objects, partial occlusions, and cluttered back-
grounds make matching on this dataset quite challenging.
However, it provides a good test bed to manifest the
importance of geometric verification and correspondence
recommendation, since the initial correspondences are not
reliable enough. Our approach, Co-Segmentation guided
Hough Voting (CoSeg-HV), is compared with some of the
state-of-the-art systems, each of which is briefly described
and denoted in bold as follows:
• Descriptor-based approach: We adopt opponent SIFT

(OSIFT) [45] for comparison. It is an important
baseline, since we use OSIFT to compile the initial
set of correspondences. We also adopt Lowe’s ratio
test [12] (Ratio), i.e., the ratio of distance from the
closest neighbor to the distance of the second closest,
for sorting the establishing correspondences.
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Fig. 3: The performances of various approaches on the six image pairs of the co-recognition dataset.

• Clustering-based approach: Our approach is com-
pared with the common visual pattern discovery
(CPD) [14] and the agglomerative correspondence
clustering (ACC) [15].

• Graph-based approach: Among the graph-matching al-
gorithms, spectral matching (SM) [13] and reweighted
random walks (RRWM) [46] are selected for their
good performances.

• Voting-based approach: Among the voting-based al-
gorithms, the variant of Hough pyramid matching
(HPM) [47] and multi-structure homography fitting
(Multi-GS) [17] are selected for their good perfor-
mances. Note that the method in [47] is applied to
correspondences established by matching the visual
words. In our cases, there is no additional dataset for
constructing visual words in advance. Thus, we imple-
ment its variant that is applied to the correspondence
set M in Eq. (7).

• Sequential Correspondence Selection (SCV) [24] is
also adopted for its support region selection.

• Feature matching and enrichment: We adopt the pro-
gressive graph matching framework (ProgGM) [25],
which is one of the best approaches to correspondence
enrichment.

• The variants of our approach: Two variants of our
approach, including Hough voting (HV) and BPLR
guided Hough Voting (BPLR-HV) [21]. HV carries
out only the part of Hough transform in our ap-
proach. Comparing with HV can reveal the effect of
correspondence enrichment especially in the aspect
of RECALL. BPLR-HV adopts BPLR [48] for corre-
spondence recommendation. Comparing with BPLR-
HV, the advantage of integrating image matching with
image co-segmentation can be explored.

In this set of experiments, our approach is collaborated
with the co-segmentation model in [36], since it is designed
for the cases where multiple common objects present. For
the sake of fair comparison, all the approaches work on
the same feature points detected by the Hessian affine
detector [35] and depicted by the OSIFT descriptor [45].
The initial correspondence set of all the approaches is
selected by the nearest search with the OSIFT descriptor.
Note that we use the publicly available codes provided by
the authors for all the compared methods except HPM,
which is implemented by us and can work with multiple
correspondence candidates in this experiment. We set the
value of γ in Eq. (6) as 5 for all the methods, though the
optimal value may vary from method to method.

The quantitative results in form of precision-recall curves
are reported in Fig. 3. The baseline OSIFT achieves good
scale invariance and robustness to a certain degree of
viewpoint changes. However, it does not work well in this
dataset, since the unary local features are not sufficient
to handle cluttered backgrounds, complex transformations
of common objects. Baseline Ratio gives better results
than OSIFT. The performances of the approaches based
on graph matching, i.e., SM [13] and RRWM [46], are not
stable due to their sensitivity to outliers. In this dataset,
wrong correspondences are much more than correct ones
in initialization. Although Multi-GS is capable of fitting
multiple homography structures, it still suffers from the
large fractions of outliers here. HPM is marginally better,
but still not satisfactory. It may result from the quantization
errors in the pyramid of the transformation space. Although
SCV performs additional process for support region selec-
tion, the performance gain over OSIFT is not significant in
this dataset, because the Hessian-affine detector has already
shown high repeatability in the highly textured images.
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(b) OSIFT: 440/539 (c) CPD: 417/539 (d) CoSeg-HV: 845/910

(e) SM: 41/157 (f) CPD: 110/157 (g) CoSeg-HV: 361/394

Fig. 4: (a) Average endpoint errors of the top ranked correct correspondences by CoSeg-HV. (b) ∼ (g) The feature correspondences
detected by different approaches on image pairs Books and Bulletins. In each figure, the adopted approach as well as its
performance (correct detections/correct candidates in M) are also shown. The correct correspondences are plotted in green, and the
incorrect ones are in black. Note that the performance shown here is not the recall defined in Eq. (28). The denominator here is the
number of correct correspondences inM, while the denominator in recall is the number of correct correspondences in set V P ×V Q.

