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Abstract—We propose a novel superpixel extraction method 
named USEQ to generate regular and compact superpixels. To 
reduce the computational burden of iterative optimization 
procedures used in most recent approaches, the spatial and color 
quantizations are performed in advance to represent pixels and 
superpixels. Maximum a posteriori estimation in both pixel and 
region levels is then adopted to aggregate pixels into spatially and 
visually coherent superpixels. The resultant superpixels are 
extremely efficient to generate and can more precisely adhere to 
object boundaries. Compared to the state-of-the-art approaches 
to superpixel extraction, USEQ can achieve better or competitive 
performance in terms of boundary recall, undersegmentation 
error and achievable segmentation accuracy, and is significantly 
faster than these approaches. 
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I.  INTRODUCTION 
Superpixels group perceptually similar pixels to represent 

image regions and adhere to intensity edges for the 
segmentation purpose. By using superpixels, an image is 
separated into small semantic regions. These regions can 
reduce the number of entities and provide an effective way to 
compute image features for reducing the complexity of image 
processing tasks. Many compute vision applications such as 
tracking [1], saliency map detection [2], and image 
segmentation [3] are also developed based on superpixels. 
Thus, superpixel generation becomes a fundamental and 
important task in image processing and computer vision 
domains. 

As indicated in [4], the following three properties are 
generally desired for superpixel extraction. First, each 
superpixel should contain visually similar pixels, and adhere 
to image boundaries adequately. Second, because generating 
superpixels serves as a preprocessing step to reduce the 
computational complexity for successive image processing 
tasks, it is required to be computationally efficient. Third, the 
generated superpixels should increase the efficiency and 
improve the quality of the segmentation results. According to 
these properties and the growing image resolutions, effective 
and efficient superpixel extraction methods are always in 
demand. In general, increasing the number of superpixels can 
represent boundaries of images more precisely. However, the 
computation time of superpixel extraction will also 

significantly increase, which limits the practical usage of 
superpixels to high-resolution images and videos.  

To solve the aforementioned problems, we propose a novel 
superpixel extraction approach, USEQ, to efficiently compile 
semantic regions. To reduce the computational burden of 
optimization processes, we apply the spatial quantization, 
which generates the initial superpixels based on the positions 
of pixels to represent the spatial relationships between pixels 
and initial superpixels. Then, the color space is quantized for 
each pixel to obtain the dominant colors within each initial 
superpixel. Most conventional methods such as [4] apply the 
averaged colors of all of the pixels as the initial colors of the 
superpixels. Iterative optimization procedures are then 
required to update the colors of the superpixels, and repeatedly 
assign pixels to the superpixels. However, the dominant colors 
obtained by quantization represent more accurate color 
information of the superpixels. Thus, pixels only need to be 
assigned to the most spatially and visually similar superpixels 
via maximum a posteriori (MAP) estimation. As a result, the 
iterative optimization procedure adopted in most conventional 
approaches is not required and can be replaced by the MAP 
estimation. Finally, we apply the neighborhood refinement to 
combine small superpixels based on MAP estimation in the 
region level and obtain superpixels with regular and compact 
shapes. In the experiments, we evaluate the performance of the 
proposed approach on the Berkeley segmentation benchmark 
[5]. Compared to the state-of-the-art approaches, our approach 
not only achieves better boundary recalls but also is much 
more computationally efficient. To the best our knowledge, 
our method is faster than existing methods and provides the 
flexibility of generating regular superpixels with different 
numbers of superpixels. The rest of the paper is organized as 
follows. We review the state-of-the-art methods in Section II. 
Our method is presented in Section III. The experimental 
results and the comparisons with the state-of-the-art 
approaches are shown in Section IV. Conclusions are given in 
Section V. 

