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ABSTRACT
We present a framework to count the number of people in an en-
vironment where multiple cameras with different angles of view
are available. We consider the visual cues captured by each cam-
era as a knowledge source, and carry out cross-camera knowledge
transfer to alleviate the difficulties of people counting, such as par-
tial occlusions, low-quality images, clutter backgrounds, and so
on. Specifically, this work distinguishes itself with the following
contributions. First, we overcome the variations of multiple hetero-
geneous cameras with different perspective settings by matching the
same groups of pedestrians taken by these cameras, and present an
algorithm for accomplishing cross-camera correspondence. Second,
the proposed counting model is composed of a pair of collabora-
tive regressors. While one regressor measures people counts by
the features extracted from intra-camera visual evidences, the other
recovers the yielded residual by taking the conflicts among inter-
camera predictions into account. The two regressors are elegantly
coupled, and jointly lead to an accurate counting system. Addition-
ally, we provide a set of manually annotated pedestrian labels on
the PETS 2010 videos for performance evaluation. Our approach
is comprehensively tested in various settings and compared with
competitive baselines. The significant improvement in performance
manifests the effectiveness of the proposed approach.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis and
Indexing—indexing method; I.2.10 [Artificial Intelligence]: Vision
and Scene Understanding—video analysis.

General Terms
Algorithms, Theory, Experimentation.
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People counting, Transfer learning, Correspondence estimation.
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1 Introduction
The goal of people counting, such as [9, 24, 27, 29, 31, 36], is to
estimate the number of people or the density of crowds in a mon-
itored environment. It is receiving recent attention in many fields,
e.g., multimedia, computer vision, and video surveillance, since it
plays a critical role in a broad range of applications. First of all,
pedestrian counts serve as one of the most important indices for
video data, and hence counting the number of people has become a
key component in video understanding, retrieval, and surveillance.
Further, both the long-term and short-term statistics of people counts
of an environment provide useful information for strategy planning
or event detection. For instance, one could measure the degree of
crowdedness for traffic flow planning, analyze the benefit of the
advertisement for potential revenue estimation, or identify abnormal
gatherings for crime prevention. In addition, researches on people
counting can be applied to adaptive device control for energy-saving
purposes. For example, the number of people in a transit station is
helpful in deciding how low the A/C (air conditioning) temperature
should go or how many escalators should be operated.

Despite the great applicability of people counting, most of vision-
based counting systems are still hindered by the following chal-
lenges. First, mutual occlusion among people yields the severe
change of pedestrian appearances or the loss of extracted features.
It often leads to the underestimate of the number of people. This
situation becomes worse in crowded environments. Second, the
problems caused by low-resolution or blur images, especially for
the pedestrians far from the camera, often degrade the stability of a
counting system. Further, the large variations in pedestrian appear-
ances, and lighting conditions, or clutter backgrounds make people
counting quite difficult.

In this work, we address the aforementioned issues by estab-
lishing a multiple camera people counting (MCPC) system, where
multiple cameras are installed to monitor an identical region but
with different angles of view. Videos taken by these cameras con-
tain complementary information. It follows that fusing visual cues
in these videos generally facilitate the accomplishment of a more
robust and accurate counting system. An illustration of our idea
is given in Figure 1, where two different views of an environment
are available, while two examples of complementary visual cues
catched by the two camera views are shown. In the first example,
View 2 consists of useful information to compensate for the un-
derestimate caused by occlusions in View 1. In the other, View 1
provides high-resolution visual cues to enhance the performance
of estimation for View 2. So far, two questions arise: 1) How to
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Figure 1: Illustration of our multiple camera people counting (MCPC) system in which visual knowledge are transferred across
cameras to establish a more accurate and robust counting system.

work with multiple cameras so that all the captured visual cues can
be shared across different camera views? 2) For each view, how to
couple both the intra-camera and inter-camera visual knowledge to
result in a more robust and accurate counting system?

To work with the multiple cameras with diverse perspective set-
tings, we propose a correspondence estimation algorithm that maps
each segmented group of moving people in one view to its corre-
sponding group in another view. We call these matched groups com-
ponents, upon each of which knowledge can be transferred across
cameras. The identity numbers in Figure 1 index the matched com-
ponents. In this situation, both the intra-camera (captured by itself)
and inter-camera (transferred from others) visual cues are available
in each view, and we present a two-pass regression framework to
carry out the multiple camera people counting system. Specifically,
the first-pass regressor measures the people count by using the visual
features extracted from the intra-camera knowledge. The second-
pass regressor estimates the residual yielded in the first pass by
taking the conflicts among inter-camera knowledge into account.
Since the second-pass regression is built on knowledge conflicts, we
cast the training of the second-pass regressor as a transfer learning
problem [33], in which useful knowledge transfer is encouraged
while error propagation is prevented.

