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Abstract

The audio-visual video parsing task aims to temporally parse a video into audio or
visual event categories. However, it is labor-intensive to temporally annotate audio
and visual events and thus hampers the learning of a parsing model. To this end, we
propose to explore additional cross-video and cross-modality supervisory signals
to facilitate weakly-supervised audio-visual video parsing. The proposed method
exploits both the common and diverse event semantics across videos to identify
audio or visual events. In addition, our method explores event co-occurrence across
audio, visual, and audio-visual streams. We leverage the explored cross-modality
co-occurrence to localize segments of target events while excluding irrelevant
ones. The discovered supervisory signals across different videos and modalities
can greatly facilitate the training with only video-level annotations. Quantitative
and qualitative results demonstrate that the proposed method performs favorably
against existing methods on weakly-supervised audio-visual video parsing.

1 Introduction

Humans perceive multisensory signals via seeing, hearing, touching, etc., and obtain multimodal
information while exploring the surrounding environments. Visual and audio signals, the most
common modalities, motivate researchers to jointly comprehend audio-visual events (e.g., see people
singing and hear their sounds) [1, 2, 3, 4, 5, 6, 7]. Events visible in images while hearable in
audio are referred to as audio-visual events. However, learning-based models tend to recognize a
particular audio-visual event by using the data from the dominant modality with richer information
and overlook clues from either audio only or visual only events which still contribute to holistic
video understanding. Therefore, the resultant models can generalize well on audio-visual events only
instead of comprehensively understanding all kinds of video events. To address this issue, we target
at audio-visual video parsing [4, 6] where predictions for audio, visual, and audio-visual events with
temporal boundaries are all required but separately evaluated.

The time-consuming and labor-intensive annotation process poses a major challenge for the audio-
visual video parsing task. To address this issue, Tian et al. [4] handle this task in a weakly-supervised
manner given only video-level labels, which indicate events of presence without temporal bound-
aries and detailed modalities. They develop an audio-visual co-attention mechanism to assemble
discriminative multimodal representations and use multiple instance learning to aggregate frame-level
predictions into video-level ones. However, video-level labels alone cannot identify which modality
events are from. Wu et al. [6] then propose to perform label refinement by swapping the audio
and visual tracks of different videos to estimate and remove irrelevant event categories for each
modality. They further adopt temporal contrastive learning to align audio and visual representations
from the same frame. However, the contrastive learning is based on the assumption that audio and
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visual signals are synchronized, which may not hold in practical scenarios with complex events.
Furthermore, these methods [4, 6] only consider audio and visual tracks of a single video without
exploiting the relationship across categories and videos, which also provide rich shared semantics
regarding event categories.

In this work, we propose to leverage audio and visual data across different videos to explore shared
information of each category. For example, videos with singing events may have similar patterns
whatever in an audio or a visual modality. By observing all videos in a training batch, we can not only
explore the shared semantics among audio-visual data but also exclude unrelated events. In addition
to the relationship across different videos, we exploit the dependency between event categories. For
example, when people are singing, there is usually a music accompaniment. Therefore, we propose to
treat audio, visual, and audio-visual streams separately and adopt an audio-visual class co-occurrence
module that jointly explores the relationship of different categories among all streams. By measuring
the similarity of event categories from audio, visual, and audio-visual events, the correlated events
are more likely to be correctly determined as the presence or absence of event categories. Such a
strategy can robustly learn the correlation of categories within/across modality and fully exploit video
data. The proposed strategy can be applied to existing methods on video parsing.

We evaluate the proposed method on the LLP [4] dataset. Videos are parsed into audio, visual, and
audio-visual events under both segment and event levels, and evaluated with F-scores metrics. Both
qualitative and quantitative results demonstrate the effectiveness of the proposed method on the
audio-visual video parsing task. The main contributions of this work are summarized as follows:

• We leverage audio and visual data across different videos and tracks, which can learn
common semantics of the same events and discern unrelated clues.

• We develop an audio-visual event co-occurrence module that jointly considers the relation-
ship of categories in audio, visual, and audio-visual modalities, which can prevent models
from differentiating the representations of the related events.

