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ABSTRACT
Learning the user’s semantics for CBIR involves two differ-
ent sources of information: the similarity relations entailed
by the content-based features, and the relevance relations
specified in the feedback. Given that, we propose an aug-
mented relation embedding (ARE) to map the image space
into a semantic manifold that faithfully grasps the user’s
preferences. Besides ARE, we also look into the issues of se-
lecting a good feature set for improving the retrieval perfor-
mance. With these two aspects of efforts we have established
a system that yields far better results than those previously
reported. Overall, our approach can be characterized by
three key properties: 1) The framework uses one relational
graph to describe the similarity relations, and the other two
to encode the relevant/irrelevant relations indicated in the
feedback. 2) With the relational graphs so defined, learning
a semantic manifold can be transformed into solving a con-
strained optimization problem, and is reduced to the ARE
algorithm accounting for both the representation and the
classification points of views. 3) An image representation
based on augmented features is introduced to couple with
the ARE learning. The use of these features is significant in
capturing the semantics concerning different scales of image
regions. We conclude with experimental results and com-
parisons to demonstrate the effectiveness of our method.
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1. INTRODUCTION
A key ingredient of designing successful Content-Based

Image Retrieval (CBIR) systems [4, 16, 31] is how to ef-
fectively transform users’ interactions into information that
could help the underlying retrieval engines to better organize
their image data. Different from in information retrieval, the
features used in image retrieval are often visually character-
ized, and therefore do not directly connect to the (semantic)
concepts implied by users as textual features would do. The
semantic gap has been the main challenge to be overcome
in CBIR research.

Among the various attempts to deal with the foregoing
difficulty, retrieval techniques based on relevance feedback
[25] are generally considered as a feasible and promising ap-
proach, e.g., [9, 10, 12, 13, 23, 24, 28, 29]. Still methods of
this kind could differ considerably in the retrieval outcomes.
And it brings up two important subjects that would have
significant bearings on the query accuracy: 1) the choice of
features for representing an image, and 2) the way of cap-
turing the implicit semantic concepts imposed through the
few query examples by a user. In this work, we aim to ad-
dress these two issues by proposing a new manifold-learning
scheme with relevance feedback that draws on useful image
features to achieve significantly better retrieval performance
than that yielded by other existing methods.

1.1 Previous Work
Like in all other classification problems, feature selection

when properly done could substantially enhance the retrieval
performance. The commonly-indexed features in CBIR are
comprehensive, such as shape, texture [9, 10, 24], color,
wavelet coefficients [12, 23, 29], and color coherence vec-
tors [19]. The consideration of these features is intuitive,
and reasonable for discriminating among images of different
categories. They are often implemented as global features to
describe the respective overall statistics for a whole image.
Such a practice may cause poor query results when the re-
gion of interest (ROI) by a user pertains to only a sub-image.
The situation could further deteriorate when the area of an
ROI is relatively small, or a query example has complex
background. Alternatively, there are descriptors that are
suitable for encoding the local properties of image patches.
The SIFT algorithm [15], invented for object recognition and
now widely used in vision research, e.g., [8, 14], is one such
example, and should be useful in providing additional query
cues for a retrieval system.

To take account of relevance feedback, several researchers
have explored supervised learning. For example, Tong and



Chang [29] propose SVMActive for learning a decision bound-
ary by iteratively adding the most informative (near the
boundary) samples as training data. Hoi and Lyu [12] de-
velop a soft-label SVM by taking the feedback confidence
into consideration in learning the decision boundary. In [28],
Tieu and Viola have used AdaBoost to establish a classifier
for retrieval, by selecting discriminant features from a very
huge candidate pool. Despite these efforts, we note that
though SVMs and boosting are effective for classification,
the decision boundaries derived by the two schemes would
be unstable when the feedback contains only a few image
examples for the on-line training. Hence further techniques
to address this difficulty are required.

Another possibility is to use the feedback information for
adjusting a query vector. Specifically, a query vector can
be (dimension-wise) re-weighted [13, 24], moved [13], or ex-
panded [20] to account for users’ feedback. Rui et al. [24]
propose to iteratively adjust the component weights of a
query vector to favor relevant dimensions. Alternatively, in
the work of Ishikawa et al. [13], a query can also be modified
by considering both the locations and the relevance degree
of positive examples. In [20], Porkaew et al. apply cluster-
ing to select relevant examples, and then add them into the
query representation at each feedback iteration.