II. RELATED WORK 

A. Graph-based Approaches  
To construct superpixels, graph-based methods employ 

graphs to model the relationships between neighboring pixels. 
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As shown in a pioneering work, normalized cuts [6], pixels are 
represented as nodes with their links to the neighbors as edges 
in a graph. Superpixels are obtained by recursively minimizing 
a cost function defined on the graph.  

To reduce the computational cost of normalized cuts, 
guiding model search is introduced in [7]. Felzenszwalb and 
Huttenlocher [8] present a graph-based segmentation approach, 
in which the agglomerative clustering is applied, so that each 
node in the graph forms a minimum spanning tree. Their 
method shows its advantage over normalize cuts in efficiency, 
but it leads to superpixels of less regular sizes. Moore et al. [9] 
generate superpixels by preserving the topology of a regular 
lattice. They use vertical and horizontal paths to split images, 
and optimize these paths by referring to the boundary cost 
map. Liu et al. [10] present an approach to superpixel 
segmentation, in which the entropy rate and a balancing 
function jointly constrain the compactness and sizes of each 
cluster, and a greedy algorithm is adopted to complete the 
segmentation. Their method is computationally more efficient 
than normalized cuts [6]. Veksler et al. [11] over-segment an 
image by covering it with overlapping square patches of the 
fixed size. They develop an energy function, which takes 
image gradients as the input, to guide the assignment from 
pixels to superpixels by using graph-cuts. Zhang et al. [12] 
introduce two pseudo-Boolean functions and model the 
segmentation problem as a binary labeling problem. The 
adopted non-iterative pseudo Boolean optimization makes 
their method more efficient than that in [11]. Li and Chen [13] 
propose the linear spectral clustering (LSC) to construct 
uniform superpixels. A normalized cuts formulation is adopted 
and is optimized by iteratively applying weighted k-means 
clustering. 

B. Gradient-ascent-based Approaches 
Unlike graph-based approaches, the gradient ascent-based 

approaches generate initial regions as the reference, and 
gradually adjust the region boundaries to yield superpixels 
with perceptually similar pixels. For instance, the watershed 
approach [14] considers the flooding of the water from local 
minima in an image to retrieve the segments of superpixels. 
As a result, the shapes of the superpixels may be too irregular 
to adhere to boundaries of objects.  

Mean shift [15] searches the local maxima of a density 
function by using an iterative mode-seeking procedure. After 
convergence, pixels belonging to the same mode form a 
superpixel. Levinshtein et al. [16] deliver a method for 
compiling the TurboPixels. It uniformly places the initial 
seeds on the image and gradually expands the superpixels 
from the seeds by a level set based geometric flow algorithm. 
The method can make the sizes of the superpixels uniform, but 
it is less efficient compared to other gradient-ascent-based 
methods. Zeng et al. [17] propose structure-sensitive 
superpixels based on the geodesic distance computed from 
geometric flows. The number of superpixels is automatically 
adjusted by the energy functions of the structure density and 
compactness constraints. Achanta et al. [4] propose a method, 
called simple linear iterative clustering (SLIC), to construct 
superpixels. SLIC also generates initial seeds as the centers in 
k-means algorithm. The computational complexity of SLIC, 

mainly on running k-means, is dramatically reduced by 
considering local search regions. Although SLIC is efficient, 
the yielded superpixels are sensitive to the locations of initial 
seeds. Bergh et al. [18] extract superpixels via using an 
energy-driven sampling (SEEDS) method. Their method 
initializes the superpixels as the uniform cells, and 
progressively adjusts the boundaries of superpixels according 
to an energy function that takes the color homogeneity and 
shape prior of superpixel boundaries into account. The 
optimization of the energy function is solved by a hill-
climbing algorithm. However, the shapes of the generated 
superpixels are often irregular. The computation time also 
significantly increases with respect to the number of 
superpixels.  