• Qualitative and quantitative experimental results on the benchmark dataset demonstrate that
the proposed method performs favorably against the state-of-the-arts in various settings.

2 Related Work

Audio-Visual Representation Learning. Implicit correlation between audio and visual data from
videos provides rich information for audio-visual representation learning. First, the audio-visual
pairs from the same video clip [8, 9, 10, 11, 12, 13, 14, 15, 16, 17] are strongly correlated based
on the assumption that audio and visual data from a video are synchronized and highly correlated.
Moreover, features extracted from unpaired video clips tend to be more diverse than those from
the same clips. Second, by exploring audio-visual temporal synchronization [18, 19], temporal
information can be served as a training guidance. Given a video sequence, existing methods [18, 19]
distinguish audio and visual features from different frames while correlating features from the same
frames. Such an idea enhances robust audio-visual representation learning that is essential to several
tasks such as audio-visual event localization/parsing/recognition [1, 2, 3, 4, 5, 6, 7, 20], sound
separation [21, 22, 23, 24, 25, 26, 27, 28, 29, 30], audio spatialization [31, 32, 33, 34, 35, 36, 37, 38],
and sound localization [39, 40, 41, 42, 43, 44]. Instead of random sampling sound and images, our
method selects both related and irreverent videos to explore common semantics and discern dissimilar
events.

Audio-Visual Video Event Localization and Parsing. Audio-visual video parsing aims to detect
events in videos and identify audio, visual, and audio-visual events (e.g., seeing the event and hearing
its sound) and activities. Videos can be parsed with event categories and boundaries in both audio
and visual modalities. Early researches [5, 7, 2, 3] aim to jointly derive audiovisual information in
each local segment of the input video for audio-visual event localization, which emphasizes to detect
only audio-visual events. However, due to the inconsistent information observed from audio and
visual signals, data from either modality with insufficient clues may degrade the performance of
prediction. Therefore, the work [7] focuses on audio/visual data with relevant categorical events to
tackle this issue. Although methods of this category present favorable results, they are applicable
to audio-visual event localization, which considers only synchronous audio-visual events or not.
Recently, multi-modal multiple instance learning (MMIL) based methods with hybrid attention [4]
carry out weakly-supervised audio-visual video parsing. These methods aggregate segment-level
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Figure 1: Algorithmic overview. Our framework consists of a visual feature extractor, an audio
feature extractor, a feature aggregation module, MMIL pooling, shared cross-modality semantics, and
an cross-modality co-occurrence module. Given n videos of T seconds, the visual and audio feature
extractors compute their visual and audio features. The feature aggregation module [4] conducts
self- and cross-modality attention to aggregate segment-wise audio f̂a and visual f̂v representations.
We map segment-wise aggregated features to class-specific features by exploring cross-modality
co-occurrence. By performing self- and cross-modality attention for class features, we identify within
and cross modalities relationship between classes for event predictions. Note that ⊗ denotes matrix
multiplication with the softmax operation performing on each row, and the green block only shows
the example for segment-wise visual prediction at time t. We also leverage the aggregated features of
all n videos to figure out common semantics regrading events by maximizing the similarities between
related videos while minimizing those between unrelated videos with Eq. 8. The MMIL Pooling [4]
is an attention-based pooling function that aggregates segment-wise results to produce video-level
ones, which are optimized by the binary cross entropy loss described in Eq. 3 and Eq. 6.

predictions into video-level ones, with which optimizing a model by using video-level or weak labels
is enabled. Since video-level labels are typically insufficient to identify either audio or visual events,
Wu et al. [6] generate pseudo labels for each modality by exchanging audio and visual tracks between
unrelated videos. However, we notice that videos with replaced sounds or images may share some
common semantics. Our method can exploit videos in a training batch to extract their common
semantics for a categorical event and discern unrelated clues. Furthermore, we can leverage the
relationship between event classes to find out related events (e.g., singing may accompany music).