Instead, CPD [14], ACC [15], and HV show the advantage
of investigating geometric consistency.

By progressively enriching true candidate matchings in
M, BPLR-HV, ProgGM and CoSeg-HV further improve
the performance in terms of both precision and recall.
Among them, the proposed CoSeg-HV and BPLR-HV con-
sistently outperforms ProgGM in most cases. The objective
functions of the correspondence verification and recom-
mendation steps in our approach are both derived upon
densities and hence coherent. The two steps complement
each other to jointly lead to better results. In addition,
CoSeg-HV is superior to BPLR-HV. This is because BPLR-
HV investigates only the local segmentation or arrangement
in a single image. In contrast, CoSeg-HV utilizes rich
information across two images through co-segmentation.
With the aid of the segment-level information discovered
by co-segmentation, the transformations corresponding to
real object hypotheses are more likely to be targeted. This
results in correspondence enrichment of high quality.

We also report the average endpoint errors of the cor-
rect correspondences detected by CoSeg-HV in Fig. 4(a).
Specifically, the correct correspondences are ranked by
their densities in Eq. (10). The average endpoint errors
in pixel are measured with different numbers of the top
ranked correct correspondences. It can been observed that
the average endpoint errors of the correct correspondences
in most cases are less than 5 pixels. To gain insight into the
quantitative results, we plot the correspondences by various
approaches on a few image pairs in Fig. 4(b) ∼ 4(g). In each
subfigure, the adopted approach as well as the performance
(correct correspondences / correct candidates in M) are
shown. It can be seen that CoSeg-HV dramatically increases
the number of correct candidates in M, i.e., from 539 to
910 on image pair Books and from 157 to 394 on image
pair Bulletins. Thus, CoSeg-HV detects more accurate
and dense matchings as shown in Fig. 4.

6.4 Collaborating with other feature descriptors

Our approach can be considered as a geometric filter. It
drops correspondences that are not consistent with others,
and enhances the matching by propagating concerted trans-
formations among dependent features. It can be applied

TABLE 1: The performances in mAP of our approach and the
baselines on three datasets.

dataset SYM-D [49] HV CoSeg-HV
SYM-BENCH 18.82% 41.71% 63.12%

dataset LIOP [50] HV CoSeg-HV
Illumination 63.57% 80.25% 91.16%

dataset DAISY [51] HV CoSeg-HV
Daisy 52.28% 68.93% 71.50%

to various types of feature descriptors, and improve their
performances in the associated applications.

We conduct the experiments on the SYM-BENCH
dataset [49], the Illumination dataset [50], and the Daisy
dataset [51], where the SYMD descriptor [49], the LIOP
descriptor [50], and the DAISY descriptor [51] are adopted,
respectively. In this set of experiments, matching perfor-
mances are evaluated by using mean Average Precision
(mAP), which is the mean of the average precisions, while
the average precision on each image pair is obtained by
averaging the precisions computed with different numbers
of the returned correspondences. In the first two experi-
ments, our approach collaborates with the two-class co-
segmentation algorithm by Chang et al. [27], because there
is one single common object in each image pair of the
two datasets. In the last experiment, our approach works
with the multi-class co-segmentation algorithm by Joulin
et al. [36] due to the presence of multiple common objects.