More recently, Shen et al. [19] use lazy random walk 
(LRW) to represent the relationship between a seed and its 
neighbor pixels, and generate superpixels. To improve the 
performance, an energy optimization function based on texture 
information and object boundaries in the image is developed 
and adopted. However, their method is time consuming. Fu et 
al. [20] propose regularity preserved superpixels (RPS) to 
maintain regularity properties. Based on the initial seeds, the 
pixels are re-assigned based on locally maximal edge 
magnitudes. The shortest path algorithm retrieves local 
optimal boundaries. They also extend RPS to generate 
supervoxels.  

III. METHOD 

A. Spatial Quantization 
Given the target number δ of superpixels, we perform the 

spatial quantization to obtain the initial positions and sizes of 
each superpixel. Then, we build the spatial relationships 
between superpixels and pixels. Let W and H be the width and 
height of the image I, respectively. Let spi = [ui vi]T be the 
initial position of the center of the ith superpixel spi by 
uniformly sampling on a regular grid in the x and y axes of the 
image, respectively. Let pk = [xk yk]T represent the position of 
the kth pixel pk in I. In the spatial quantization, pixels 
belonging to a superpixel spi are defined as follows: 

} |||||||| |{ ijpsp jkikki ≠∀−<−= sppspp .             (1) 

If pk belongs to the spi, the initial label of pk is li. To represent 
the spatial relationships among pixels and superpixels, the 
spatial neighbor relationship e(spi, spj) between spi and spj is 
defined as follows:  
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By using the spatial quantization, we can efficiently build the 
spatial neighbor relationships between spatial grids.  

B. Color Quantization  
Because a superpixel is supposed to contain pixels with 

similar colors, graph-based and gradient-ascent-based 
approaches apply iterative processes to recursively retrieve 
pixels with similar colors. To reduce the computational burden 
in the iterative processes, we consider using binary color 



quantization [21][22] to effectively retrieve homogeneous 
color quantization results of each initial superpixel.  

Given an image I, a pixel pk ∈ I is represented by a three-
dimensional color vector ck = (rk, gk, bk)T, where rk, gk, and bk 
respectively represent the red, greed, and blue values of pk. 
The objective of the color quantization algorithm is to 
partition the original color space C into M disjoint ones 
{C1, …, Cm, …, CM} containing the quantization results, 
where M = 2θ× 2θ× 2θ is the size of the palette after 
quantization. For efficiency, we apply the binary tree structure 
to represent the partition of C. Each node is partitioned to two 
children nodes until reaching the leaf nodes. Each leaf node of 
the binary tree represents a subset Cm of C. For representing 
the operations the binary partition, the index of root node is 1, 
and the children of node n are indexed as 2n and 2n+1, 
respectively. During the binary partitioning process, the set of 
pixels belonging to node n is labeled as Cn. There is no 
intersection between two partitions C2n and C2n+1 of Cn. Nn is 
the total number of pixels residing in Cn.  

Similar to [21][22], we aim to find a quantized color image 
Iq that minimizes total square error (TSE) between Iq and I as 
follows: 
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where qn is the quantized color of Cn. The statistic mn used to 
decide the binary partition is defined as follows:  
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∈
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The quantized color qn of Cn is defined as follows: 

.
2

n
n
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To split a node n into two nodes for minimizing TSE, Orchard 
and Bouman [21] consider projecting the color vectors of 
pixels in Cn by using the eigenvector of the cluster covariance 
matrix. For efficiency, we consider using the qn to split Cn into 
two sets C2n and C2n+1, respectively, as follows:  

}:{2 nknkn CpC qc ≤∈= ,                           (6) 

and 

}:{12 nknkn CpC qc >∈=+ .                          (7) 

The sets C2n and C2n+1 can be split again until the target 
palette size M is reached. Please note that θ = 8 means that the 
number of quantization labels is exactly the same as the 
number of colors of the original image I, i.e. TSE = 0. After 
color quantization, we can then generate the color maps of 
pixels, which records the labels of color quantized pixels. 