3 Proposed Method

In this paper, we propose a novel framework for weakly-supervised audio-visual video parsing.
In order to explore common semantics across videos and dependency across event categories, the
proposed model leverages all audio and visual signals across videos in a training batch and the
correlation between classes for each training instance. In Section 3.1, we first define the notations
and settings considered in this paper and revisit the common backbone [4, 6] for weakly-supervised
audio-visual video parsing, which consists of feature aggregation and multi-modal multiple instance
learning (MMIL) pooling. Then in Section 3.2 and Section 3.3, we detail the modules we propose to
capture dependency across different events and information across different videos, respectively.

3.1 Preliminaries

Problem Formulation and Notations. Given a video sequence S with T seconds long, we obtain
T non-overlapping audio and visual segments where each segment is one-second long. Models are
aiming to predict the event labels for each segment, which may contain several or no events. At
time t, there are three targets for audio, visual, and audio-visual events: ya

t ∈ R1×C ,yv
t ∈ R1×C ,
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and yav
t ∈ R1×C are multi-class event label with C event categories. ya

t , yv
t , and yav

t denote audio,
visual, and audio-visual event labels, respectively. We note that detailed annotations (e.g., ya

t , ya
t ,

and yav
t ) are not accessible during training and only available during evaluation. As for training, only

video-level annotations are available during training. Video-level annotations only contain action
event categories without indicating specific times slots or modalities (e.g., audio and visual event).

Revisit of Weakly-Supervised Audio-Visual Video Parsing. The previous method [4] presents
promising results with feature aggregation based on transformers and multimodal multiple instance
learning (MMIL) pooling. Given a video sequence S of T frames, we denote its audio and visual
feature sets by Fa = {fa1 , ..., faT } ∈ RT×d and Fv = {fv1 , ..., fvT } ∈ RT×d, respectively, where d is
the feature dimension. The transformer encoder [45] is employed to aggregate both within-modality
and cross-modality information using multi-head attention blocks:

φself (fat ,F
a,Fa) = Softmax(

fat Fa>
√
d

)Fa,

φcross(f
a
t ,F

v,Fv) = Softmax(
fat Fv>
√
d

)Fv,

(1)

where φself (·) and φcross(·) are self-attention and cross-modality attention functions respectively.
They perform dot-product on features across time stamps by using non-shared MLPs. Then the jointly
aggregated representations are described as follows:

f̂at = fat + φself (fat ,F
a,Fa) + φcross(f

a
t ,F

v,Fv),

f̂vt = fvt + φself (fvt ,F
v,Fv) + φcross(f

v
t ,F

a,Fa),
(2)

With the aggregated audio and visual features f̂at and f̂vt , we can obtain the frame-wise event prediction
p̂a
t ∈ R1×C and p̂v

t ∈ R1×C , and the attention weights computed by MLPs and normalized by a
softmax function for audio, visual, and audio-visual streams (i.e., wa

t ∈ R1×C , wv
t ∈ R1×C , and

wav
t ∈ R2×C). Then the video-level prediction is gathered with the MMIL pooling:

p̄a =

T∑
t=1

wa
t p̂a

t , p̄v =

T∑
t=1

wv
t p̂v

t , and p̄av =

T∑
t=1

wav
t [0]wa

t p̂a
t + wav

t [1]wv
t p̂v

t . (3)

The model can then be optimized using the binary cross-entropy loss function between p̄ and a
video-level weak label ȳ ∈ R1×C , which does not indicate time boundaries and modalities for events.

3.2 Cross-Modality Co-Occurrence

Videos with multi-label events contain rich information among event categories because the related
events are likely to present at the same time. The correlation is useful for models to robustly predict
the presence or absence of events.

Similar to [46], to explicitly model the relationship between event categories in different modalities,
we first obtain the representations for each class and then measure the correlation. We note that
the class relationships may be different in audio and visual modalities. That is why the work [46]
cannot be directly applied to audio-visual video parsing since audio or visual events can be partially
or jointly presented at a single frame. Thus, jointly understanding the class relationship within a
modality and across two modalities can benefit the audio-visual video parsing task.