The latest trend in CBIR research has been somewhat
shifted to recovering the intrinsic structure for a proper im-
age space of reduced dimensionality. Instead of working
with the conventional Euclidean space, the main theme is
to assume that the images (label and unlabeled) spread as a
manifold, and the task is to learn the underlying structure.
Consequently, a similarity measure can be conveniently com-
puted on the learned manifold. He et al. [10] use geodesic
distances to approximate the distances between image pairs
along the manifold, and apply Laplacian eigenmaps [2] to
preserve such distances. The main drawback is that the
mapping is defined only on the set of training data, and thus
needs additional mechanisms, such as radial basis function
networks, to handle test data. In a related work [9], an in-
cremental learning scheme based on locality preserving pro-
jections (LPP) [11] has been proposed for semantic relation
embedding. Although the mapping derived by LPP is valid
for the entire image space, the mapping itself is limited to a
linear projection. Furthermore, in both works [9, 10], only
one relational graph is used such that the local geometry
and feedback relations are not properly represented. As a
result, the two schemes may not fully utilize the feedback
information in learning the user’s semantics.

1.2 Our Approach
Designing an efficient scheme to understand the user’s

preferences is a nontrivial task in CBIR. We propose an
approach that learns a semantic manifold by taking account
of the multiple aspects of relations among images and the
feedback information. In our framework, a similarity rela-
tional graph is constructed by exploring the neighborhood
of each image, and two feedback relational graphs are cre-
ated to depict the relevant and irrelevant relations in the
feedback. While the similarity property is used as a con-
straint enforcing the preservation of the local geometry, we
make use of the relevant and irrelevant feedback informa-
tion in a discriminant manner [5], i.e., gathering together
relevant pairs and keeping away irrelevant ones after the
embedding. In other words, not only the class of labeled

images but also the intrinsic structure of the unlabeled data
are considered in learning the semantic manifold. We realize
these crucial concepts encoded in the graphs by formulating
a constrained optimization problem, and then by solving an
equivalent generalized eigenvalue problem. As for indexing
images for retrieval, global statistics describe the properties
of the whole image and achieve the effectiveness in CBIR,
while the local features characterize images by their salient
and distinctive regions and are often invariant to certain
transformations. Motivated by these observations, we intro-
duce a new image representation to embrace the advantages
of the two types of features, and to further improve the re-
trieval precision by our method.

2. SEMANTIC MANIFOLD LEARNING
The need of dimensionality reduction on analyzing high-

dimensional data is unavoidable. Manifold learning is one
such technique that aims for finding a constructive way to
embed the data from a high-dimensional space into a low-
dimensional manifold. Take, for example, the three impor-
tant works, Isomap [27], LLE [21], and Laplacian eigenmaps
[2]. In these methods dimensionality reduction is carried
out nonlinearly by investigating the local geometry entailed
by the data. Still they all lack an explicit mapping func-
tion defined for the entire space, i.e., they cannot directly
handle new test data. Bengio et al. [3] have subsequently
proposed a new scheme to fix the shortcoming via learning
kernel eigenfunctions. Their method can achieve good re-
sults, but is too computationally expensive. The LPP by
He and Niyogi [11] also shares considerable similarity with
Laplacian eigenmaps, except that it has a linear mapping
function learned and defined over the whole input space.

All the works discussed above learn data manifolds in an
unsupervised manner. While these algorithms are appropri-
ate for data representation and visualization, they do not
make the most of the labeled relevance feedback in CBIR.
We instead propose a new framework for learning a seman-
tic manifold that best explains the user feedback, comprising
only a few labeled examples. Notice that since a structure
like this is largely imposed by a user, it implies that the
same image database may reside in very different semantic
manifolds due to users of diverse preferences.

2.1 Augmented Relation Embedding
To learn a semantic manifold for CBIR, we work on two

different sources of information: the similarity relations given
by images in the database, and the relevance relations indi-
cated by examples in the feedback. Since the user-provided
relevance information can be considered as augmented re-
lations to the data, we choose to use the term, augmented
relation embedding (ARE), to emphasize this property in our
manifold-learning algorithm.

Let X ⊂ R
n be an n-dimensional image feature space, and

ρ : X×X → R be some distance function (to be discussed in
the next section). A database with m images can then be
represented by a data matrix X = [x1 x2 · · · xm] ∈ R

n×m

where xi ∈ X for i = 1, . . . , m. For the relevance feedback,
we use F+ to denote the set of images returned by the system
that are relevant to a query, and F− to include the remain-
ing irrelevant images. To characterize the process of ARE,
we use three relational graphs (undirected and complete)
whose vertices are over the image samples, and a general-
ized eigenvalue problem, detailed in the following steps.



1. Construct the similarity relational graph, GS. Let the
matrix that records the weights over the edges of GS

be W S ∈ R
m×m, defined by

W S
ij =

�����
e−ρ2(xi,xj )/t, if xi ∈ k-NN of xj

or xj ∈ k-NN of xi,

0, otherwise,

(1)

where t is some positive scalar, and k-NN is the ab-
breviation for the k nearest neighbors.

2. Construct the feedback relational graphs, GP and GN .
The two relational graphs encode pairwise relations
in the feedback. In particular, GP is for the posi-
tively similar relations, and GN for the dissimilar ones.
Their respective weight matrices, W P , W N ∈ R

m×m,
can be defined as follows.