This work distinguishes itself with the following contributions.
First, we propose to incorporate multiple heterogeneous cameras
with different perspective settings via matching the components, and
present an algorithm for cross-camera correspondence estimation
with high precision. Second, a pair of collaborative regressors is
introduced to accomplish cross-camera knowledge transfer. The two
regressors are elegantly coupled so that both intra-camera and inter-
camera visual knowledge are taken into account simultaneously,
and lead to a more robust counting system. Third, we create a set
of manually annotated pedestrian labels on the PETS 2010 videos
which are publicly accessible in the research community.

2 Related Work
In this section, we review a few research topics and techniques
relevant to the establishment of the proposed framework, includ-
ing people counting, correspondence estimation among multiple
cameras, and transfer learning.

2.1 People Counting
The literature of people counting is quite comprehensive [19, 44].
We focus on only the computer-vision-based methods, since they
are closely related to our work. For the ease of discussion, these
methods are divided into the two categories, counting-by-detection
and counting-by-regression.

Counting-by-detection. Methods of this category determine the
number of people present in an image by explicitly locating the
position of each individual pedestrian and then counting the total
number of detected ones. The work by Lin et al. [28] is a good
example of this category, in which they proposed to learn head-like
contours and exhaustively search for human heads. In addition to the
visual features that are embedded in static images, motion features
that can be extracted from sequences of video frames, e.g., dynamic
textures and motion patterns, have been shown to be useful to detect
individual moving entities [1, 8, 34].

These methods work well in controlled environments, but they
probably result in suboptimal performance in a more general setting
because most of them cannot clearly define the appearance or the
shape of pedestrians in advance. The trend of this kind of systems is
to employ a pedestrian detector to find people [21,26]. While pedes-
trian detectors have been demonstrated to be robust to variations
caused by different illumination, poses, and image sizes [12, 13, 32],
the performance of detection results can be farther improved by
modeling the geometric structures among body parts [41]. However,
training such detectors in general requires a great number of manu-
ally collected data. Moreover, since the training samples are usually
of a high resolution and no occlusions are involved, the performance
of these detectors severely degrades when they are applied to find
pedestrians with partial occlusions or of low resolutions. Addition-
ally, the computational time at detection stage is typically too high
to support yielding real-time responses.

Counting-by-regression. Methods of this class is relatively more
efficient. They estimate the size of a group via extracting low-level
features to represent the corresponding region which is typically
assumed to be yielded by background subtraction or motion seg-
mentation approaches [23,24,27]. Since these methods do not solve
the localization problem, they are suitable for estimating the density
of a crowd with a certain level of crowdedness rather than precisely
evaluating the exact number of people appearing in a scene. Fol-
lowed by the methods which linearly map a set of perspectively
normalized features to the number of people, nonlinear regression
models such as neural networks, Gaussian process, and Poisson
process, recently are adopted to enhance the performance of people
counting [9, 10, 36].

Despite the use of discriminative visual features and powerful
machine learning techniques, people counting systems of both the
two categories suffer from the problems caused by occlusions, low-
quality images, and large variations of pedestrian appearances. It
is worth mentioning that the most similar work to ours is that of
Ma et al. [31], in which visual cues from two cameras are fused to
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Figure 2: The proposed approach to cross-camera blob localization and matching.

deal with the problem resulting from occlusions. They combine hu-
man detection results from two cameras with the verification of the
homography constraint. However, their system depends on the reli-
able results of the two single-view detection. As mentioned above,
methods developed upon pedestrian detectors do not work well with
partial or heavy occlusions. Thus the abilities of occlusions han-
dling in their approach may be restricted in crowded environments.
Unlike [31], we investigate the evidences revealed in the prediction
confliction among multiple cameras, and cast the estimation of oc-
clusions as an instance of transfer learning. Our system can deal
with the problem of underestimate even if heavy occlusions appear
in all the camera views.

2.2 Correspondence among Multiple Cameras
One critical task of synchronizing multiple cameras and realizing
visual knowledge transfer is to establish the correspondence among
these cameras. Conventional methods of camera correspondence
estimation can be roughly divided into the following two categories.

Homographic-based Methods. In [22], Khan and Shah inte-
grate multi-view information by introducing a planar homographic
constraint. They first estimate plane homographies by matching the
SIFT [30] features, and then discover the correspondence among
multiple cameras. Eshel and Moses [15] propose to detect head
blob of each person via the multiple height planar homographies,
and alleviate the problem of performance degradation in tracking
occluded objects. Arsie et al. [2] suggest to track people based on
a homographic transformation between the target blob boundaries.
However, methods mentioned above are sensitive to the large vari-
ation of appearances of objects, perspective settings of cameras,
and video qualities by heterogeneous camcorders. This is because
that homographic-based approaches rely on consistent matching.
However, it is generally not available in real environments.

