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ABSTRACT
This paper presents a novel content-based system that uti-
lizes the perceived emotion of multimedia content as a bridge
to connect music and video. Specifically, we propose a novel
machine learning framework, called Acousticvisual Emotion
Guassians (AVEG), to jointly learn the tripartite relation-
ship among music, video, and emotion from an emotion-
annotated corpus of music videos. For a music piece (or
a video sequence), the AVEG model is applied to predict
its emotion distribution in a stochastic emotion space from
the corresponding low-level acoustic (resp. visual) features.
Finally, music and video are matched by measuring the simi-
larity between the two corresponding emotion distributions,
based on a distance measure such as KL divergence.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]
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1. INTRODUCTION
Recent years have witnessed a tremendous growth of on-

line video sharing on websites such as Youtube and Nico Nico
Douga.1 Such services have drastically changed the way
multimedia content is created, distributed, and accessed.
Everyone can easily create a video sequence with a consumer
camcorder and broadcast it over the Internet.

To enhance the entertaining and aesthetic qualities of the
video sequences, it is usually useful to accompany a video
sequence with a piece of music that goes well together. For
example, exciting music might be good company for sports
video. Due to the absence of an effective automatic tool,
this composition task is usually performed manually, which
is extremely labor extensive when one needs to select from
thousands of soundtracks for a given video sequence.

In response to this demand, machine-aided automatic mu-
sic video composition has been studied in the last decade
[1–3]. However, the performance of existing systems is usu-
ally limited, because most of the time only the relationship
between low-level acoustic features (such as characteristics
of the audio spectrogram) and visual features (such as color
and texture) is considered. It is difficult to establish a direct
relationship between the two modalities from low-level fea-
tures. Moreover, there is a so-called semantic gap between
low-level signal features and high-level human perception.
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Motivated by the recent development in affective comput-
ing of multimedia signals [4–7], we propose to select a music
piece that is in tune with the given video sequence with re-
spect to the affective content. A music-accompanied video
composed in this way is attractive, as the perception of emo-
tion naturally occurs in video watching.

Specifically, we propose a novel machine learning model,
called Acousticvisual Emotion Guassians (AVEG), to jointly
learn the tripartite relationship among music, video, and
emotion from an emotion-annotated corpus of music videos
(MVs). Cross-modal factor analysis (CFA) [8] is employed
to reduce the gap between the low-level acoustic and vi-
sual features in an unsupervised manner. Then, the AVEG
model utilizes the features processed by CFA to make emo-
tion prediction in an emotion space for music and video, re-
spectively. Finally, the matching between music and video
can be done in the emotion space via measuring the KL
divergence between their corresponding predicted emotions.

2. EMOTION MODEL AND CORPUS
To identify the internal human representations of emotion,

psychologists have applied factor analysis techniques such
as multidimensional scaling to the emotion ratings of music
stimuli. Although differ in names, existing studies give very
similar interpretations of the resulting fundamental factors,
most of which correspond to valence (positive/negative af-
fective states), activation (or arousal; energy level), and po-
tency (or dominance; a sense of control or freedom to act) [9].
The 3D emotion space is referred to as 3DES hereafter.

For reproducibility, the DEAP dataset [10] is utilized. It
contains 120 pieces of 1-minute MV segments collected from
Youtube. Each segment was on average annotated by 14-16
volunteers, who were asked to annotate valence, activation,
and potency on a discrete 9-point scale online [10].

3. SYSTEM AND METHODOLOGY
3.1 Feature Extraction and CFA

We extract segment-level (with dynamic length) visual
and acoustic features. The visual features are extracted
via densely sampled trajectories in spatio-temporal volumes
[11], and each segment for a trajectory is characterized by
four different descriptors: motion boundary histogram, his-
togram of oriented gradient, histogram of optical flow, and
trajectory shape. The acoustic features we adopt include
those related to timbre (Mel-scale frequency cepstral coeffi-
cients), pitch (chroma and pitch features), sound intensity
(root mean square energy), and rhythm (fluctuation pattern
and tempo) [4, 7]. For an MV, each segment for extracting
acoustic features is defined by the sampled trajectories from
video, and the frame-based acoustic features in a segment
are summarized by their mean and standard deviation.
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Figure 1: Illustration of the AVEG framework.