W P
ij =

�
1, if xi ∈ F+ ∧ xj ∈ F+,

0, otherwise;
(2)

W N
ij =

�����
1, if xi ∈ F+ ∧ xj ∈ F−

or xi ∈ F− ∧ xj ∈ F+,

0, otherwise.

(3)

3. Embed image space X into an �-dimensional semantic
manifold. For � � n, find the generalized eigenvectors
v1, v2, ..., v� corresponding to the � largest eigenvalues

X[LN − γLP ]XT v = λXLSXT v, (4)

where LS = DS − W S, and DS is a diagonal matrix
with DS

ii =
�

j W S
ij . Analogously, LP , DP , LN , and

DN can be defined in a similar way. Notice that the
scalar γ is added to take care of the possibility of un-
balanced feedback. In practice, we have set

γ ∝
�

i,j
W N

ij /
�

i,j
W P

ij . (5)

The parameter γ weighs the importance tradeoff be-
tween the positively-similar pairs and the dissimilar
ones in the feedback. (γ ≥ 1 is to emphasize the posi-
tive information.) Finally, after solving (4) and letting
V = [v1 v2 · · · v�], we have, for each image xi in the
database, the embedded feature vector zi = V T xi.

4. Perform retrieval over the semantic manifold. While
the embedding of the image database is completed,
given any arbitrary query image x̄ ∈ X, we map it onto
the manifold by z̄ = V T x̄. Find the nearest neighbors
of z̄ using the Euclidean distance, and those images
corresponding to the nearest neighbors will be the top-
ranking returns for the query.

We now explain why the steps of ARE can learn a use-
ful semantic manifold for retrieval, and how the generalized
eigenvalue problem in (4) guarantees a data embedding that
effectively reflects the augmented information. We begin by
considering the following optimization problem:

Maximize J(V ) =
�

i,j
||V T xi − V T xj ||2(W N

ij − γW P
ij )

subject to
�

i,j
||V T xi − V T xj ||2W S

ij = 1. (6)

The implication of the above formulation is explicit and
reasonable. While the intrinsic structure of the image data

is maintained via enforcing the constraint, a feasible V to
(6) would project data by reducing the Euclidean distances
between each positively-similar pair, and enlarging those
between every dissimilar pair. Thus a manifold-learning
scheme based on (6) connects the user semantics with the
underlying image data in a proper space of reduced dimen-
sionality. We next describe a theorem to complete our dis-
cussion on the justification of ARE.

Theorem 1. The columns of the optimal V ∈ R
n×� to

the constrained optimization problem (6) are the generalized
eigenvectors corresponding to the � largest eigenvalues of (4).

Proof. Using the notations in (4) and (6), we have

J(V ) =
�
i,j

||V T xi − V T xj ||2(W N
ij − γW P

ij )

=
�
i,j

tr{(V T xi − V T xj)(V
T xi − V T xj)

T }(W N
ij − γW P

ij )

=
�
i,j

tr{V T (xi − xj)(xi − xj)
T V }(W N

ij − γW P
ij ).

Since the trace operator is linear, and (W N
ij − γW P

ij ) is a
scalar, all the terms can be moved inside the trace.

J(V ) = tr{V T
�
i,j

(xi − xj)(W
N
ij − γW P

ij )(xi − xj)
T V }

= 2tr{V T [ (XDNXT − XW NXT )

− γ(XDP XT − XW P XT ) ]V }
= 2tr{V T X(LN − γLP )XT V }. (7)

After applying a similar analysis to the constraint term,
equation (6) can be reformulated as

Maximize J(V ) = 2tr{V T X(LN − γLP )XT V }
subject to 2tr{V T XLSXT V } = 1. (8)

Finally, apply the Lagrange multipliers to (8), and set the
derivative with respect to V to zero. It follows that the
columns of the optimal V are generalized eigenvectors cor-
responding to the � largest eigenvalues in (4).

It should be clear now that ARE is a semi-supervised
learning technique for dimensionality reduction. The aug-
mented information used in learning a semantic manifold is
nicely encoded in the three relational graphs, GS, GP , and
GN . Like other manifold-learning methods, the proposed
ARE can preserve local geometry by referencing the neigh-
borhood similarity relations in GS . On the other hand, by
exploring the relevance feedback information in GP and GN ,
ARE automatically captures the intrinsic semantics behind
the user interactions with a retrieval system.

ARE–Initialization. In general the query-by-example of
CBIR starts only with some query image provided by a user.
That is, in the inception of manifold learning there should
be no feedback information. Consequently, equation (4) is
not well defined, and it makes sense to start ARE in an
unsupervised manner, i.e., by solving

XDSXT v = λXLSXT v. (9)

Following the definitions of DS and LS , it can be easily
verified that with (9), ARE initially behaves like LPP. It
then switches to a semi-supervised scheme for learning a
sematic manifold when (4) becomes valid.