Calibration-based Methods. The goal of camera calibration is
to estimate the model of a camera, including not only the extrinsic
parameters, e.g., position and orientation relative to the real world
coordinate system, but also the intrinsic parameters of the camera,
e.g., image central, focal length, and distortion coefficients. Xiong
and Quek [42] present an approach, in which a box with the specific
pattern of dots and markers is employed, to calibrate both the intrin-
sic and extrinsic parameters of camera networks. Aslan et al. [3]
develop a set of features based on the positions of all the detected
pedestrians’ heads, and automatically calibrate the extrinsic param-
eters of multiple cameras via these features. Tsai [38] present a
two-stage approach to computing the position, orientation, and the
intrinsic parameters of a camera. This approach is adopted in a wide
range of applications, since it is capable of dealing with both the
coplanar and non-coplanar points. Having a precise planar transfor-

mation among multiple cameras would facilitate counting people in
the crowded environments. Generally speaking, calibration-based
methods tend to provide more precise camera transformations than
the ones by homographic-based methods, and hence are more suit-
able in our cases.

2.3 Transfer Learning
Transfer learning [33] refers to an information delivering process
that aims to improve the target task by leveraging abundant knowl-
edge available in the source tasks. The exploration of auxiliary
knowledge drawn from different tasks has received a rapidly grow-
ing interest in the field of machine learning. The methods exploiting
additional knowledge sources to benefit the accomplishment of the
underlying task can be generally divided into four categories [33]:
transfer by model parameters [14, 43], by data instances [7], by
feature representation [6], and by contextual information [20, 40].
However, these methods are established upon the assumption that
data of the source and target tasks have the same domains for knowl-
edge transfer. In this work, we consider the visual cue captured by
each camera as a knowledge source, and aim to establish a robust
counting system via sharing knowledge across cameras.

3 Cross-camera Blob Matching
We propose to make use of visual information from different cam-
era views to alleviate the problems, such as partial occlusions or
imperfect foreground segmentations, in people counting. To work
with heterogeneous cameras together with various perspective set-
tings, one of the most important tasks is to match the corresponding
blobs among these cameras, so that visual knowledge can be trans-
ferred across cameras and support the establishment of an accurate
counting system.

3.1 Blob Extraction
We represent a video frame by a set of blobs, each of which is a group
of spatially connected foreground (moving) pixels. We consider blob
as a natural unit for people counting, since each pedestrian typically
appears within one blob, while a pedestrian can be occluded by
other pedestrians residing in the same blob. Thus not only the scale
and appearance normalization but also the occlusion evaluation can
be performed blob-wisely. To extract foreground blobs, we first
apply the background subtraction algorithm [5] to every video frame
to segment out the foreground areas. Then, spatially connected
foreground pixels are clustered to yield the blobs. Each extracted
blob in Figure 1 is highlighted by a specific color.

3.2 Blob Localization and Matching
Once the blobs from all the camera views are extracted, our goal
is to localize and match the corresponding blobs across cameras.
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Figure 3: Blob mapping on the ground plane.

To this end, we propose a blob matching algorithm, including the
ground plane mapping and the vertical plane mapping. We illustrate
the localization algorithm in Figure 2.

First, we develop a reverse variant of Tsai’s camera calibration
model [38], which computes the transformation from the image
coordinate system to the world coordinate system on the ground
plane, to generate the world-to-image coordinate transformation.
Then, we detect the bottom boundary of each blob. To this end,
the convex hull of each blob is generated, such that the bottom
boundary of the blob can be determined by the bottom contour.
Some examples of the detected bottom boundaries are shown in
Figure 3(a). Each of them is drawn with one particular color. Based
upon the assumption that the bottom boundary of a blob touches
the ground plane, its correspondence across cameras hence can
be fulfilled via Tsai’s camera calibration model and its reverse
variant. This procedure is summarized in Figure 2(a), in which
every pixel residing on the bottom boundary in camera i is first
transformed to the world coordinate system, and then transformed
to the image plane of camera j. By the procedure, one can establish
the mappings of the bottom boundaries of blobs between any the
video frames taken by two distinct cameras. Figure 3(b) shows
the mapping results where each correspondence is plotted with one
distinct color. Symmetrically, we can also match blobs extracted
in camera j to those in camera i. We use the set of these resulting
mappings as an initial guess of the correspondence of each blob
in two cameras. However, due to the imperfect blob segmentation,
the bottom boundary of a blob does not always touch the ground
plane in our empirical tests. Therefore, we need to validate the
correctness of the estimated correspondence by using the mappings
on the vertical plane of each blob.

For computing mappings on the vertical plane of each blob, we
need to estimate the image height of a pedestrian at every position
in the camera view. Based on the work by Hoiem et al. [18], we
assume that the image height of a pedestrian (denoted as h) is
linearly dependent on his/her bottom location (denoted as v) in the
vertical position of the image, i.e.,

h(v) = α · v + α0, (1)

where α and α0 are the two parameters of the camera model. Thus,
we adopt the procedure, described in Algorithm 1, to compute the
perspective parameters of each camera via employing a off-the-shelf
pedestrian detector [32]. On the one hand, the detected pedestrians
can be used to estimate the camera model. On the other hand, the
estimated model can filter out false detections. The two steps are
done alternately until convergence.