6.4.1 On working with the SYMD descriptor
We check whether our approach improves the SYMD
descriptor on the challenging SYM-BENCH dataset [49],
which contains 46 pairs of images exhibiting dramatic
variations in lighting conditions, ages, and rendering styles.
Some image pairs are pre-registered with a homography,
while the others exhibit both geometric and photometric
variations. A manually annotated homography for each pair
is included in the ground truth. The SYM-G detector and
the SYMD descriptor [49] are adopted to construct the
set of initial correspondences. HV and CoSeg-HV are then
applied to correspondence verification.

The overall performance in mAP is reported in TABLE 1.
As highly similar patterns repeatedly appear in most images
of this dataset, it causes ambiguity when establishing corre-
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Fig. 5: The matching results by three different approaches on three image pairs of the SYM-BENCH dataset [49], including image
pair sanmarco2 in the first column, image pair arch in the second column, and image pair riga in the third column. (a) ∼ (i)
The used approaches as well as their performances (correct detections/correct candidates in M) are attached below the figures. (j) ∼
(l) The corresponding precision-recall curves on the three image pairs.

spondences by considering only local descriptors. CoSeg-
HV and HV overcome this issue by further enforcing
geometric consistency in correspondence selection. They
achieve mAPs of 63.12% and 41.71%, respectively, and
considerably outperform the SYMD descriptor. Suffering
from the same ambiguity problem, fewer correct correspon-
dences are included in the initial set. CoSeg-HV tackles
this issue by progressive correspondence enrichment, and
is hence superior to HV. For the SYMD descriptor, we
use the implementation provided by the authors [49]1 in
this experiment. Note that the precision-recall curves are
different from those reported in [49]. It is due to the
different evaluation criteria and matching constraints.

The matching results and the precision-recall curves
of three image pairs of the SYM-BENCH dataset are
shown in Fig. 5. Compared with the SYMD descriptor, HV
filters out many correspondences whose transformations
are inconsistent. Compared with HV, the proposed CoSeg-
HV generates more accurate and dense matchings. The
advantages of using CoSeg-HV can be observed visually
and quantitatively in Fig. 5.

6.4.2 On working with the LIOP descriptor
In the experiment, our approach collaborates with the LIOP
descriptor [50], and establishes correspondences across
images with drastic illumination changes. We perform the

1. http://www.cs.cornell.edu/projects/symfeat/

quantitative analysis on the complex illumination dataset
used in [50]. It contains two image pairs Desktop and
Corridor. Besides, the image pair Leuven with expo-
sure change from Oxford dataset2 is also adopted. For each
image pair, the initial matching candidates are found by
LIOP, which is robust to dramatic illumination changes via
encoding local ordinary information of each pixel.

HV and CoSeg-HV are applied to the correspondences
initially discovered by LIOP. The performances in form
of precision-recall curves are shown in Fig. 6(a) ∼ 6(c).
The obtained mean average precision (mAP) is reported
in TABLE 1. It can be seen that despite the robustness
to appearance change due to illumination variance, the
performance of LIOP can still be enhanced by ensuring
homography consistency. Besides, the correspondence can-
didates are enriched by leveraging the additional infor-
mation grabbed through co-segmentation. It follows that
CoSeg-HV leads to considerable performance gains, i.e.,
10.91%(= 91.16% − 80.25%) over HV and 27.59%(=
91.16% − 63.57%) over LIOP. This is attributed to the
fact that the co-segmentation results help to find the most
plausible transformations across two images.

6.4.3 On working with the DAISY descriptor
In this experiment, our approach works with the DAISY
descriptor [51], and establishes correspondences on six

2. http://www.robots.ox.ac.uk/vgg/research/affine/
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Fig. 6: Plug-in comparison with the LIOP and DAISY descriptors on six image pairs, including (a) Leuven, (b) Corridor, (c)
Desktop, (d) Checker, (e) Teddy, and (f) Twinings.