2.2 Kernel ARE
The query/classification efficiency induced by ARE can

sometimes be further improved, especially when the data in
the original space are highly nonlinearly distributed. Mo-
tivated by the success of support vector machines (SVMs)
[30], we describe a similar strategy to kernelize the linear
ARE. The idea is to nonlinearly map the image data to a
high-dimensional feature space, and then perform ARE to
learn a semantic manifold in that space. Such a generaliza-
tion is meaningful in the sense that a kernelized ARE would
generally achieve better accuracy, and relax the restriction
of ARE being only a linear embedding scheme.

Let Φ : R
n → Y be a nonlinear mapping. Then the im-

age data matrix in the feature space Y can be denoted as
Φ(X) ≡ [Φ(x1) Φ(x2) · · · Φ(xm)]. Since the analysis mostly
involves inner products between pairs of mapped data, it is
convenient to work with Mercer kernels instead of worrying
about the exact form of Φ. Specifically, we have used the
RBF kernel, k(xi,xj) = Φ(xi)

T Φ(xj) = exp(−||xi−xj||2/c)
for the experimental results presented in this work.

Consider now a kernel-based optimization problem, the
same as (8) except that X is replaced by Φ(X). Its gener-
alized eigenvalue problem is then given by

Φ(X)[LN − γLP ]Φ(X)T v = λΦ(X)LSΦ(X)T v. (10)

To establish the kernel ARE, we note that the eigenvec-
tors of (10) are in the span of Φ(x1), Φ(x2), . . . , Φ(xm). In
particular, let the eigenvector vi of (10) be the ith column
of V , and assume the following expansion

vi =
�m

j=1
αijΦ(xj) = Φ(X) αi, (11)

where αi = [αi1 αi2 · · · αim]T . To this end, it is convenient
to define another matrix by A = [α1 α2 · · · α�], and denote
the kernel matrix as Kij = k(xi,xj). Furthermore, it can be
shown that V T Φ(X) = AT K by element-wise comparison:

(V T Φ(X))ij = vT
i Φ(xj) = (AT K)ij (12)

for 1 ≤ i ≤ � and 1 ≤ j ≤ m. Therefore the kernelized
optimization problem of ARE can be stated as

Maximize U(A) = 2tr{AT K(LN − γLP )KA} (13)

subject to 2tr{AT KLSKA} = 1.

The optimal A to (13) would comprise α1, α2, . . . , α�

that are the generalized eigenvectors corresponding to the �
largest eigenvalues of

K[LN − γLP ]Kα = λKLSKα. (14)

Analogously given a query image x̄ for retrieval, the ker-
nel ARE would map the data by z̄ = V T x̄ with the ith
coordinate derived by z̄i = vT

i x̄ =
�m

j=1 αijk(xj , x̄).

3. FEATURES FOR IMAGE RETRIEVAL
Selecting good features is as important as designing an ef-

fective learning algorithm for classification problems. In our
case, we intend to choose features that are likely to grasp
the user’s preferences, and general enough for accommodat-
ing most retrieval systems. While there is no particular way
to categorize image features, we shall divide them into two
groups, global and local features. Bear in mind that the
main distinction between the two categories of features is
not on how they are computed, but on what image scale a

feature is set to characterize. We detail in what follows both
the global and local features used in our experiments, in-
cluding their advantages and disadvantages. Then a scheme
integrating the two categories is proposed to form augmented
features for manifold learning with ARE.

3.1 Global Features for CBIR
As we have emphasized, those features used to describe

properties concerning a whole image are classified as global.
Specifically, in our implementation, we have investigated
three types of global features for CBIR.

• Color. Features related to color are widely adopted
for their simplicity and good performance. We test
three kinds of color features: 1) After quantizing the
HSV color space, a 64-bin color histogram is evaluated;
2) The first three moments are accordingly extracted
from the H, S, and V channels; and 3) Due to the
lack of spatial information in the first two, we also
add a 128-dimensional color coherence vector (CCV)
[19] into our global features, to take account of each
color’s coherence.

• Texture. Roughly speaking, texture features refer to
the image patterns that display homogeneity. They
thus play an important role in image indexing of CBIR.
In our system, we have considered two kinds of Tamura
features, coarseness and directionality. The former is
to measure the distribution about the sizes of image
regions with which each pixel is associated, and the lat-
ter depicts the information about the magnitudes and
the directions of pixel-wise gradients. Similarly, we
represent these two features in the form of histograms
with 10 and 8 bins, respectively.

• Wavelet. Frequency is another aspect of information
useful for characterizing images. Among the various
techniques, wavelets are deemed to be a powerful tool
for capturing both spatial and frequency properties.
We apply discrete wavelet transform (DWT) to de-
rive a 3-level image decomposition, and then calculate
the first two moments of coefficients from the 9 high-
frequency sub-bands, i.e., the High/Low, Low/High,
and High/High bands in all the three levels.

