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ABSTRACT

We address two issues hindering existing image co-saliency

detection methods. First, it has been shown that object bound-

aries can help improve saliency detection; But segmentation

may suffer from significant intra-object variations. Second,

aggregating the strength of different saliency proposals via

fusion helps saliency detection covering entire object areas;

However, the optimal saliency proposal fusion often varies

from region to region, and the fusion process may lead to

blurred results. Object segmentation and region-wise pro-

posal fusion are complementary to help address the two is-

sues if we can develop a unified approach. Our proposed

segmentation-guided locally adaptive proposal fusion is the

first of such efforts for image co-saliency detection to the best

of our knowledge. Specifically, it leverages both object-aware

segmentation evidence and region-wise consensus among

saliency proposals via solving a joint co-saliency and co-

segmentation energy optimization problem over a graph. Our

approach is evaluated on a benchmark dataset and compared

to the state-of-the-art methods. Promising results demonstrate

its effectiveness and superiority.

Index Terms— Co-saliency, co-segmentation, adaptive

fusion, energy minimization, alternating optimization

1. INTRODUCTION

Image co-saliency detection [1–11] aims to identify the com-

mon salient pixels in a set of images. It can help a broad

range of image content analysis applications, such as co-

segmentation [10–12] and co-localization [13]. Unlike sin-

gle image saliency detection [14–19], co-saliency detection

leverages not only intra-image appearance evidence but also

inter-image correspondences to locate common salient re-

gions. However, its performance is still restricted on extract-

ing informative object cues in practical imaging scenarios due

to illumination and viewing angle variation.

Many modern methods enhance co-saliency detection by

fusing multiple, complementary saliency maps as candidate

saliency proposals, each of which is based on using a par-

ticular detection algorithm. There exist fixed-weight [1–3] or

adaptive-weight map fusion methods [8,9]; however, they still
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Fig. 1: Image co-saliency detection. (a) Images. (b) Ground

truth. (c) ∼ (g) Saliency maps produced by (c) [16] with intra-

image evidence, (d) [1] with inter-image evidence, (e) [8] for

map fusion, (f) ours w/o co-segmentation, and (g) ours.

suffer from two major drawbacks. First, the fusing weights

are derived from the whole image but the goodness of dif-

ferent saliency map proposals often varies from region to

region [20]. Second, fusion by weighted combinations of

saliency proposal typically leads to blurred results, especially

near the object boundary regions.

Fig. 1 shows an image pair example, the ground truth for

co-saliency detection, the saliency maps generated by using

intra-image evidence [16] and inter-image evidence [1] in the

first four columns, respectively. Neither intra-image evidence

nor inter-image evidence can achieve satisfactory results in-

dividually. The former fails to detect the stone in the top im-

age and has many false alarms in the bottom image, while

the latter misses the stone in the bottom image. As shown in

Fig. 1(e), the adaptive fusion method [8] combines intra- and

inter-image evidence, and generates better results; but such

a global whole-image fusion cannot make the most of the

two region-wise complementary saliency proposals, failing to

yield a homogeneously highlighted foreground or to reduce

false alarms. Further spatial refinement by enforcing the co-

saliency distribution compactness may help address the afore-

mentioned drawback; but without the object information, it

may remove less certain but real object regions.

We propose to improve these drawbacks by conduct-

ing segmentation for object information to guide co-saliency

fusion, so that the fused maps can well preserve the ob-

ject boundaries. Specifically, it leverages both object-aware

segmentation evidence and region-wise consensus among

saliency proposals via solving a joint co-saliency and co-

segmentation energy optimization problem. Through alter-

nating optimization, saliency maps of higher quality are gen-

erated. As shown in Fig. 1(f), the variant of our approach

where segmentation is turned off recovers the missed fore-
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ground regions. Namely, the whole stone in the bottom im-

age is more homogeneously highlighted. In Fig. 1(g), our

approach with the aid of segmentation further suppresses the

noise in Fig. 1(f) and produce sharper co-saliency maps.