In order to map the frame-wise audio and visual features into class-level ones, the nonlinear transfor-
mation with MLPs is formulated as follows:

at,c = ReLU(f̂at Ma
c + ba

c ),

vt,c = ReLU(f̂vt Mv
c + bv

c ),
(4)

where at,c and vt,c are audio and visual class-level features for class c at time t with dimension
1 × dc, respectively. The weights and biases for class c for audio and visual features are denoted
as Ma

c ,M
v
c ∈ Rd×dc and ba

c ,b
v
c ∈ R1×dc . With class-level representations, we can further model

the relationship between event categories within and across modalities by self-attention and cross-
modality co-attention mechanism:
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ât,c = at,c + φself (at,c,At,At) + φcross(at,c,Vt,Vt),

v̂t,c = vt,c + φself (vt,c,Vt,Vt) + φcross(vt,c,At,At),
(5)

where At = {at,1, . . . ,at,C} and Vt = {vt,1, . . . ,vt,C} are sets of audio and visual class features
at time t. ât,c and v̂t,c are now co-occcurence features that consider the relationships between
categories within and across modalities. We can then predict the probability for each event at time t
by MLPs and aggregate every segment-wise predictions into video-level ones i.e.,

p̂a
t = σ(MLPa({ât,1, . . . , ât,C})), p̂v

t = σ(MLPv({v̂t,1, . . . , v̂t,C})),
p̄a, p̄v, p̄av = MMIL({p̂a

1 , . . . , p̂
a
T }, {p̂v

1, . . . , p̂
v
T })

(6)

where σ is the sigmoid function, and MMIL(·) is the multi-modal multiple instance learning pooling
described in Eq. 3 taking all segment-wise predictions as inputs. The video-level prediction can be
optimized by the binary cross-entropy loss function with a video-level weak label ȳ.

3.3 Shared Cross-Modality Semantics across Videos

The information across different videos provides rich supervisory signals that benefit the training
of weakly-supervised audio-visual video parsing. By observing videos in a training batch, we can
discover both the common and diverse event semantics. With video-level labels, we can initially
associate related and irrelevant videos. In order to obtain a discriminative categorical representation,
we would like to encourage audio and visual representations from related events to be similar and
differentiate those from irrelevant videos. However, targeting at segment-wise representations with
specific events is difficult due to the lack of temporal annotations. Therefore, we seek event-related
frames through the weights from MMIL pooling in Eq. 3:

f̃a =

T∑
t=1

[ exp(g(ȳ �wa
t ))∑T

t′=1 exp(g(ȳ �wa
t′))

f̂at

]
, f̃v =

T∑
t=1

[ exp(g(ȳ �wv
t ))∑T

t′=1 exp(g(ȳ �wv
t′))

f̂vt

]
, (7)

where� and g(.) are element-wise dot product and summation function over all elements respectively.

With video-level labels and features (f̃a and f̃v), we adopt contrastive learning [47, 48, 49] to
encourage features across modalities with the same event category (at least one) to be close and those
with different events to be far away from each other. We leverage all n videos in a batch to explore
diverse semantics, where the sets of audio and visual features are denoted as {f̃a(0), ..., f̃

a
(n)} and

{f̃v(0), ..., f̃
v
(n)} respectively with video-level labels {ȳ(0), ..., ȳ(n)}. The relationship across videos

can be optimized by the proposed training objective as follows:

Lcontrast = − 1

n

n∑
i=1

[
log

∑n
j=1 f(ȳi · ȳj) exp(f̃a(i) · f̃

v
(j)/τ)∑n

j=1 exp(f̃a(i) · f̃
v
(j)/τ)

]
, (8)

where f(·) is a clipping function that clips values over 1, and τ denotes a hyper-parameter controlling
the temperature. Thus, the proposed method can be optimized by joint the binary cross-entropy loss
mentioned in Section 3.1 and the contrastive learning loss in Eq. 8. Our training strategy can exploit
cross-modality information across videos and event categories to understand common semantics
while ignoring irrelevant ones.