Having normalized each dimension, we can now represent
an image with a 237-dimensional feature vector, computed
from the foregoing global descriptors. However, despite the
many advantages mentioned above, using global features for
CBIR exclusively is not sufficient for ensuring good retrieval
performance. In particular, their effectiveness for CBIR
could suffer from the following situations.

• When the semantic concepts implied by a user pertain
only to sub-images, it is possible the computations of
global features may include too many irrelevant fac-
tors. As a result, the precision and recall would be-
come worse in that the information used in deriving
global features does not fairly reflect the feedback.

• Even for the same semantic concept, the corresponding
appearances may differ from image to image, such as
poses, scales, pictured viewpoints, or locations of ROI
in images. Most global features cannot account for
these varieties.



3.2 Local Features for CBIR
Local features are introduced in our implementation to

describe properties of size-varying regions associated with
interest points in an image. It takes two steps to carry out
the computations of local features. First, the detection of
interest points in a given image is done by using Lowe’s
difference-of-Gaussian (DoG) detector [15], which has been
shown to be robust and invariant to scale and rotation. The
DoG detector identifies potentially interest points by search-
ing the local extrema in the scale-spaces. After eliminating
the unstable ones, the respectively dominating orientation
and detected scale are assigned to each of the remaining in-
terest points. Second, we calculate local features from each
salient region, identified by the scale, location, and orien-
tation of a detected interest point. Motivated by the good
results reported in [18], we consider stacking three different
kinds of local features to characterize salient regions.

• Generalized RGB Color Moments. The formulation is

Mabc
pq =

� �
Ω

xpyq[R(x, y)]a[G(x, y)]b[B(x, y)]cdxdy,

with degree a + b + c and order p + q. Let (x, y) de-
note the relative coordinates with respect to an inter-
est point and its orientation, and Ω be the set of (x, y)
within a local region. Setting the degree as 1 or 2, and
the order up to 1, we get a 27-dimensional vector.

• RGB Color histogram. A color histogram of 64 bins
is evaluated to capture the RGB color distribution in
the local region of each interest point.

• SIFT (Scale Invariant Feature Transform) descriptor.
As shown in, e.g., [8, 14, 15, 17], SIFT descriptors are
quite effective in representing local image properties.
We have used a 128-dimensional SIFT descriptor.

With the above descriptors and proper normalizations,
an image would yield a local representation comprising a
bag of d local-feature vectors, denoted as Γ = {l1, l2, . . . , ld}
where d is the number of interest points detected, and li
is the local-feature vector for the ith interest point. Since
the value of d is image-dependent, the dimensionality of the
local representation Γ is not fixed. Thus, for the sake of uni-
formity that facilitates a similarity measure, we apply the
vector quantization technique [18, 26] to cluster local-feature
vectors resulting from all images into k clusters. In this way,
the local representations caused by different numbers of in-
terest points can all be transformed into k-dimensional vec-
tors, where for a given image the value of the ith dimension
now records the number of local-feature vectors in Γ being
included in the ith cluster.

A proper setting for the value of k is indeed a tradeoff
between the degree of precise image representation and the
ease of similarity measurement. With a larger k, the dif-
ferences between two images are more faithfully character-
ized; however, it becomes inefficient/inappropriate to cor-
relate two images using the bin-by-bin similarity measures,
e.g., L2-distance and Kullback-Leibler divergence. We in-
stead consider the Earth Mover’s Distance (EMD) proposed
by Rubner et al. [22], for its nice property in addressing
the cross-bin dissimilarity. The k-dimensional local repre-
sentation is therefore converted to the signature form used
in EMD, where each cluster is represented by its center and
the weight (the number of elements in the cluster divided

by the total number of elements). Furthermore, the cost be-
tween each cluster pair is defined by their geodesic distance,
which can be efficiently computed by Floyd’s algorithm [6].

To justify the use of EMD with the local representation,
we conduct a simple but constructive test by excluding the
feedback information and the use of ARE. We begin by
preparing a 30-category image set in which each category
has 100 images. Those images in the same category are
considered relevant, and otherwise, irrelevant. The assump-
tion serves as the ground truth. In the testing of each
image, we find its 15-NN (not including the query image)
with some similarity measure, and calculate its accuracy.
Then the accuracy of each category can be calculated by
averaging. The efficiency of using EMD is compared with
those yielded by three other distance measures, including the
L2 distance, the negative Bhattacharyya coefficient (BHC),
and the dot product (cosine of angle) coupled with term
frequency–inverse document frequency (TF-IDF) weighting
strategy suggested in [26]. Also, the value of k, i.e., the
number of feature clusters is set to 3000. The experimental
outcomes are shown in Figure 1a. Among the four mea-
sures, EMD is clearly the most effective one for our local
representation.