2. RELATED WORK

Most saliency detection methods target on human eye fixation
prediction [14,15] or salient object prediction [16–19]. Meth-

ods for the former are inspired by the primitive human visual

system to predict human eye gaze patterns, such as the pio-

neering work by Itti et al. [14] with the center-surround dif-

ferences across multi-scale image features to simulate the hu-

man eye visual system for saliency detection. Methods for the

latter include the representative method by Achanta et al. [16]

that defines pixel saliency based on the color differences from

the average color of the whole image. Stemming from the

unsupervised nature, the performance of these methods for

single-image saliency detection is limited.

Co-saliency detection [1, 4, 5, 10] is introduced to uti-

lize the extra information from inter-image evidence to help

salient region localization and background removal. For ex-

ample, Chang et al. [10] proposed a model based on the mul-

tiplication of intra-image saliency and inter-image repeated-

ness. Li and Ngan [1] utilized the SimRank algorithm on a

co-multilayer superpixel tree to detect the inter-image similar-

ity, and combined saliency maps produced by three existing

algorithms [14–16]. Meng et al. [2] improved the SimRank
matching method by further taking geometric constraints into

account. Fu et al. [3] proposed a clustering-based co-saliency

detection using the likelihood of pixels belonging to clusters.

To further improve the performance, high-level knowl-

edge such as “objectness” obtained via segmentation is inte-

grated into co-saliency detection. For example, Li et al. [4]

chose multi-scale segmentation voting to locate the intra-

image salient objects with enhanced local descriptors to de-

termine the concurrence of salient objects across images.

Liu et al. [5] computed region-wise co-saliency based on the

local contrast and global similarity on the fine-scale segmen-

tation together with the border connectivity based object pri-

ors in the coarse-scale segmentation. Jerripothula et al. [11]

exploited saliency detection to enhance the performance of

co-segmentation. We note that these methods derive segmen-

tation and saliency detection in separated steps.

A research trend in saliency detection is to fuse a set of

saliency proposals, each of which focuses on different afore-

mentioned image properties. The fused saliency map is de-

rived to share the most information with these proposals while

excluding their individual biases. Cao et al. [8] employed a

low-rank constraint to seek the weights for an adaptive com-

bination of multiple saliency proposals. Huang et al. [9] con-

structed a multiscale superpixel tree. Fusion is accomplished

by using low-rank analysis to take the saliency results of each

scale into account. Methods [8,9] using proposal fusion often

give better results. However, these methods adopt map-wise

fusion to have global fusing weights for the whole images,

and ignore the fact that the optimal saliency proposal is of-

ten region-dependent. Moreover, fusion-based methods of-

ten couple with post-processing to further refine the fusion

results. However, post-processing may also lead to unfa-

vorable effects. For instance, the spatial compactness post-

processing [8] may consider parts of salient areas with lower

saliency confidences as background. If the background priors

are incorrectly established [9], they may misguide the refine-

ment process to generate unfavorable fused co-saliency maps.

Our proposed method addresses these issues via perform-

ing a coupled co-saliency and co-segmentation optimization

problem through an alternating optimization process. It adap-

tively seeks the weights for saliency proposal fusion in a

region-wise manner. Meanwhile, the high-level priors gen-

erated from co-segmentation are iteratively refined and fed

back to guide the fusion process. In this way, saliency maps

of higher quality are detected owing to the object-aware ev-

idence revealed by segmentation, while the performance of

segmentation is progressively improved by using the figure-

ground models derived from the better saliency maps. Thus,

post-processing is not further required to obtain good results.