Besides the pixels, the dominant color of spi is also 
computed based on the color quantization results. A superpixel 
usually contains perceptually similar pixels in a region. 
Namely, the pixels in a superpixel should have similar colors. 
To generate a representative color for each superpixel spi, we 
compute the color histogram using quantization labels of 

pixels in that superpixel, and find the dominant label, which 
represents the dominant color of the initial superpixel. Let 
hi(Cm) be the value of the label Cm of the color histogram in spi. 
The dominant label Cm* is defined as the label, which contains 
the maximal value of hi(Cm) in spi as follows:  

).(maxarg* miCm ChC
m

=                                 (8) 

The dominant color ci of spi is then computed as follows:  
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With the spatial and color quantization results, we then 
propose a non-iterative MAP pixel label assignment method to 
retrieve the candidate boundary of superpixels. 

C. Non-Iterative MAP Pixel Label Assignment  
To avoid the time-consuming iterations of most recent 

superpixel approaches and efficiently assign pixels to correct 
superpixels, we propose a non-iterative MAP pixel label 
assignment method by considering both the spatial and color 
quantization results. Given pk ∈ spi, the initial label of pk is li. 
Because the boundaries of initial superpixels may cover 
multiple objects, the initial superpixels may not adhere to the 
true boundaries of objects. To better adhere to intensity edges, 
the labels of pixels need to be reassigned. 

Given the color ck and the location pk of a pixel pk, we aim 
to retrieve the most plausible superpixel spi* for pk by using 
the maximum a posteriori (MAP) estimation of the posterior 
probability function p(spi|pk). Based on the formula of Bayes' 
theorem, the posterior probability function is derived as 
follows: 

                   )()|()|( iikki sppsppppspp ∝ ,                    (10) 

where p(pk|spi) is the likelihood function representing the 
similarity between the pixel pk and the superpixel spi, and  
p(spi) is the prior probability function of spi, which represents 
the possibility of spi as a suitable superpixel. Because each 
superpixel is represented by the spatial and the color 
quantization results, the likelihood probability function 
p(pk|spi) can be represented as follows: 

),,()|( iikkik |psppp cspcp= ,                     (11) 

where ci and spi are the dominant color and the initial location 
of spi, respectively. Since the spatial and color quantization 
results are independent, (11) can be rewritten as follows:  

)()|()|( ikikik |ppsppp ccspp= ,                  (12) 

where p(pk|spi) and p(ck|ci) are the spatial and color likelihood 
functions of spatial quantization and color quantization results 
of pk and spi, respectively. To represent the spatial 
quantization, we consider the similarity between the positions 
of pk and spi. The spatial likelihood function p(pk|spi) is 
defined as follows:  



||||)|( ikep ik
sppspp −−= ω .                         (13) 

To avoid the effects of different sizes of images, we normalize 
pk and spi with respect to the image width and height in 
advance.  

To represent the color likelihood function, we consider the 
similarity between the color of pk and the dominant color of 
spi. The likelihood function p(ck|ci) is defined as follows:  

||||)1()|( ikep ik
cccc −−−= ω ,                        (14) 

where ck and ci are normalized by 255. Constant ω in Eq. (13) 
and (14) represents the weight between the spatial and color 
quantization results.  

The prior function p(spi) here is used to reduce the 
computation time for the MAP estimation. When a superpixel 
spi is not a spatial neighbor of pixel pk, pk should not belong to 
spi. Thus, the prior function p(spi) is defined as follows: 
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To achieve non-iterative pixel label assignment, we search the 
most possible spi* for pk by maximizing the posterior 
probability function p(spi|pk) as follows: 

)|(maxarg* kispi psppsp
i

= ,                      (16) 

where spi* with the maximal posterior probability is the most 
similar superpixel for pk. Because the MAP process is 
performed once for each pixel pk, the candidate label of pk is li* 
without performing the iterative optimization procedure.  