3.3 Augmented Features for CBIR
We compare the performance of using either global or local

features for CBIR by redoing the experiment in Figure 1a, in
which L2 distance and EMD are respectively employed. The
results are shown in Figure 1b (the blue and green curves).
Overall the global representation produces better accuracy
rates. However, it is worthwhile to note that the two rep-
resentation schemes complement each other for images of
many categories. Taking the most extreme cases into ac-
count, e.g., category 20 and 6, we illustrate several images
belonging to the two categories in Figures 1c and 1d.

It is evident that the global representation works well for
category 20 owing to the consistency in the backgrounds,
though the underlying semantic concept is difficult to be
identified. On the other hand, using local features achieves
good performance for category 6 in that the locally distinc-
tive and unique patterns of jaguars typically appear in small-
area sub-images and the backgrounds are also arbitrary and
complex. In view of the significantly complementary nature
in the query performance, we thus seek a representation that
can reasonably include both image properties. Nevertheless,
a critical obstacle needed to be surmounted is that the dis-
tance measures used for the two types of features are quite
different. For example, while the L2 distance is often used
for correlating global feature vectors, it performs poorly for
local features. The difficulty prompts the idea of using aug-
mented features for CBIR described next.

Given an image, suppose again there are d interest points
detected. Therefore its local representation is a bag of local
features, Γ = {l1, l2, . . . , ld}. Let g be the corresponding
global-feature vector for the same image. We define a new
representation by augmenting each bag of local features:

fi =

�
ωli

(1 − ω)g

	
, for 1 ≤ i ≤ d, (15)

where ω is a relative weighting factor. Then, the proposed

representation, 
Γ = {f1, f2, ..., fd}, can be handled similarly
as for the local representation, including the vector quanti-
zation and the use of EMD for distance measurement.



2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Category

A
ve

ra
ge

 A
cc

ur
ac

y

Local + TF−IDF
Local + BHC
Local + Euclidean
Local + EMD

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Categroy

A
ve

ra
ge

 A
cc

ur
ac

y

Global + Euclidean
Local + EMD
Augmented + EMD

(a) (b)

(c) (d) (e)

Figure 1: (a) Accuracy comparisons among four similarity measures for local features. (b) Accuracy com-
parisons for global, local, and augmented features. (c)–(e) Images from category 20, 6, and 23, respectively.

To evaluate the efficiency of the proposed representation,
we also carry out the same experiment as in testing the
global and the local one. By empirically setting ω = 0.5, the
results are shown in Figure 1b (the red curve). It is along
the skyline of the curves for global and local features. Even
for some categories, e.g., 23 in Figure 1e, the augmented
features significantly outperform both global and local ones
because in these categories the two kinds of statistics, local
and global, are meaningful in the similarity measurement.

4. EXPERIMENTS AND DISCUSSIONS
We present several experimental results and comparisons

to demonstrate the effectiveness of the proposed manifold-
learning algorithm, coupling with the use of augmented fea-
tures. In Section 4.1 we describe the image dataset used
in the experiments. The various settings concerning the
performance evaluation metrics, cross validation, and im-
plementation details are given in Section 4.2. We discuss
the efficiencies of the three key components in our method,
including image representations, learning algorithms, and
proper dimensions of embedding spaces for CBIR in Sec-
tions 4.3–4.5. Then examples of 2-D visualization for em-
bedding spaces are provided in Section 4.6 to illustrate the
progressive improvements through the feedback processes.

4.1 Image Dataset
The COREL dataset is widely used in many CBIR sys-

tems, such as [9, 12, 23, 28, 29]. For the sake of evaluations,
we also choose the collection for our testing. We empirically
select 30 categories of color images, where each consists of
100 samples. Those images in the same category share the

same semantic concept, but have their individual varieties.
The fact serves as the ground truth in the experiments, i.e.,
images from the same category are considered relevant, and
otherwise irrelevant.

4.2 Evaluation and Implementation Settings
To exhibit the advantages of using our method, we need

a reliable way of evaluating the retrieval performance and
the comparisons with other systems. We also run cross val-
idation to ensure that the reported results are general and
credible. Besides these evaluation settings, different aspects
of experimental details are described below.

Evaluation Metrics. Though the precision-recall curve is
commonly used as a performance measure for retrieval, it is
less suitable for the results of CBIR, due to the often rela-
tively low recall [23]. We instead adopt the precision-scope
curve and the precision rate as the performance-evaluation
metrics. In this context, the scope specifies the number,
N , of top-ranking images returned in response to the user’s
query, and the precision is the ratio of relevant returns to the
scope N . In practice a precision-scope curve records the pre-
cision over a range of scopes. The precision rate emphasizes
the precision for a particular value of scope, and thus can be
viewed as a point on the precision-scope curve. Specifically,
we have N = 20 for all our experiments. And for those ex-
periments designed for comparing features, we shall use the
precision-scope curve to measure the performance, because
it gives more comprehensive results. For our other experi-
ments on learning algorithms and dimensionality analysis of
the embedding spaces, we prefer the precision rate in that
the emphasis should be on the precision differences among
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Figure 2: Compare the retrieval performance by applying ARE respectively with the three types of features
for image representation: global, local, and augmented features. (a)–(c) Via illustrating with the precision-
scope curves, we plot the results in the 1st, 2nd, and 5th feedback iteration, respectively.

all the feedback iterations, and hence a compact description
is more appropriate.

