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Abstract 

 
Motivated by the fact that data of each cluster are 

often well captured by distinct features, we propose a 
clustering approach called multiple kernel self-
organizing map (MK-SOM) that integrates multiple 
kernel learning into the learning procedure of SOM, 
and carries out cluster-dependent feature selection 
simultaneously. MK-SOM is developed to reveal the 
intrinsic relation between features and clusters, and is 
derived with an efficient optimization procedure. The 
proposed approach is evaluated on two benchmark 
datasets, UCI and Caltech-101. The promising 
experimental results demonstrate its effectiveness. 
 
1. Introduction 
 

 Clustering is a versatile technique and has been 
widely applied to various data analysis problems [1], 
such as image segmentation, information retrieval, and 
bioinformatics. Clustering analysis aims to partition 
the data into a set of coherent groups (clusters). Thus, 
similarity measures are required to define the 
coherence. Alas, a universally applicable similarity 
measure is hardly available. Different similarity 
measures lead to distinct clustering results. It follows 
that choosing pertinent similarity measures has been 
investigated in many clustering methods, e.g., [2]. 

 In addition to similarity measures, attributing data 
with features (views) is also critical in clustering. As 
the data labels are often high-level semantic concepts, 
data of each cluster may be captured by a specific 
combination of features (views). An example is given 
in Figure 1, where images with jaguars distinguish 
themselves from the images of the other classes via the 
texture features. On the other hand, images of class 
bicycle can be identified with shapes, while images of 
class sunset can be predominantly spotted with colors. 
In this case, a specific cluster/class of data may be 

superiorly described by particular subsets of features, 
rather than the whole feature set. In most clustering 
approaches, features are often treated equally, and 
hence the underlying relationships between data and 
the specific subsets of features may be obscured. 
Unlike most of the prior approaches, a new clustering 
framework is introduced in this paper to enable data to 
be characterized by distinct subsets of features or 
descriptors. It can be achieved by uncovering the 
underlying relationships between features and data via 
a cluster-dependent feature selection mechanism.  

In the literature, the most related clustering scheme 
to our work is multi-view clustering. The optimal 
solution of multi-view clustering is usually sought by 
EM algorithm or spectral clustering. For example, 
Bickel and Scheffer [3] seek the optimal multi-view 
clustering with a co-EM algorithm. Zhou and Burges 
[4] extend spectral clustering for multi-view data by 
generalizing the single-view normalized cut. Mirzaei 
[5] proposes multi-view agglomerative clustering that 
extends the hierarchical clustering method to handle 
multi-view represented objects. Tzortzis and Likas [6] 
exploit the diverse weightings w.r.t. different views on 
multi-view convex mixture models. Lin et al. [18] 
propose an approach to realizing cluster-dependent 
feature selection. However, these methods suffer from 
the high computational complexity. 

Figure 1. Images from three different categories: 
sunset, bicycle and jaguar. 



Different from the multiple-view clustering scheme, 
we investigate the intrinsic relation between features 
and clusters with the cluster-dependent feature 
selection mechanism. It is realized with the proposed 
technique: multiple kernel self-organizing map (MK-
SOM). SOM [7], inspired by the spatial organization 
of the brain’s functions, is the unsupervised artificial 
neural networks. SOM is capable of describing high 
dimensional data with low dimensional manifold [7] 
and is typically optimized by gradient descent. Thus, 
its computational complexity is much lower than EM-
based or spectral clustering methods. Although several 
studies explore SOM with kernel methods for 
nonlinear data clustering [8, 9], it opens issues of how 
to select an appropriate kernel and its parameters. 
These kernel choosing and parameter setting issues 
can be further resolved by multiple kernel learning 
(MKL) [10, 11, 12, 13], in which a kernel machine is 
learned with multiple base kernels as input. 