TABLE 2: The effect of using OCSVM on our approach.
image pair without OCSVM with OCSVM

Books 0.4786 0.5035
Bulletins 0.5214 0.5451
Mickey 0.4679 0.5348
Minnies 0.2611 0.3531

Toys 0.4503 0.4824
Jigsaws 0.2530 0.3109
average 0.4054 0.4544

wide-baseline image pairs used in [51]. Image matching
on these image pairs is challenging owing to the changes
in contrast, scale, image quality, viewpoint and brightness.
For each image pair, the initial correspondence candidates
are found by the DAISY descriptor, which is robust to
photometric and geometric variations. HV and CoSeg-HV
are then applied to these initial candidates. The matching
results and the precision-recall curves on three image pairs
are shown in Fig. 6(d) ∼ 6(f), respectively. The overall
performance in mAP is reported in TABLE 1. Compared
with nearest neighbor search with the DAISY descriptor,
HV utilizes Hough transform to enhance the precision
especially when the recall is low. CoSeg-HV further boosts
the recall by dynamic correspondence enrichment.

6.5 Comprehensive studies

Here we discuss a few issues pertaining to our approach,
including the initialization of image co-segmentation, the
number of co-segments, the running time of each step in
our approach, and the convergence property.

6.5.1 Co-segmentation initialization
One-class SVM (OCSVM) is utilized to select geometri-
cally and spatially consistent correspondences. The selected
correspondences act as the input to spectral clustering
to initialize co-segments. This extra step, using OCSVM
for correspondence selection, alleviates the problem that
spectral clustering is sensitive to outliers. To single out its
effect, we respectively evaluate the matching performances
of our approach with and without this step. For a concise
performance measure of feature matching, we compute F-
score, the harmonic mean of precision and recall, with
different thresholds, and take the average. TABLE 2 depicts
the matching performances in F-score on the six image
pairs of the co-recognition dataset. The results imply that
better initialization of image co-segmentation with the aid
of OCSVM is beneficial for image matching.

6.5.2 Number of co-segments
The number of segments K in the multi-class co-
segmentation algorithm [36] is crucial. The true value of K
is assumed known in our approach. Here we evaluate our
approach with different numbers of co-segments. The num-
bers of common objects on the co-recognition dataset range
from 3 to 6. Fig. 7(b) shows the performances, F-score,
of our approach by setting K from 2 to 10 respectively.
Compared with co-segmentation, the matching performance
of our approach is less sensitive to the value of K. The
main reason may be that our approach adopts the voted
homography in Eq. (12) for enrichment, and is tolerant to
moderate over-segmentation and under-segmentation.
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Fig. 7: (a) The performance of our approach with different
numbers of co-segments. (b) The performance of our approach
along the iterative procedure.

TABLE 3: Step-wise running time in second. [mean±std]
step running time
feature detection and extraction 17.35± 5.60
Hough transform 6.06± 3.20
co-segmentation initialization 3.93± 1.49
co-segmentation 62.19± 4.08
Inverted Hough transform 3.37± 1.22

6.5.3 Running time
The step-wise running time of applying our approach to
the co-recognition dataset is summarized in TABLE 3. Our
approach is implemented in MATLAB, and executed on
modern PC with an Intel Core i7 3.4 GHz processor. The
average number of interest points in an image is 1,466. It
takes about 17.4 seconds to detect interest points, extract
features, and find initial correspondences for an image pair.
In the iterative procedure, two key components, Hough
transform and inverted Hough transform, of our approach
take about 6.1 and 3.4 seconds respectively. While the
primary computational cost in the former component is on
kernel density estimation, that in the latter component is on
inferring the most plausible candidates for correspondence
enrichment. Co-segmentation initialization by computing
geodesic distance and running OCSVM spends around 3.9
seconds. The step of image co-segmentation is usually the
computational bottleneck, and the running time is depen-
dent on the adopted algorithm. It takes about one minute in
our case where multi-class co-segmentation algorithm [36]
is applied to the images of the co-recognition dataset.

6.5.4 Convergence analysis
We show the performance of feature matching along the
iterative procedure in Fig. 7(b), in which each curve rep-
resents one of the six image pairs of the co-recognition
dataset. It can be observed that the procedure rapidly con-
verges after only a few iterations in all the six image pairs.
The F-score averagely increases 10% in early iterations.
The results demonstrate that our method provides fast
convergence and high performance in feature matching.