Five-Fold Cross Validation. To test our system, we only
consider queries that are not in the database. The strategy is
practical and meaningful because testing with training data
is less persuasive in the evaluation of a learning algorithm.
Driven by the query-by-example execution of our system,
we use five-fold cross validation to simulate the queries with
examples not in the image database. More precisely, we ran-
domly divide all the images into five equal-size sets. In each
run of cross validation, we pick one set as the query set, and
leave the other four sets as the training data. It implies that
the nodes of the relational graphs in the ARE algorithm cor-
respond to images in the training set. The precision-scope
curve and precision rate are derived by averaging the re-
sults from the five runs of cross validation. We adopt the
automatic feedback scheme described in [9] for performance
evaluation. For each submitted query, our system retrieves
and ranks the images in the training set by iteratively run-
ning ARE. At each feedback iteration, the top four relevant
and irrelevant images are selected and inserted into the rel-
evant and irrelevant sets, i.e., the F+ and F− in (2) and
(3), respectively. Note that the images have been selected
in the previous iterations are excluded from later selections.
And, with each query, the automatic feedback mechanism is
carried out for eight iterations.

Implementation Details. We discuss two issues of imple-
mentation details. First, for the concern of numerical sta-
bility, we exploit the technique suggested in [1] to avoid sin-
gularities encountered in solving the generalized eigenvalue
problems. Specifically, we apply PCA to the column space of
the data matrix, i.e., X in (4), and keep the 98% information
by its low-rank approximation. Second, instead of directly
calculating X[LN − γLP ]XT in the generalized eigenvalue
problem in (4) at each feedback iteration, we compute the
result of

�
i,j(xi − xj)(W

N
ij − γW P

ij )(xi − xj)
T , since their

equivalence has been shown in (7). In such a way, we take
advantage of the sparseness property of W P and W N to
save the computational resource and prevent the multiplica-
tions between large-size matrices. Furthermore, since W P

and W N are incrementally updated in the feedback itera-
tions, we only take the changed elements in W P and W N

into account at each iteration.

4.3 Image Features for ARE
In the previous section we have compared the efficiency of

using the global, local, and augmented features for retrieval,
and reported the results in Figure 1. The experiments are
done without using the relevance feedback and any embed-
ding algorithms. Here we again evaluate these three types
of image features by testing them with the ARE algorithm.
Via illustrating with the precision-scope curves, their perfor-
mance in the 1st, 2nd, and 5th feedback iteration is plotted
in Figures 2a–2c, respectively. Based on the results shown
in the diagrams, we observe: 1) The augmented features are
more efficient than the other two classes in all the iterations;
2) Owing to the increasing number of feedback images in the
latter iterations, the precision is improved over the entire
range of the scope; and 3) In the latter feedback iterations,
the precision decays slightly within the small-scale scope, as
shown in Figure 2c. The phenomenon may be caused by a
better fitting of ARE with more feedback information.

4.4 Manifold Learning Schemes
To demonstrate the power of the proposed ARE algorithm

in learning the semantic concepts from feedback examples,
we compare its retrieval performance with that of a related
scheme, namely, the incremental Locality Preserving Pro-
jections [9]. Both the two algorithms measure similarities
locally based on the manifold assumption, and are designed
for learning the semantic space via solving eigenvalue prob-
lems. The critical difference between the two schemes is that
the incremental LPP maintains only a graph for recording
both the neighborhood and feedback relations at the same
time, while the ARE treats the neighborhood relation as a
constraint and formulates, in a discriminant manner, feed-
back information into an objective function.

Besides incremental LPP and ARE, the kernel ARE is
also included in the comparisons. Together with the three
possible choices of feature representations, we conduct nine
experiments about the precision of learning a semantic man-
ifold. By iteratively adding the user’s feedback, the corre-
sponding precision results of the three learning schemes are
respectively shown in Figures 3a–3c, ordered by the image
features used. We next highlight some remarks on the ex-
perimental results in Figures 3.
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Figure 3: Performance evaluation of the three learning algorithms in learning the semantic concepts from
the feedback, by using (a) global, (b) local, and (c) the augmented features.