After having the mapping of bottom boundary of each blob, we
can further compute the head positions of the blob according to the
estimated camera perspective model. It follows that based on both
the mappings of the bottom boundary and the head position of each
blob, we can calculate the planar homographies, project every pixel
in the blob from camera i to camera j on the vertical plane, and

Figure 4: Blob mapping on both the ground and vertical planes.

Algorithm 1 Automatic Perspective Parameter Estimation Algorithm.
(α, α0) = Algo(D, τ,T). Given a set of detected windows, D, and two

parameters, τ and T, which are respectively a tolerance and the maximum

number of iterations, return the camera’s perspective parameters, (α, α0).

1: let di be a detected pedestrian in D and vi and hi respectively
represent the bottom position and the image height of di

2: initialize D1 = D
3: for t = 1 to T do
4: estimate parameters α and α0 using Dt by minimizing

J t (α, α0) =
∑|D|

i=1 (α·vi + α0 − hi)
2

5: build Dt+1 =
{
di| (α·vi + α0 − hi) ≤ τ, di ∈ Dt

}
6: if Dt+1 and Dt are the same then
7: return perspective camera parameters, α and α0

8: end if
9: end for

vice versa. The relation between the ground plane matching and
the vertical plane matching is given in Figure 2(b). An example
of estimated mappings of blobs on the vertical planes is shown
in Figure 4, where all the pixels of each blob is involved in the
projection.

3.3 Matched Component Extraction
After the correspondences of blobs between two cameras are estab-
lished, we can group blobs into components, in each of which the
same entities present in both the two camera views. Let’s illustrate
the grouping process by the example given in Figure 5. Suppose

that {b(i)1 , b
(i)
2 , . . . , b

(i)
6 } and {b(j)1 , b

(j)
2 , . . . , b

(j)
4 } are the extracted

blobs in camera i and j, respectively. A bipartite graph of ten nodes
is then constructed. An edge between two nodes in the opposite
sides is added if the two corresponding blobs are matched in any
direction. Via computing the connected components in the graph,

components {c(i)1 , c
(i)
2 , c

(i)
3 } and {c(j)1 , c

(j)
2 , c

(j)
3 } are obtained for

camera i and j, respectively. Note that since each corresponding
component refers to the same group of pedestrians in both the two
cameras, it implies that visual cues of the component captured by the
two cameras can be shared directly. That is, we in this work propose
to match the components, upon each of which visual knowledge can
be transferred across cameras.

4 Two-pass Regression
This section describes how the proposed MCPC system improves
the accuracy of people counting by incorporating visual cues ex-
tracted from a specified camera with the knowledge shared by
other collaborative cameras. Suppose that we have a set of M
cameras, P = {Pm}Mm=1, which monitor an environment. Let

V={Vm}Mm=1 be the videos taken by these cameras respectively.
Without loss of generality, we assume each video consists of T
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Figure 5: Matching components across cameras.

frames and all the frames are synchronized across different cameras.

In the following, we use I
(m)
t to denote the tth frame of Vm. Our

goal here is to yield a matrix A ∈ R
M×T whose element am,t is

the prediction of the number of people present in frame I
(m)
t .

Our approach is an instance of the counting-by-regression sys-
tems that map a set of unintelligible features to the prediction of
the people count, but distinguishes itself by jointly considering
both intra-camera and inter-camera knowledge. Specifically, the
proposed two-pass regression framework is motivated by the obser-
vation that the number of people in an image can be approximated
by two different parts—the regular part and the residual part, as
illustrated in Figure 6. The estimations of the two parts are carried
out by two regressors respectively. The estimation of the regular
part is an inference on the number of people within an image blob
according to its own low-level features, just like what a common
counting-by-regression approach does. Due to many unavoidable ef-
fects such as the failure in foreground segmentation (like shadows),
partial occlusions, and the likes, the inference based on low-level
features is typically imperfect, and a residual is hence yielded. In
our approach, we borrow the knowledge captured by the collabora-
tive cameras to measure the residual, and cast it as an instance of
the transfer learning problem.

In this work, both the tasks of the regular estimation and the
residual estimation are accomplished by the multi-kernel extension
of support vector regression [39]. In the following, a brief introduce
to multi-kernel support vector regression is first given. The designs
of the two regressors are then depicted respectively.

4.1 Multi-kernel Support Vector Regression
In view of the large variations in crowd appearance, it is usually
difficult to find a single feature to well characterize blobs. Therefore,
we turn to seek a set of weights to linearly and optimally combine
the given features in a unified domain. To this end, we leverage
multiple kernel learning (MKL) [4,17,25,35,37] to fuse a set of base
kernel matrices or functions, each of which is created based on a
specific kind of features, and to derive the regressor simultaneously.