In this work, we cluster data represented in form of 
multiple kernels, each of which is generated by either 
a particular parameter or a specific data descriptor. 
The proposed MK-SOM integrates MKL into the 
training procedure of SOM, and carries out cluster-
dependent feature selection. That is, the similarity 
measure of each cluster is derived and represented by 
one particular combination of these kernels. 

 
2. The MK-SOM framework 
 

In this section, we introduce the proposed approach 
MK-SOM and its optimization procedure. 
 
2.1. Formulation  
 

Given a dataset
1{ }N

i iD x  , our goal is to partition 

D into C clusters. The objective function of the SOM 
can be expressed as 
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SOM i j
j

i

E x w   (1) 

where sample xi currently belongs to the jth cluster, wj 
is the weight vector of the jth neuron in SOM and it is 
also regarded as the clustering center. Our goal is to 
minimize (1) w.r.t. 

1{ }C
j jw   for partitioning data into 

clusters. Typically a variant of gradient-based methods, 
called steepest gradient method, is used for optimizing 
the parameters of SOM. Specifically, the weight 
vector is updated as follows 

 1 1 1( ) ( ) ,t t t
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where t indexes the iteration, and η is the learning rate. 
Function k in (2) is the neighborhood function whose 
definition is given in the following  
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rj is the distance between the winner neuron to 
neuron j in the output layer. The learning rate is 
updated by 1t t     , and the internal parameter of 

the neighborhood function k is updated by 1t tR R   , 
where κ and λ are positive constants. 

To extend SOM to handle cluster-depend feature 
selection, we consider its generalization of multiple 
kernel learning. Let Φ: X F denote the feature 
mapping induced by an ensemble kernel. The data are 
mapped to a high dimensional Hilbert space. In this 
case, the objective function of MK-SOM becomes  
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where wj would lie in the span of data via Φ, i.e., 
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In Eq. (5), 
, 1{ }N

j n j   are sample coefficients. It follows 

that equation (5) can be further expanded as 
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Eq. (8) is obtained from (7) with the kernel trick. 
Like the seminar work of MKL, e.g., [10, 11, 12, 

13], our MKL formulation is to find an optimal way to 
linearly combine the given base kernels. Namely, the 
ensemble kernel k in (8) is a convex combination of 
the base kernels, i.e., 
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where βm is a base kernel coefficient. M is the numbers 
of base kernels.  The resulting objective function is 
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Note that an ensemble kernel is learned for each 
cluster j. It indicates that cluster-dependent feature 
(kernel) selection will be carries out. 



2.2. Optimization 
 
Optimization problem in (10) is too complex to be 

solved directly. We hence adopt an alternating 
procedure to optimize both the sample coefficient α 
and base kernel coefficient β iteratively. Specifically, 
one of α and β is first optimized while the other is 
fixed, and their roles are switched. The procedure is 
repeated until convergence. Figure 2 gives the pseudo-
codes of the training procedure for our MK-SOM. 

Optimizing α. By fixing β, the steepest gradient 
method is adopted to seek the best α at current 
iteration t with 
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Due to the symmetric properties of kernels, i.e., 
( , ) ( , )i j j ik x x k x x , the partial derivative of the 

objective function w.r.t. α can be obtained as 
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It follows that the sample coefficient α can be 
updated by 
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Optimizing β. By fixing α, the seeking of the best 
β is an optimization problem with one additional linear 
constraint. Hence, we employ the reduced gradient 
descent method [14], which is shown to be able to deal 
with additional constraints in the procedure of gradient 
descent effectively. The partial derivative of the object 
function w.r.t. β is expressed as 
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Then, the optimal β at iteration t can be sought with 
the procedures described in Figure 2. Please refer to 
[14] for the details of the reduced gradient descent. 

 
3. Experimental results 
 

Two benchmark datasets together with two 
different schemes of kernel construction are used to 
evaluate the performance of MK-SOM. The first 
dataset is the iris data from UCI [15], where the base 
kernels are built with different hyper-parameters in the 

RBF function. The second one is the Caltech-101 data 
set [16], in which five different image descriptors are 
adopted, and hence five corresponding kernels are 
then constructed. 