• No matter what kind of image representation is used,
the ARE and kernel ARE significantly outperform the
incremental LPP especially in the latter feedback iter-
ations. The incremental LPP is formulated based on
only one neighborhood graph. For a node in the graph
that corresponds to a labeled relevant image, it can-
not differentiate other labeled relevant images from its
neighbors (can be either relevant or irrelevant). Mean-
while, it also cannot distinguish other labeled irrele-
vant images from those which are not its neighbors
(again can be either relevant or irrelevant). Thus, in-
cremental LPP is not well account for users’ feedback.
On the contrary, ARE uses two additional graphs to
encode the augmented relations from the feedback, and
effectively transforms these relations into a constrained
optimization problem. The underlying semantics by a
user are therefore faithfully retained.

• Kernel ARE in most cases outperforms ARE except
for the latter iterations of using local features (though
they eventually converge to a similar degree of preci-
sion). The efficiency boost is owing to the fact that
kernel ARE is a nonlinear scheme, and performs man-
ifold learning over a high-dimensional feature space.
However, the main drawback of kernel ARE is that
it takes considerably longer time than ARE in learn-
ing the embedding. Especially, the value of variance
used in the RBF kernel function is often determined by
time-consuming brute force searching. In addition, for
a testing image, its inner products with all the training
images in the high-dimensional space need to be com-
puted to find its coordinates in the embedding space.

4.5 Embedding Dimensions
The dimensionality of the embedding space is critical to

the retrieval precision and the time-complexity efficiency for
the search of nearest neighbors in our system. We argue
that, for a good manifold-learning algorithm, the following
two requirements for the learned manifold are essential and
favorable to be satisfied. First, the precision should converge
rapidly with respect to the increasing of the dimension. This
property ensures the correctness of a system, the compact-
ness of image representations, and the efficiency of similarity
search in the low-dimensional embedding space. Second, it
is useful to have a broad range of dimensions that is optimal

for system precision. Furthermore, the change in the preci-
sion along the dimension axis should be stable and smooth.
The optimal dimension for embedding can therefore be con-
veniently spotted. Also, for image retrieval with relevance
feedback, it is preferable the optimal ranges of embedding
dimensions are mostly overlapped for all the feedback it-
erations. Thus a common value of dimensionality can be
applied to each iteration.

To verify whether our method has the above properties for
an efficient manifold-learning scheme, we respectively eval-
uate the precisions of the ARE in different feedback iter-
ations over a range of embedding dimensions. The results
are shown in Figure 4. Besides the iterative improvement
and convergency in precision over the feedback iterations,
we also observe that ARE satisfies the requirements: the
precision converges (along the curve) near the dimensions
of 30 ∼ 40, and a broad optimal region around dimensions
40 ∼ 100 is shared by all the feedback iterations.

4.6 Visualization of Semantics
To gain insight into ARE, we display the learned seman-

tic manifold in a 2-D plane. However, ARE does not per-
form well to embed the manifold into such a low-dimensional
space (see Figure 4). Instead of directly embedding into a
2-D space for visualization, we use ARE to embed the se-
mantic manifold into a 30-dimensional space, and project
the points on a plane via multidimensional scaling (MDS)
[7], which preserves the inter-point distances of the 30-D
space as faithfully as possible. In Figures 5a and 5b, we
show the two queries with the respective semantic concepts
of firework and office interiors, and their learned seman-
tic manifolds. The images of the two queries are depicted in
the first row. The second row includes the initial embedding
spaces (without any feedback). In the last two rows, the se-
mantic manifolds learned after the 3rd and the 8th feedback
iterations are given. In each figure, the red points represent
the images relevant to the query, and the green points stand
for the irrelevant ones. The four magenta and cyan points
respectively denote the relevant and irrelevant feedback that
will be returned to the system. The region centered at the
query point is zoomed-in to reveal the detail of 100-NN of
the query. Note that the relevant (red) points progressively
gather together while the irrelevant points keep away from
the relevant ones, especially in the region around the query.
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Figure 4: The dimensionality effect of ARE in
learning the semantic manifold. We depict the
precisions in different feedback iterations with the
dimensionality from 5 to 120 of the embedding
space. Note that, using 40 to 100 dimensions, ARE
uniformly gives stable and reliable results for all
the feedback iterations.

Besides the quantitative results, the illustrations of the em-
bedding spaces also demonstrate the effectiveness of the pro-
posed ARE in learning the semantic manifolds.

5. CONCLUSION
We have presented a framework for learning a semantic

manifold of CBIR, and applied the technique to capture the
user’s preferences from few feedback examples. Our method
is further consolidated with the use of augmented features,
designed to more precisely characterize an image by both
its global and local properties. The ARE completes the
embedding in a transductive manner by taking both the
class of the labeled images and the intrinsic structure of the
unlabeled ones into account. The promising experimental
results and several useful comparisons justify their use in
CBIR with relevance feedback. Owing to the generality of
ARE, we consider to connect the algorithm to process other
multimedia data such as audio and video for our future work.
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