4 Experimental Results

Datasets. We use the Look, Listen and Parse (LLP) Dataset [4] for all experiments. The LLP
dataset consists of 11, 849 10-seconds video clips annotated with 25 event categories. It covers
various real-life scenes such as speech, music performances, car, cheering, dog, etc. Particularly,
there are 7202 video clips labeled with more than one event category. We use the 10000 video clips
with only video-level event annotations for model training. The detailed annotations (e.g., individual
audio and visual events per second) are available for the remaining 1849 validation and test videos.
For all experiments, we use the official data splits from the LLP dataset.

Evaluation Metrics. Following previous work [4, 6], we adopt F-scores as the evaluation metrics.
Note that all types of events (audio, visual, and audio-visual) are measured under both segment-
level and event-level metrics. The segment-level metrics can evaluate snippet-wise prediction
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Table 1: Quantitative results of weakly-supervised audio-visual video parsing. We evaluate
all methods on the LLP dataset [4] with F-scores in five different event types and two kinds of
segments. The first row indicates five different event types (audio, visual, audio-visual, Type@AV,
and Event@AV). In the second row, two kinds of segments are shown: Seg. and Event are segment-
level and event-level; and ∗ indicates only label refinement is utilized for fair comparisons.

Method Audio Visual Audio-visual Type@AV Event@AV
Seg. Event Seg. Event Seg. Event Seg. Event Seg. Event

AVE [5] 47.2 40.4 37.1 34.7 35.4 31.6 39.9 35.5 41.6 36.5
AVSDN [2] 47.8 34.1 52.0 46.3 37.1 26.5 45.7 35.6 50.8 37.7
AVSDN + Ours 48.3 41.2 52.4 48.5 46.9 40.0 49.2 43.2 53.2 40.1

HAN [4] 60.1 51.3 52.9 48.9 48.9 43.0 54.0 47.7 55.4 48.0
HAN + Ours 59.2 51.3 59.9 55.5 53.4 46.2 57.5 51.0 58.1 49.7

MA [6] 60.3 53.6 60.0 56.4 55.1 49.0 58.9 53.0 57.9 50.6
MA∗ 59.8 52.1 57.5 54.4 52.6 45.8 56.6 50.8 56.6 49.4
MA∗ + Ours 60.8 53.8 63.5 58.9 57.0 49.5 60.5 54.0 59.5 52.1

results. As for the event-level metrics, the clips are extracted by concatenating positive consecutive
segments in the same events. Then, we compute the event-level F-scores with mIoU = 0.5 as the
threshold. Furthermore, the overall Type@AV performance on audio-visual scene is also considered
by computing the averaged audio, visual, and audio-visual event evaluation results. Instead of
directly averaging results from different event types, Event@AV considers all audio and visual event
categories for each sample.

Implementation Details. We implement the proposed method using PyTorch [50], and conduct the
training and evaluation processes on a single NVIDIA GTX 1080 Ti GPU with 11 GB memory.
Following [4, 6], we use the same visual and audio encoders for fair comparisons. We adopt both
ResNet-152 [51] pre-trained on ImageNet [52] and 3D ResNet [53] pre-trained on Kinetics-400 [54]
as visual feature extractors. Visual frames are sampled at 8 fps and their 2D and 3D visual features
are extracted. The 2D and 3D visual features are concatenated and then processed by an MLP as the
segment-wise representations. As for audio data, we utilize VGGish [55] pre-trained on AudioSet [56]
to extract 128-dimensional audio features. The code and models are publicly available.

Evaluated methods. We compare the proposed method based on several baselines to the following
weakly-unsupervised approaches to the audio-visual video parsing task:

• AVE [5] consists of an audio-guided co-attention mechanism to adaptively learn the sounding
regions. We note that AVE [5] deals with the audio-visual event localization task. Thus, we
follow [4] and add additional audio and visual parsing branches for the weakly-supervised
audio-visual video parsing task as a baseline.

• AVSDN [2] is a sequence-to-sequence-based model to integrate global audio and visual
features to local ones. Since AVSDN [2] also deals with the audio-visual event localization
task, we make the same modifications to AVSDN as those to AVE.

• HAN [4] is a multi-modal multiple instance learning-based method with a hybrid attention
network.