3. THE PROPOSED APPROACH

Given a pair of images I1 and I2 for co-saliency detection, we

apply M existing saliency detection algorithms [1, 3, 14–19]

and obtain M saliency maps with values normalized to [0, 1]
for each image. Images I1 and I2 are respectively decom-

posed into N1 and N2 superpixels as image regions, which

preserve the intrinsic structures of the images while abstract

unnecessary details. We aim to seek a plausible weight vec-

tor yi = [yi,1 yi,2 . . . yi,M ]� ∈ R
M for each superpixel

i, and use it to accomplish co-saliency detection by region-

wise fusing the M saliency maps. We formulates this task as

a co-segmentation guided energy minimization problem over

a graph. In the following, image pre-processing, graph con-

struction, and the proposed energy function are described.

3.1. Image pre-processing

N1 = N2 = 200 superpixels are extracted by the SLIC al-

gorithm with both color and texture bag-of-words represen-

tations. The color bag-of-words representations are based on

clustering pixels in the three color spaces, RGB, L∗a∗b∗, and

YCbCr into 100 visual words, then each superpixel is repre-

sented as a histogram using the bag-of-words model. Sim-

ilarly the texture bag-of-words representations are derived

based on Gabor filter responses with eight orientations, three

scales, and two phase offsets. A superpixel is similarly repre-

sented by a 100-dimensional histogram. Let pi and qi denote

the color and texture histograms of superpixel i respectively.

The similarity between two superpixels i and j is defined as

A(i, j) = exp(−d(pi,pj)

σc
− γ

d(qi,qj)

σg
), (1)



where d(·, ·) is the χ2 distance. We set γ = 1.5 to put more

emphasis on the texture features. Constant σc is set to the

average pair-wise distance between all superpixels under the

color features. Constant σg is similarly set.

3.2. Graph construction

We construct a graph G = (V , E) to encode the relationships

among superpixels. Each vertex vi ∈ V corresponds to super-

pixel i, thus |V| = N = N1+N2. A 2-ring graph is employed

to enhance connectivity. Namely, edge eij ∈ E is added for

linking vi and vj if superpixels i and j are spatially connected

or they are both connected to the same superpixel. The edge

set E is associated with the weight matrix A ∈ R
N×N in

Eq. (1). The graph Laplacian L ∈ R
N×N is then obtained.

3.3. Energy function

We seek plausible weights Y = [y1 y2 . . . yN ] ∈ R
M×N

for superpixel-wise map fusion by minimizing the following
co-segmentation energy function:

J(Y, Z) = α1

∑

vi∈V
U1(yi) + α2

∑

vi∈V
U2(zi) + α3

∑

vi∈V
U3(yi, zi)

+ β1

∑

eij∈E
B1(yi,yj) + β2

∑

eij∈E
B2(zi, zj) + |Y ‖22 (2)

s.t. ‖yi‖1 = 1,yi ≥ 0̄, zi ∈ {0, 1}, for 1 ≤ i ≤ N,

where 0̄ is a zero vector, and α1, α2, α3, β1 and β2 are five

positive constants. Z = [z1 z2 . . . zN ] ∈ R
N denotes

the figure-ground configuration of co-segmentation. Binary

variable zi takes value 1 if superpixel i belongs to the fore-

ground, and 0 otherwise. Y and Z are optimized jointly so

that nice properties from co-segmentation, e.g. object-aware

contours and sharp foreground, can be transferred to facili-

tate co-saliency detection. In (2), U1(yi) and B1(yi,yj) are

the unary and pairwise terms for co-saliency detection, re-

spectively. U2(zi) and B2(zi, zj) are the unary and pairwise

terms for co-segmentation, respectively. The coupling term

U3(yi, zi) is included to encourage the coherence between the

co-saliency map and the figure-ground segmentation. Lastly,

the term ||Y ‖22 is introduced for regularization. These terms

are detailed in the following sections.