Given D different feature descriptors, the kernel bank {Kd}Dd=1

can be constructed for data by the corresponding kernel functions
{kd(·, ·)}Dd=1. Fusing data characteristics captured by multiple fea-
ture descriptors now can be achieved via kernel matrix combination,
i.e.,

K =

D∑
d=1

βdKd, s. t. βd ≥ 0, (2)

where βd is the ensemble coefficient of base kernel Kd (or the
weight for the dth kind of feature descriptors). Consequently, the

multi-kernel support vector regressor f from a set of labeled training
data {(xn, yn ∈ R)}Nn=1 can typically be expressed by

f (x) =

N∑
n=1

αnynk(xn, x) + b

=
N∑

n=1

αnyn

D∑
d=1

βdkd(xn, x) + b. (3)

The task of MKL is to determine the optimal values of the sample
coefficients {αn}Nn=1, the kernel weights {βd}Dd=1, and the offset
b. Actually, various objective functions, e.g., the structural risk
function with �1− or �2−norm regularization, together with differ-
ent optimization techniques, e.g., semi-definite programming (SDP)
or semi-infinite linear programs (SILPs) are developed to accom-
plish the task. In this work, we adopt SimpleMKL [35] to learn the
regressors due to its efficiency and effectiveness.

4.2 First-pass Regular Regression
The first-pass regressor works, including training and predicting, on
extracted blobs. We describe the representation of blobs and the
learning of the regressor as follows.

4.2.1 Blob Representation
Since knowledge for people counting is only shared among frames
taken at the same time, for simplicity we consider only frames at

time t. Thus, for frame I
(m)
t taken by camera Pm, the index t can be

dropped without ambiguity. As mentioned previously, each frame

can be expressed as a set of blobs, i.e., I(m)={(x(m)
b , y

(m)
b )}nb

b=1,

where x
(m)
b is the feature representation of the bth blob while y

(m)
b

is the number of people in the blob. In the training phase, y
(m)
b is

given while in the testing phase, it is exactly what we attempt to
estimate. With this representation, the number of people in I(m)

can be calculated by summing over the ones estimated in the blobs,

i.e., am=
∑nb

b=1 y
(m)
b .

4.2.2 Learning with Intra-camera Visual Features
We have implemented three representative features to characterize
the properties of blobs, including

Area. This attribute represents the total number of foreground
pixels occupied by the blob, roughly reflecting the volume size of
moving objects in the scene.

Canny edge pixels. We calculate the total number of edge pixels,
located by Canny edge detector, included in the blob to capture the
structural properties of crowdedness.

Oriented gradients. The feature consists of two independent val-
ues representing the gradient magnitudes of vertical and horizontal
orientations, respectively.

As these features capture diverse characteristics, we treat each
one as a unique descriptor. Thus, each blob is represented by four
different descriptors, each of which correspond to a specific kernel.
To reduce the influence of perspective effects, all adopted features
are normalized by applying geometric distortion correction coeffi-
cients [9] to approximate the real scale in the scene.

We adopt the multi-kernel support vector regression to implement
the regular estimation in the first stage of our MCPC system. We
learn the F (m) by using a number of manually labeled blobs and
the resulting four kernels. In the stage, training data are collected
within a single camera, without referencing any information out
of the camera. Besides, we also derive four additional support

vector regressors {F (m)
d }Dd=1, where F (m)

d is learned with the same
training blobs, but only the dth kernel is considered. The value of
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Figure 6: Our two-pass regression framework consists of a regular estimation and a residual estimation. While the former infers the
number of people of a blob based using intra-camera low-level features, the later estimates the residual by exploiting inter-camera
information. Fusing both together compensates for the difference between the ground truth and the estimated value, thus yielding
higher accuracy than either.

D is four here. All the procedures described above are repeated for
each camera Pm.

4.3 Second-pass Residual Regression
The goal of this stage is to estimate and recover the yielded residual
in the first pass by borrowing the visual knowledge captured by
other collaborative cameras. The second-pass regressor works upon
the matched components, upon which the additional inter-camera
knowledge are transferred.

4.3.1 Component Representation
A video frame can also be represented by a set of components once
we conduct the blob matching algorithm on all synchronized frames.
Since we know that the corresponding components on different
views refer to a group of the same entities, the number of people
in each of them should be identical. The conflict of predictions
among multiple views reveals that residual occurs. Based on this
fact, knowledge like intra-camera estimation results shared among
matched components can be directly adopted without requiring any
further transformation or adaption. Suppose that frame I(m) consists
of ñc components. Its component representation can be expressed

as {(z(m)
c , ỹ

(m)
c )}ñc

c=1, where ỹ
(m)
c is the residual of component

c yielded in the first pass, and z
(m)
c is the feature representation.