• MA [6] reports the state-of-the-art performance on the weakly-supervised audio-visual video
parsing task. It is a method based on HAN with the label refinement and the audio-visual
contrastive learning differentiating temporal segments.

4.1 Quantitative Evaluation

Table 1 shows the quantitative comparisons on the LLP dataset [4]. The proposed method performs
favorably against the competing approaches on the weakly-supervised audio-visual video parsing
task. Since our method can be easily extended to existing methods, we extend the proposed on three
baselines. The third, fifth, and last rows in Table 1 indicate that the proposed method generally
benefits three baselines on several metrics of the audio-visual video parsing task by a large margin.
We note that MA∗ [6] only utilizes label refinement to refine labels for each modality, and temporal
difference audio-visual contrastive learning [6] is not implemented.
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Table 2: Ablation study. We investigate the effect of using different design components in the
proposed method. We show how proposed cross-modality co-occurrence (CM-Co) in Section 3.3 and
shared cross-modality semantics across videos (CM-S) module in Section 3.2 improve the baselines.

Method Audio Visual Audio-visual Type@AV Event@AV
Seg. Event Seg. Event Seg. Event Seg. Event Seg. Event

HAN [4] 60.1 51.3 52.9 48.9 48.9 43.0 54.0 47.7 55.4 48.0
HAN + CM-S 58.1 49.6 58.3 53.6 53.2 46.3 56.5 49.8 55.9 47.5
HAN + CM-Co 59.7 51.4 57.4 52.4 51.9 44.2 56.3 49.3 57.4 48.5
HAN + Ours 59.2 51.3 59.9 55.5 53.4 46.2 57.5 51.0 58.1 49.7

MA [28] 60.3 53.6 60.0 56.4 55.1 49.0 58.9 53.0 57.9 50.6
MA + CM-Co 61.1 53.3 61.7 57.3 56.3 49.0 59.7 53.0 58.9 51.2

MA∗ 59.8 52.1 57.5 54.4 52.6 45.8 56.6 50.8 56.6 49.4
MA∗ + CM-S 60.4 53.5 60.7 56.5 55.8 47.5 58.9 52.5 58.6 51.0
MA∗ + CM-Co 60.5 53.6 61.3 56.5 54.9 46.7 58.9 52.3 59.1 51.4
MA∗ + Ours 60.8 53.8 63.5 58.9 57.0 49.5 60.5 54.0 59.5 52.1

We notice that our method significantly improves baselines in the metrics of visual, audio-visual,
Type@AV, and Event@AV. By observing the class distribution of training sets, we find that 31%,
7%, and 9% training videos contain speech, singing, and violin events. These events are more likely
to present in the audio modality. Therefore, the video-level labels would limit the performance
regarding visual events. The proposed method can leverage additional cross-video and cross-modality
supervisory signals to explore common semantics, which can improve results in vision-related
metrics.

4.2 Ablation Study

Cross-Modality Co-Occurrence and Semantics across Video. We conduct the ablation study to
analyze the individual impact of each developed component in the proposed method. The results
are presented in Table 2. CM-Co represents the usage of the cross-modality co-occurrence module
described in Section 3.2, which leverages the relationship between categories within and cross
modalities. CM-S indicates the shared cross-modality semantics across videos module described
in Section 3.3, which considers all audio and visual information across videos in a batch.

In Table 2, we note that both CM-S and CM-Co can improve baselines in several metrics. By
exploring common semantics among training videos (CM-S), we improve the performance on visual
and audio-visual evaluation by a large margin. Such a strategy can exploit additional information from
videos to address the potential drawback of video-level labels described in Section 4.1. Furthermore,
the proposed cross-modality co-occurrence module (CM-Co) also presents favorable results. We
note that the significant improvement in Event@AV evaluation with the usage of CM-Co can verify
the efficacy of considering the relationship between categories within and across modalities. Since
Event@AV considers all audio and visual events for the F-score (e.g., truth positive from both audio
and visual events), the improvement of Event@AV indicates our cross-modality co-occurrence can
perform well on video parsing when events present in an audio or a visual modality.