In all experiments, we set the number of clusters to 
the number of classes in the ground truth. Two criteria, 
accuracy (ACC) and normalized mutual information 
(NMI), are used for evaluating clustering performance.  

 

Figure 2. The training procedure of MK-SOM. 
 
3.1. The Iris dataset 
 

The iris dataset consists of three classes, each of 
which contains fifty examples. Data are normalized 
with their norm in advance. The base kernels are then 
established with different parameters, i.e., 

 2( , ) exp( / )m i j mk i j x x     (16) 

where the number of based kernels is set 5, and σm is 
set as {0.2, 0.4, 0.6, 0.8, 1.0} respectively. 
  We compare our approach with three clustering 
algorithms, including k-means, SOM, and kernel SOM 
(kSOM). Note that kSOM works with each of the five 
kernels. The best performance of the five kernels is 

Input:  Dataset 1{ }N
i iD x   in the form of multiple 

kernels 1{ }M
m mk  ;  

Output:  Sample coefficient vectors αj;  
Base kernel coefficient vector β; 

Initial values for αj and β;  
αj is generated by uniform distribution [-1, 1]; 
β is set as 1/M for satisfying constraints; 

for t ← 1, 2, …, T do 
1. Update αj by the steepest gradient method in 

Eq. (14); 
2. Update β by the reduced gradient method; 

2.1.  Find Index I with largest component of β; 
2.2. Let β=(βB, βN); Vector a is constraint 

coefficients. βB={ak:kI}, βN={ak:kI}; 

2.3. Calculate gradient value  βB, βN   by  
Eq. (15); 

2.4.  Calculate reduced gradient r by  
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2.6.  Line search along d for  appropriate  step 
size τ. β←β+τβ; 

end for 
return αj and β; 



reported. It can be observed that our approach can take 
the information embedded in the five kernels into 
account and leads to a significant improvement. 
 
Table 1. The performances, in forms of ACC and NMI, 
of four different clustering methods in the iris dataset. 

 k-means SOM kSOM Ours 
ACC 0.856 0.887 0.944 0.977 
NMI 0.742 0.755 0.864 0.923 
 
3.2. The Caltech-101 dataset 
 

The Caltech-101 dataset is adopted in the second 
set of experiments. The large intra-class variations 
make clustering over these data very challenging. We 
follow the setting of [19]. The same 20 categories 
from the Caltech-101 dataset are selected, and we 
randomly pick 30 images from each category to form a 
set of 600 images. Five different image descriptors are 
adopted for establishing base kernels, including four 
shape descriptors (geometric blur, SIFT, self-similarity, 
and PHOG) and one biologically inspired feature (FH) 

    Two baselines are adopted, i.e., kernel k-means 
and kernel SOM. Each baseline works with one kernel 
at a time. The five clustering results of each baseline 
are merged by cluster ensembles [17], one of the state-
of-the-art approaches to clustering result combination. 
Unlike cluster ensembles that fuse multiple clustering 
results in a global fashion, our approach achieves 
cluster-dependent feature selection over the multiple 
descriptors to recover the underlying structure of each 
cluster. As shown in Table 2, the proposed approach 
outperforms the two baselines. 
 
Table 2. The performances, in forms of ACC and NMI, 
of three clustering methods in the Caltech-101 dataset. 

 k-means + CE kSOM + CE Ours 
ACC 0.738 0.751 0.815 
NMI 0.737 0.742 0.799 
 
4. Conclusion 
 

In this work, we propose MK-SOM that integrates 
multiple kernel learning into SOM, and carries out 
cluster-dependent feature selection. The alternating 
optimization procedure is adopted for deriving both 
the sample and kernel coefficients in an efficient way. 
The experimental results on two benchmark datasets 
demonstrate that our approach effectively uncovers the 
underlying relationships between features and clusters. 
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