Similar to the first pass, ỹ
(m)
c is given in training, and is what

we need to measure in prediction. For the ease of discussion, the

definitions of ỹ
(m)
c and z

(m)
c are given in the following section.

4.3.2 Learning with Inter-camera Visual Knowledge
Since a component is composed of a set of blobs, its residual in the
training phase can be precisely computed. Let’s illustrate this with
an example component z(m), taken by camera Pm, that consists of

blobs {(x(m)
b , y

(m)
b )}Nb=1. The residual of z(m) in the first stage can

be defined as

ỹ(m) =
N∑

b=1

y
(m)
b −

N∑
b=1

F (m)(x
(m)
b ). (4)

We now design the feature representation of component z(m) by
considering inter-camera knowledge. To begin with, the people

counts of z(m) predicted by support vector regressors {F (m)
d }Dd=1

are evaluated, i.e., ,

v(z(m)) = [F (m)
1 (z(m)) · · · F (m)

D (z(m))]� ∈ R
D, (5)

where F (m)
d (z(m)) =

N∑
b=1

F (m)
d (x

(m)
b ). (6)

For the matched components taken by other cameras, we similarly
have {v(z(m))}Mm=1. Since component z(m) refers to a group of the
same entities taken by these cameras, the people counts estimated

{v(z(m))}Mm=1 can be compared directly. Further, the yielded con-
flict provides strong evidences to infer the residual. We hence
develop the following four kinds of descriptors for component z(m),
i.e.,

Cross-camera Conflict. This descriptor directly captures the
conflict between camera Pm and other cameras w.r.t. each of the
adopted visual feature, i.e.,

z(m).cc =

∑M
m′=1,m′ �=m v(z(m

′))

M− 1
− v(z(m)). (7)

Negative Trimmed. We are motivated by the observation that
due to the camera angle relative to the motion direction of pedes-
trians or the distance to the monitored environment, people counts
predicted from some camera tend to be underestimated. In the sit-
uation, only the positive part in Equation (7) are useful in residual
estimation. This descriptor is hence defined as

z(m).nt = max (z(m).cc,0). (8)

Positive Trimmed. Symmetrical to z(m).nt, we also have de-
scriptor

z(m).pt = −min (z(m).cc,0). (9)

Intra-camera Conflict. Motivated by the fact that the sensitiv-
ities of visual features to occlusions are different, the prediction
conflict among these features is also to recover the residual caused
by occlusions [29]. This descriptor is designed as

z(m).ic = [F (m)
i (z(m))−F (m)

j (z(m))], for 1 ≤ i < j ≤ D.
(10)

In the training phase, we match the blobs across cameras, and ob-
tain a set of components. By measuring the residual in Equation (4)
and extracting the four features in Equation (7) ∼ Equation (10) for
each matched component, a support vector regressor, S(m), with
four kernels as input can be derived.

4.4 On People Counting
After the training procedure, the final regressors of the two passes
{(F (m),S(m))}Mm=1 are available. In the testing phase, suppose
that we are given frame taken by camera Pm, and it is of blob rep-

resentation {x(m)
b }nb

b=1 and component representation {z(m)
c }ñc

c=1.
Our approach estimates the number of people in this frame by

ym =

nb∑
b=1

F (m)
(
x
(m)
b

)
+

ñc∑
c=1

S(m)
(
z(m)
c

)
. (11)

We complete this section by concluding that the proposed MCPC

system integrates not only the intra-camera visual features but also
the inter-camera visual knowledge, and alleviates the problems
caused by occlusions, low-quality images, or imperfect background
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segmentations. In the experiments, we show that it significantly
outperforms single-view systems and the systems that simply aver-
age the outcomes of multiple views. Besides, it supports real-time
people counting.

5 Experiments and Results
In this section we present the estimation performance of the pro-
posed system and compare this with other competitive approaches.
We first describe the experimental settings and then discuss the
results of various methods.

5.1 Experimental Settings
To evaluate the performance of the proposed MCPC system, we con-
duct experiments on the PETS 2010 Benchmark Data [16]. This data
set consists of a collection of videos captured by several stationary
camcorders. These camcorders are located at distinct positions and
set up to monitor the same scene. We select three representative
video clips of two views, denoted as SPARSE, MEDIUM, and HEAVY,
respectively. While SPARSE and MEDIUM are two videos with sparse
individuals and small groups of pedestrians (i.e., less or moderate
occlusions), HEAVY generally contains highly crowded groups (i.e.,
heavy occlusions). Since these selected videos span a wide spectrum
of occlusion levels, collecting them together forms a good test bed to
measure the effectiveness of occlusion handling for people counting.
The details of the experimental data are given in Table 1.

Because supervised learning approaches require labeled examples,
however, to the best of our knowledge, few proper benchmarks along
with groundtruth annotations are publicly available in the computer
vision or multimedia community. Therefore, we have put manual
effort into annotating videos and obtained a large set of pedestrian
labels on the PETS 2010 videos. To fuel people counting research,
particularly using multiple cameras, these data are released and can
be downloaded from our project website1.