In the second group of the evaluated methods in Table 2, we verify if the proposed CM-S works
better than the contrastive learning method in MA. We perform our CM-S on the MA model. The
CM-S exploits information across different videos to address the issue that audio and visual tracks
may not be synchronized. Instead, the contrastive learning method in MA is developed based on the
assumption of synchronization to associate the audio-visual representation in a single video. Since
our CM-S learns diverse and common semantics, it is effective and complementary to the contrastive
learning approach in MA performing on a single video. We note that our CM-S generally improves
the performance over all segment-level metrics, which supports our claim.

Self-attention and Cross-Modality Co-attention in Co-Occurrence. Since our cross-modality
co-occurrence module exploits self-attention among class-level features in the same modality and
cross-modality co-attention on cross-modality class-level representations to model the relationship
between categories in the same and different modalities. Taking class-level audio features in Eq. 5 as
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Table 3: Ablation study. We investigate the effect of different developed mechanisms in the proposed
cross-modality co-occurrence (CM-Co) module in Section 3.2. In Eq. 5, class-level features are
processed by self-attention and cross-modality co-attention mechanisms. A Only and V Only
indicate only self-attention performs for individual audio and visual events respectively. AV denotes
performing self-attention for audio and visual events. CM-Co is the proposed method that considers
relationship between categories within and cross modalities by both self-attention and cross-modality
co-attention mechanisms.

Method Audio Visual Audio-visual Type@AV Event@AV
Seg. Event Seg. Event Seg. Event Seg. Event Seg. Event

HAN [4] 60.1 51.3 52.9 48.9 48.9 43.0 54.0 47.7 55.4 48.0
HAN + A Only 60.5 52.3 49.8 43.9 45.6 38.3 52.0 44.8 55.7 45.9
HAN + V Only 56.1 44.5 56.8 53.2 49.7 40.7 54.2 46.1 54.1 44.6
HAN + AV 59.5 50.3 55.1 50.5 48.6 40.3 54.4 47.0 56.0 47.4
HAN + CM-Co 59.7 51.4 57.4 52.4 51.9 44.2 56.3 49.3 57.4 48.5

MA∗ [6] 59.8 52.1 57.5 54.4 52.6 45.8 56.6 50.8 56.6 49.4
MA∗ + A Only 60.7 52.7 53.9 47.9 50.1 42.2 54.9 47.6 57.0 47.1
MA∗ + V Only 46.8 34.4 60.8 57.0 42.8 31.1 50.1 40.9 52.6 40.4
MA∗ + AV 58.3 50.4 59.4 55.2 53.9 46.9 57.2 50.8 56.7 48.5
MA∗ + CM-Co 60.5 53.6 61.3 56.5 54.9 46.7 58.9 52.3 59.1 51.4

Table 4: Ablation study. We evaluate the proposed method in accuracy, efficiency, and model sizes.
We show the numbers of parameters and FLOPs for the proposed cross-modality co-occurrence
(CM-Co) and HAN [4] with a few layers.

Note that the results are all in the segment level.
Method Audio Visual Audio-visual Type@AV Event@AV GFLOPs Params

HAN 1 Layer 60.1 52.9 48.9 54.0 55.4 6.63 2.4M
HAN 2 Layers 58.2 55.4 50.6 54.7 54.9 7.28 2.9M
HAN 3 Layers 58.1 55.2 50.3 54.5 54.6 7.97 3.5M
HAN + CM-Co 59.7 57.4 51.9 56.3 57.4 6.99 2.8M

an example, the class-level self-attention and cross-modality co-attention are attn(at,c,At,At) and
attn(at,c,Vt,Vt), respectively.