D. Neighborhood Refinement  
After the pixel assignment, small objects in complex 

scenes may be assigned to different labels, because their 
colors are different from each other. Although keeping these 
small regions help to represent the detailed shapes of small 
objects, the shapes of the generated superpixels will become 
irregular and incompact. To solve the problem, the 
neighborhood refinement process is applied to merge small 
superpixels into spatially connected and visually similar 
superpixels.  

To retrieve small superpixels, we apply the flood filling for 
obtaining connected components of the pixel assignment 
results. Then, we update the spatial correlation e(sp'i, sp'j) 
between candidate superpixels sp'i and sp'j as follows:  

,
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where Φ means the null set, and N(sp'i, sp'j) is used to decide 
if sp'i and sp'j are spatially connected as follows:  

N(sp'i, sp'j) = {sp'i|∃pk ∈ sp'i, ∃pl∈ sp'j , ||pk–pl|| = 1}. (18) 

Similar to the pixel assignment, the small superpixel 
assignment is also achieved by using the MAP estimation of 
the posterior probability function p(sp'i|sp'j). Based on the 
formula of the Bayes' theorem, the posterior probability 
function is derived as follows: 

                    p(sp'i|sp'j) ∝ p(sp'j|sp'i)p(sp'i),                    (19) 

where p(sp'j|sp'i) is the likelihood function representing the 
similarity between superpixel sp'j and sp'i, and  p(sp'i) is the 
prior probability function of spi, which represents the 
possibility of sp'i  as a suitable superpixel. 

Because two superpixels need to be visually similar 
enough to be merged, the likelihood function p(sp'j|sp'i) is 
defined as follows: 

,)|( |||| ij ''
ij esp'sp'p cc −−=                             (20) 

where c'j and c'i are the dominant colors of sp'j and sp'i, 
respectively. The prior function p(sp'i) is used to measure if 
sp'j and sp'i should be merged. For the compactness of 
superpixels, we only merge spatially connected superpixels 
represented by G'sp. Thus, p(sp'i) is then defined as:  
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The small superpixel sp'j is then merged to superpixel sp'i* 
based on the MAP estimation as follows: 

)|(maxarg* jisp'i sp'sp'psp'
i

= .                       (22) 

As a result, the constructed superpixels can have more regular 
and compact shapes compared to the candidate superpixels 
after pixel label assignment. 

IV. EXPERIMENTS 
In the experiments, we applied the Berkeley segmentation 

benchmark BSDS500 [2], which contains 500 manually 
labelled results for evaluation. The evaluation metrics include 
boundary recall (BR), undersegmentation error (UE), and 
achievable segmentation accuracy (ASA) which are commonly 
used in most recent state-of-the-art papers. Among these three 
metrics, BR represents the correctness of adhering the true 
boundaries of objects. The high BR indicates that the extracted 
superpixels adhere to boundaries of objects better. UE 
measures the superpixel overlapping with multiple objects by 
the percentage of pixels that leak from the ground truth 
boundaries. Thus, the low UE indicates better adherence of 
boundaries of objects. By matching the labels of each 
superpixel with respect to the labels of ground truths, ASA is 
computed to evaluate the highest achievable object 
segmentation accuracy. Similar to BR, the high ASA indicates 
better object representation in the image. Besides the 
performance evaluation, we also list the average computation 
time for comparison. The USEQ code is available at 
http://cvml.cs.nchu.edu.tw/USEQ.html.  

A. Quantitative Comparisons 
We compare USEQ to five state-of-the-art superpixel 

extraction approaches, including FH [8], SLIC [4], Turbopixel 
(TP) [16], RPS [20], and SEEDS [18] on the BSDS500 dataset. 
The parameters of USEQ is empirically set as θ = 3, and ω = 
0.01 in the following comparisons. Because FH cannot control 
a fixed output number of superpixels, we adjust the parameters 
of FH to extract superpixels of the desired numbers. For 



comparison, we also show the performance of the spatial 
quantization grid (GRID) as a baseline. To provide fair 
comparisons, the results of all of the compared approaches 
were obtained from the codes released by the original authors.  