For better performance, we apply cross-modal factor anal-
ysis (CFA) [8] to align the acoustic and visual feature spaces
and find the principle projections for them, respectively.
Suppose that a pair of segment-level acoustic and visual fea-
tures are represented as x ∈ Rda and y ∈ Rdv , two transfor-
mation matrices, A ∈ Rp×da and B ∈ Rq×dv , where p ≤ da
and q ≤ dv can be different and set empirically according to
their original dimensions, are respectively learned via CFA
from a universal set, F , consisting of 10K segments ran-
domly selected from the DEAP corpus. It follows that the
segment-level feature spaces for the audio and video modal-
ities can be respectively derived by x̂ ← Ax and ŷ ← By.

3.2 Acousticvisual Emotion Gaussians
As shown in Figure 1, the AVEG framework contains two

models, namely acoustic emotion Gaussians (AEG) and vi-
sual emotion Gaussians (VEG), which are conceptually the
same except for difference in the media modality that is
taken into account (audio and video, respectively). Note
that due to the independence between AEG and VEG, these
two models can be learned separately using different emo-
tion annotated datasets, as long as the underlying emotion
model is the same (e.g., 3DES). Below we briefly introduce
the basic idea of the AEG model, since that for the VEG
model is similar. Readers are referred to [12] for details.

We aggregate a set of segment-level x̂s of a music clip into
a clip-level probabilistic vector by implementing the acous-
tic words {Ak}Kk=1, as shown in Figure 1, with an acoustic
Gaussian mixture model (GMM) pre-learned on F . Accord-
ingly, each training clip sn in DEAP D is represented as a
vector θn, whose k-th component is a posterior probability
θnk corresponding to the k-th Gaussian Ak in the acous-
tic GMM. Let’s denote the emotion annotations of sn as
{enm}Un

m=1 ∈ R3, where enm is given by the m-th subject of
sn. Then, given D, all annotations, E ≡ {enm}∀n,m, can be
generated from a weighted 3DES GMM with {θn}Nn=1,

p(E|D) =
∏

n

∏
m

∑
k
θnkN (enm|µk,Σk) , (1)

where µk and Σk denote the mean vector and covariance
matrix of the k-th latent 3DES Gaussian (cf. Figure 1),
which can be learned using the EM-based algorithm [12].

Due to the parametric and probabilistic nature underly-
ing AVEG, personalization can be achieved by adapting the
3DES GMMs in a dynamic and efficient manner when a
small number of personal annotations are available [13].

3.3 Music and Video Matching
Suppose we have learned the acoustic and visual 3DES

GMMs, denoted by {µk,Σk}Kk=1 and {ηj ,Λj}Jj=1, respec-
tively, where J can be unequal to K, the predicted 3DES
distributions for a music clip s and video v respectively are

p(e|s) =
∑K

k=1
θkN (e|µk,Σk) , (2)

p(e|v) =
∑J

j=1
ωjN (e|ηj ,Λj) , (3)

where {θk}Kk=1 and {ωj}Jj=1 are the feature posteriors of s
and v derived from their corresponding feature words and
segment-level feature vectors (x̂ and ŷ), respectively.

As shown in Figure 1, since a music clip and a video se-
quence can be mapped into the same emotion space (cf.
Eqs. 2 and 3), the relevance between them can be measured
according to the KL divergence DKL between their result-
ing 3DES GMMs. For better efficiency, we apply the varia-
tional based method [14] to compute the approximated lower
bound of DKL between p(e|s) and p(e|v). From Eqs. 2 and
3, the predicted emotions of music and video are estimated
by the weighted 3DES GMMs using {θk}Kk=1 and {ωj}Jj=1

as weights, respectively, and {µk,Σk}Kk=1 and {ηj ,Λj}Jj=1

are fixed. We can therefore lessen the computational cost
by computing the componentwise basis KL divergences be-
tween the two non-weighted 3DES GMMs beforehand in an
off-line manner. As {ωj}Jj=1 of a video query v is given, we
can efficiently compute DKL(v‖s) between v and each mu-
sic piece s in the database. Likewise, for a music query s,
DKL(s‖v) can be used to retrieve videos. The complexity of
the AVEG model and the matching procedure only depend
on K and J . For mobile devices, one can select K and J for
balancing the trade-off between accuracy and efficiency.

4. CONCLUSION
We have presented a novel system that utilizes the novel

AVEG framework, which jointly learns the tripartite rela-
tionship among music, video, and emotion from an emotion-
annotated corpus of MVs, to bridge music and video in a
higher level 3DES. We will perform more subjective evalua-
tions on the automatically generated music videos.
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