Table 3 presents the results in various modifications of the cross-modality co-occurrence module.
We note that the design of co-occurrence in the same and cross modalities can generally improve
the results in several metrics. We also evaluate the co-occurrence module in a single modality. The
results are shown in the second, third, seventh, and eighth rows in Table 3, where A Only and V
Only indicate the co-occurrence module only leverages the relationship between categories in audio
or visual data respectively. As the results shown in the second and seventh rows, training with
co-occurrence in audio events only (i.e., A Only) can slightly improve the performance on audio
events. Similarly, considering visual event only (i.e., V Only) can benefit the results regarding visual
events. Furthermore, the co-occurrence for both audio and visual categories (AV) in the fourth and
ninth rows can contribute to the results in general metrics such as Type@AV and Event@AV. We
then further consider the correlation between events across modalities. That is the cross-modality
co-occurrence module (CM-Co) in the fifth and tenth rows. The results can confirm the efficacy of
the proposed cross-modality co-occurrence module in all metrics except segment-level audio events
caused by similar reasons discussed in Section 4.1.

Model Capacity. Since our cross-modality co-occurrence module leverages class-level representa-
tions, it would increase the capability of models on capturing information. For fair comparisons, we
add extra parameters to HAN [4] to analyze whether more parameters can contribute to performance
gain. Specifically, we increase the number of layers in its transformer-based feature aggregation to 2
and 3, respectively.

In Table 4, we report the results in accuracy, computational costs, and model sizes. The first three
rows show the performance of HAN with different numbers of layers. We note that HAN with one
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Figure 2: Qualitative comparisons. We compare the proposed method with the state-of-the-art
weakly-supervised audio-visual video parsing method on the LLP dataset [4]. The frame-wise
annotations are shown in gray and purple bars. The gray bar denotes visual events, and the purple bar
represents audio events. GT_V and GT_A are the ground-truth visual and audio events respectively.
Our results are shown in the green block, and the results by the competing method, MA [6], are
present in the blue block.

MA*+Ours

MA*

Figure 3: Audio feature distribution by using t-SNE. The upper figure shows the distribution by
our method. The lower figure presents that by MA∗. The legend lists all event combinations.

extra layer has more parameters than the proposed co-occurrence module. However, the results of
HAN with extra layers indicate that using more parameters/layers for HAN does not improve the
performance. The proposed cross-modality co-occurrence module enhances HAN more effectively.

4.3 Qualitative Evaluation

Qualitative Results. We present the qualitative results of the evaluated methods in Figure 2. GT_V
and GT_A show the ground-truth annotations for visual and audio events, respectively. Pred_V
and Pred_A present the predictions made by our method and the state-of-the-art competing method,
MA [6], respectively. Our results are shown in the green block, while the results of MA are present in
the blue block. In general, our method presents more accurate predictions in both audio and visual
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MA*+Ours

MA*

Figure 4: Visual feature distribution by using t-SNE. The upper figure shows the distribution by
our method. The lower figure presents that by MA∗. The legend lists all event combinations.

events than MA. We note that the whole violin is shown after 7 seconds. That would hamper models
for understanding visual events e.g., MA predicts wrong results on violin visual events before 6
seconds. Since our method leverages the relationship between categories, it can still predict correct
temporal boundaries for guitar events by jointly considering cello events in the videos.

Feature Distribution Visualized by t-SNE. We apply t-SNE to the aggregated audio and visual
features from each segment described in Eq. 2. The visualization results are present in Figure 3
and Figure 4, respectively. The legends list all the combinations of multiple labels. For example,
in Figure 3, audio events of singing are present as blue spots, and the mixed sounds of singing and
violin are shown as purple spots. We note that the related events including multiple events are shown
in similar colors. In Figure 4, the proposed method achieves better performance in the sense that
similar color spots are closer than the spots in MA∗.

5 Conclusions

In this paper, we present a novel audio-visual video parsing framework in a weakly-supervised
manner that can be applied to existing methods. We propose two modules to exploit the relationship
across videos, modalities, and event categories, and explore additional supervisory signals that
can benefit audio-visual video parsing. The shared cross-modality semantics module leverages
common and diverse event semantics across videos to learn robust cross-modality representations that
facilitate models to identify audio, visual, and audio-visual events. Furthermore, the cross-modality
co-occurrence module aims to learn the relationship between event categories. It helps localize
segments of target events and can exclude irrelevant ones by performing self-attention and cross-
modality co-attention on class-wise features, Extensive experimental results show that our approach
substantially improves several baselines and performs favorably against the state-of-the-art methods.
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