For performing quantitative evaluations for people counting, we
divide each video clip into a non-overlapping training and testing set.
We use the preceding half of frames of each video as training data
and report the performance by testing on the remaining frames. In
experiments, we adopt mean absolute error (MAE) as the criterion to
measure the performance. Furthermore, average MAE, the average
of multiple MAE over all evaluation videos, is used to reflect the
overall performance of people counting methods.

To examine the stability of people counting approaches, we
conduct experiments with four different settings, including using
one video only (HEAVY), combinations of two videos (SPARSE

+HEAVY and MEDIUM+HEAVY), and using all three videos (SPARSE

+MEDIUM +HEAVY) as training data. Therefore, we can evaluate
the performance sensitivity to the changes of the diversity of train-
ing data. Since a few parameters of support vector regression and
multiple kernel learning have significant influence on performance
of established systems, we thus build our MCPC system with the
optimal parameters, selected from a reasonable parameter space
via five-fold cross validation. The automatically tuned parameters
include the epsilon in loss function and the penalty cost to errors in
LIBSVM [11], and the regularization term in SimpleMKL [35].

5.2 Results
We first evaluate the accuracy of our blob correspondence estimation
algorithm by manually and visually checking the consistency of the
matched components between two views. For the ease of valida-
tion, we assign the same color and the same number to both of the
matched components in two views, as shown in Figure 8. Then, we
calculate the percentage of correct matches over the whole matches.

1http://research.twnct.net/MCPC_MM2012/

From Table 1, we observe that the proposed algorithm is able to
obtain sufficiently accurate results, ranging from 96.4% to 98.5%
of component matching precision, over three videos with different
crowdedness levels.

To understand what the MCPC system advances single-camera
people counting systems, we use the estimation results yielded in
the first stage as our baseline (BS-MKL). We have also implemented
a Gaussian process method and a neural network method, similar
to the state of the art approaches proposed by Chan et al. [9] and
Ryan et al. [36], respectively, to count the number of people. By
using the same low-level (local) features, we thus establish another
two sets of estimation results, i.e., BS-GP and BS-NN. Note that
these three approaches merely use intra-camera visual cues and do
not involve any knowledge transfer among cameras. In our current
survey, the only MCPC system related to ours is a fusion approach
that combines human detection results from multiple cameras [31].
As mentioned in section 2, however, this method is not suitable to
handle the scenes with dense crowds like the PETS 2010 datasets
used in our experiments. To make meaningful comparisons, there-
fore, we develop two variants of the approach to fuse complementary
information. We introduce two fusion manners, frame-based fusion
(FRAME-AVG) and component-based fusion (COMPO-AVG), which
averagely combine the estimation results of synchronized frames
and matched components, respectively. Finally, we refer to our
MCPC system as OURS.

Table 2 displays the overall estimation errors (MAE) on SPARSE,
MEDIUM, and HEAVY when using our MCPC system (OURS) and
comparisons with the BS-MKL, BS-GP, BS-NN, FRAME-AVG, and
COMPO-AVG methods. When taking into account only intra-camera
visual features, the BS-MKL outperforms the BS-GP approach in
most settings based on average MAE. The only two exceptions are
on View 1 when using only HEAVY as training data and on View 2
when using all SPARSE, MEDIUM, and HEAVY as training data.
This shows the effectiveness of applying multiple kernel learning
techniques to people counting when we have a number of features.
Furthermore, we observe that the performance gains of the multiple-
camera systems using either of average fusion approaches is modest
since this kind of approaches definitely performs an interpolation
of the estimations given by different views. Although this fashion
may yield higher accuracy, in most cases errors are propagated, thus
degrading performance. In contrast, our MCPC system is able to
handle this difficulty and achieves significant improvement. Overall,
OURS reduces the estimation errors of the first pass (BS-MKL) rang-
ing from 15.8%

(
1.49−1.77

1.77

)
to 78.6%

(
1.21−5.66

5.66

)
, and the ones of

frame-based fusion (FRAME-AVG) ranging from 13.8%
(
3.07−3.56

3.56

)
to 74.8%

(
1.00−3.97

3.97

)
, in terms of relative improvement.