As shown in Figure 1(a), USEQ owns the best BR curve 
compared to state-of-the-art approaches when increasing the 
number δ of superpixels. When colors of pixels of objects are 
different, these pixels are quantized to different labels in 
USEQ. Then, based on the MAP pixel label assignment, pixels 
of different objects with different quantized labels are 
assigned to different superpixels. Thus, USEQ can precisely 
adhere to the boundaries of objects. FH owns the second best 
results compared to remaining approaches. Such results are 
consistent to the results reported in [4][18]. Nevertheless, FH 
has higher UE as shown in Figure 1(b). In contrast, our USEQ 
still has low UE and has the best ASA as shown in Figure 1(b) 
and (c), respectively. 

Let the number of pixels be N. The complexity of spatial 
and color quantization processes are O(N), because all pixels 
are processed sequentially. Each pixel is also assigned once in 
the MAP estimation process of the pixel and region levels. 
Thus, the complexity of USEQ is O(N). As for the 
computational efficiency evaluation, all of the approaches were 
run under an Intel Core i7 3.40GHz computer with 8G memory 
and no GPU accelerators were applied. Figure 2 shows the 
average computation time of the top three efficient superpixel 
approaches including FH, SLIC and SEEDS. Our USEQ owns 

the fastest computation time compared to these approaches. 
Although the complexity of SLIC and SEEDS is also O(N), 
their iterative procedures performed on superpixel generation 
lead to significantly increasing time with respect to the number 
of superpixels. In contrast, the computational complexity of FH 
is based on the number of graph edges and thus, is not 
correlated with the number of superpixels. Because no iterative 
optimization procedure is required in USEQ, the computation 
time only slightly increases with respect to the number of 
superpixels.  

B. Qualitative Comparisons 
Figure 3 shows the superpixel extraction results of the 

state-of-the-art approaches and USEQ. To demonstrate the 
effects of different numbers of superpixels, we segmented 
images into 250/500 superpixels. Figure 3(a) shows the results 
of our USEQ. When image regions are smooth, USEQ can 
generate regular superpixels and precisely adhere to 
boundaries when the shapes of objects are irregular. In 
contrast, the generated shapes and sizes of superpixels using 
FH are very irregular as shown in Figure 3(b). SLIC, TP, and 
RPS generate more regular superpixels compared to FH as 
shown in Figure 3(c), (d), and (e), respectively, but fail to 
correctly adhere to the detailed boundaries of objects. The 
results of SEEDS shown in Figure 3(f) achieve better 
boundary adherence compared to SLIC, TP and RPS. 
Nevertheless, the shapes of the superpixels of SEEDS are not 
as regular as those of USEQ. For demonstration of high 
resolution images and more number of superpixels, please 
refer to the demo video in the supplementary material. 

V. CONCLUSIONS 
We propose a novel superpixel extraction approach based 

on the spatial and color quantization. The proposed bottom up 
procedure assigns labels of pixels by grouping visually similar 
pixels and then merge small fragments to generate regular and 
compact superpixels without iterative optimization procedures 
applied in most conventional approaches. As a result, our 
approach is significantly faster than the state-of-the-art 
approaches. Experimental results on the BSDS500 dataset 
have demonstrated the effectiveness and efficiency of the 
proposed USEQ in terms of both quantitative and qualitative 
criteria. In the future, we will extend the image based 
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Figure 1. Quantitative evaluation results of the state-of-the-art methods and USEQ. (a) BR, (b) UE, and (c) ASA. 



superpixel framework to extract supervoxels for video 
processing. 
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Figure 3. The qualitative results of (a) USEQ, (b) FH, (c) SLIC, (d) TP, (e) RPS, and (f) SEEDS, respectively. 