7 CONCLUSION AND FUTURE WORK

We have presented a simple but effective approach that
carries out alternate Hough voting and its inverted variant to
establish correspondences in complex matching tasks, and
boosts the performances in both precision and recall. Our
approach integrates image co-segmentation into the process

of feature matching, and cast it as a density estimation prob-
lem in the homography space. Through iterative optimiza-
tion, more correct correspondences are detected from the
enriched candidates, while plausible enrichments are gradu-
ally revealed by taking the object segments into account. In
the experiments, the proposed approach is comprehensively
evaluated on four datasets coupled with different descriptors
and co-segmentation algorithms. The promising results con-
solidate the effectiveness of our approach. For future work,
we will apply the proposed approach to vision applications
where accurate feature correspondences are appreciated.
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“SLIC superpixels compared to state-of-the-art superpixel methods,”
IEEE Trans. on Pattern Anal. and Mach. Intell., vol. 34, no. 11, pp.
2274–2282, 2012.

[44] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” IEEE Trans. on Pattern Anal. and
Mach. Intell., vol. 23, no. 11, pp. 1222–1239, 2001.

[45] K. van de Sande, T. Gevers, and C. Snoek, “Evaluating color
descriptors for object and scene recognition,” IEEE Trans. on Pattern
Anal. and Mach. Intell., vol. 32, no. 9, pp. 1582–1596, 2010.

[46] M. Cho, J. Lee, and K. M. Lee, “Reweighted random walks for graph
matching,” in Proc. Eur. Conf. Comput. Vis., 2010, pp. 144–157.

[47] Y. Avrithis and G. Tolias, “Hough pyramid matching: Speeded-up
geometry re-ranking for large scale image retrieval,” Int. J. Computer
Vision, vol. 107, no. 1, pp. 1–19, 2014.

[48] J. Kim and K. Grauman, “Boundary preserving dense local regions,”
in Proc. Conf. Comput. Vis. and Pattern Recognit., 2011, pp. 1553–
1560.

[49] D. C. Hauagge and N. Snavely, “Image matching using local sym-
metry features,” in Proc. Conf. Comput. Vis. and Pattern Recognit.,
2012, pp. 206–213.

[50] Z. Wang, B. Fan, and F. Wu, “Local intensity order pattern for feature
description,” in Proc. Int’l Conf. Comput. Vis., 2011, pp. 603–610.

[51] E. Tola, V. Lepetit, and P. Fua, “DAISY: An efficient dense descriptor
applied to wide baseline stereo,” IEEE Trans. on Pattern Anal. and
Mach. Intell., vol. 32, no. 5, pp. 815–830, 2010.

Hsin-Yi Chen received her B.B.A. degree
in business administration from National Tai-
wan University,and her M.S. degree in com-
puter science and information engineering
from National Taiwan University, where she
is currently a Ph.D. candidate in the same
program. She was a research assistant in
Academia Sinica, Taiwan from 2012 to 2014.
Her current research interests include com-
puter vision, computer graphics and image
processing.

Yen-Yu Lin received the B.S. degree in in-
formation management, and the M.S. and
Ph.D. degrees in computer science and in-
formation engineering from National Taiwan
University, Taipei, Taiwan, in 2001, 2003, and
2010, respectively. He is currently an Assis-
tant Research Fellow with the Research Cen-
ter for Information Technology Innovation,
Academia Sinica, Taipei, Taiwan. His current
research interests include computer vision,
pattern recognition, and machine learning.

He is a member of IEEE.

Bing-Yu Chen received the B.S. and M.S.
degrees in computer science and informa-
tion engineering from National Taiwan Uni-
versity, in 1995 and 1997, respectively, and
the Ph.D. degree in information science from
The University of Tokyo, Japan, in 2003. He
is currently a professor with National Taiwan
University. He was a Visiting Researcher and
Professor at The University of Tokyo during
2008 to 2012. His current research interests
include computer graphics, image and video

processing, and human-computer interaction. He is a senior member
of ACM and a member of Eurographics.