Figure 7 shows the number of people frame-by-frame on the three
testing videos, including manually annotated groundtruth and esti-
mations yielded by BS-MKL, BS-GP, BS-NN, FRAME-AVG, COMPO-
AVG, and OURS, respectively, in two experimental settings. From
these figures, we note that the proposed MCPC generally gains signif-
icant performance on HEAVY, while the improvement on SPARSE is
not obvious in a few settings. There are two possible reasons. First,
occlusions are seldom observed in the SPARSE video. Therefore,
people counting with a single camera may be sufficient. Second, the
appearance variation of small groups of pedestrians is usually mod-
est, whereas highly occluded crowds could represent a large varia-
tion. Thus, complementary information and inter-camera knowledge
are more useful to handle highly crowded scenes (heavy occlusions)
than to handle sparse scenes. To better explain our observation,
we show several examples of video frames with the estimations
on extracted components in Figure 8. In these examples, one can
observe that diverse properties are captured by different cameras.
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Table 1: Description of the PETS 2010 datasets used in our experiments.

video clips
SPARSE MEDIUM HEAVY

View 1 View 2 View 1 View 2 View 1 View 2

Total number of frames 360 190 40

Minimal number of pedestrians in a frame 4 4 4 4 40 40
Maximal number of pedestrians in a frame 8 8 17 19 41 41

Mean of the number of pedestrians 6.8 6.8 10.7 11.9 40.5 41.0
Standard deviation of the number of pedestrians 0.9 1.1 3.8 4.9 0.5 0.2

Total number of segmented blobs 1854 1554 744 670 195 197

Precision of blob matching (%) 98.5 96.4 98.0

Table 2: Summary of estimation errors of people counting on three videos with different occlusion levels, when applying the pro-
posed MCPC system (OURS) and comparisons with the first-pass estimation results (BS-MKL), Chan et al.’s approach (BS-GP) [9],
Ryan et al.’s approach (BS-NN) [36], and two average fusion methods (FRAME-AVG and COMPO-AVG). Note that the BS-MKL, BS-GP,
and BS-NN are three methods which do not involve knowledge transfer, while others exploit complementary information perceived
in multiple camera systems. Additionally, these quantitative results are reported in either MAE or average MAE.

training data testing data
View 1 View 2

BS-
MKL

BS-
GP

BS-
NN

FRAME-
AVG

COMPO-
AVG

OURS
BS-

MKL

BS-
GP

BS-
NN

FRAME-
AVG

COMPO-
AVG

OURS

HEAVY

SPARSE 5.94 5.71 3.10 4.86 4.77 1.80 15.64 18.09 13.42 4.84 5.00 4.72
MEDIUM 5.98 3.40 3.74 3.79 3.30 2.26 10.11 11.51 7.42 2.52 3.00 2.42
HEAVY 1.24 2.11 1.28 3.33 3.33 1.72 6.50 5.77 5.64 3.33 3.33 2.06

OVERALL 4.39 3.74 2.71 3.99 3.80 1.93 10.75 11.79 8.82 3.56 3.77 3.07

SPARSE+HEAVY

SPARSE 1.75 3.78 1.74 1.15 1.51 1.24 0.97 1.94 0.91 0.72 0.82 0.88
MEDIUM 1.80 1.85 1.73 1.75 1.81 1.60 1.63 1.84 1.76 1.59 1.46 2.41
HEAVY 1.84 2.12 1.82 5.02 5.02 1.08 8.25 7.36 6.89 5.02 5.02 2.19

OVERALL 1.80 2.59 1.76 2.64 2.78 1.31 3.62 3.71 3.19 2.44 2.43 1.83

MEDIUM+HEAVY

SPARSE 2.04 5.83 2.13 4.05 4.64 1.38 6.13 7.15 6.96 4.03 3.45 0.73
MEDIUM 1.68 3.16 1.73 3.53 2.84 1.04 3.99 4.95 4.10 1.55 1.94 1.02
HEAVY 1.82 1.44 1.45 4.33 4.33 0.58 6.86 6.88 6.34 4.33 4.33 1.89

OVERALL 1.85 3.48 1.77 3.97 3.93 1.00 5.66 6.33 5.80 3.30 3.24 1.21

SPARSE+MEDIUM+HEAVY

SPARSE 1.64 3.85 1.75 1.31 1.73 1.95 1.58 1.96 1.38 1.11 0.68 1.32
MEDIUM 1.57 1.71 1.57 2.75 2.17 1.37 3.24 2.34 2.09 1.20 1.35 1.02
HEAVY 2.10 1.65 1.79 5.71 5.71 1.16 9.33 7.82 7.98 5.71 5.71 1.20

OVERALL 1.77 2.40 1.70 3.26 3.20 1.49 4.71 4.04 3.82 2.67 2.58 1.18

Our approach effectively makes use of these properties and leads to
salient improvement.

6 Conclusions
In this paper, we have introduced a multiple camera people count-
ing system based on the spirit of transfer learning to improve the
weakness of using a single camera. This work has three main contri-
butions. The first is an exploration of inter-camera knowledge. We
developed a two-pass regression framework which has been shown
effective in adapting heterogeneous information for people counting.
Second, a novel blob matching algorithm was proposed to obtain a
set of consistent entities among cameras, thus leading to the success
of knowledge sharing. Finally, we released sets of manually anno-
tated pedestrian labels based on the PETS 2010 Benchmark Data,
which are considered as a valuable resource for multiple camera
people counting research.
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