3.3.1. Unary term U1(yi)

This unary term for saliency detection contains two parts,

which respectively leverage the intra- and inter-image cues

to infer the goodness of each saliency map on superpixel i.
For the intra-image cue, we intend to assign a higher

weight to a saliency map that is consistent with other saliency

maps. Inspired by [21], we employ a low-rank constraint

to realize this task, but we further generalize it to locally
estimate the goodness of saliency maps. For superpixel i,
we find its n (= 50) spatially nearest superpixels. Let

xi,m ∈ R
256 be a histogram denoting the 256-bin distribution

of saliency values of saliency map m on these n superpixels.

By stacking the M different vectors for all saliency maps,

Xi = [xi,1 xi,2 . . . xi,M ] ∈ R
256×M , we infer the consis-

tent part by seeking a low-rank surrogate of Xi. Specifically,

robust PCA is adopted to decompose Xi into a low-rank ap-

proximation Li plus a residual matrix Ei by solving

min
Li,Ei

(||Li||∗ + λ||Ei||1), s.t. Xi = Li + Ei, (3)

where ||Li||∗ is the nuclear norm of Li, and λ is a constant.

After solving (3), we compute the normalized residuals by

referring to errors Ei = [ei,1 . . . ei,M ] via

bi,m =
exp(−||ei,m||22)∑M
j=1 exp(−||ei,j ||22)

, for 1 ≤ m ≤ M. (4)

For energy minimization, the associated penalty variable is

then defined as li,m = exp(1− bi,m)/
∑M

j=1 exp(1− bi,j).
For the inter-image cue, we reduce the false alarms in

saliency detection by exploring inter-image correspondences.

Let ei ∈ [0, 1] represent the similarity between superpixel i
and its most similar superpixel in the other image. The simi-

larity of all vi in the image pair are initially measured via (1).

We concatenate the ei in the same image into a vector and nor-

malize it, such that ei = 1 represents the highest likelihood of

superpixel i having a correspondence in another image. Let

si,m denote the mean saliency value of saliency map m on

superpixel i. We prefer saliency map m if the value of si,m
is proportionate to that of ei. By designing a variable gi,m
penalizing the case where just one of ei and si,m is large, we

get

gi,m =
exp((1− ei)si,m + ei(1− si,m))

∑M
j=1 exp[(1− ei)si,j + ei(1− si,j)]

. (5)

The denominator in (5) is used for normalization.

The intra- and inter-image cues on superpixel i and map

m, i.e. li,m and gi,m, are combined via

wi,m =
exp(li,m + gi,m)

∑M
j=1 exp(li,j + gi,j)

. (6)

Considering all superpixels, the unary term becomes

∑

vi∈V
U1(yi) =

N∑

i=1

w�
i yi = tr(W�Y), (7)

where wi = [wi,1 . . . wi,M ]� and W = [w1 . . . wN].

3.3.2. Unary term U2(zi)

This term estimates the likelihood of superpixel i belonging to

the common foreground in co-segmentation. Following [12],

we represent each superpixel i by its mean RGB color, i.e.

ci ∈ R
3. During the iterative optimization that will be intro-

duced later, a Gaussian mixture model (GMM) with five com-

ponents and the corresponding model parameters θf , is fit to



the superpixels that are currently labeled as foreground (F).

Meanwhile, another five-component GMM θb,k is fit to the

background (B) superpixels of Ik, k ∈ {1, 2}. Specifically,

∑

vi∈V
U2(zi) =

N∑

i=1

[p(vi ∈ F|ci)(1− zi) + p(vi ∈ B|ci)zi]. (8)

GMM θf and θb,k help predict the probability of superpixel

i belonging to the foreground or background. Assuming

p(vi ∈ F) = p(vi ∈ B) = 1
2 , we can get p(vi ∈ F|ci) =

p(ci∈F|θf )p(vi∈F)
p(ci|θf )p(vi∈F)+

∑2
k=1 p(ci|θb,k)δ(vi∈Ik)p(vi∈B) , where p(·|θf )

and p(·|θb,k) are the Gaussian probability distributions. And,

p(vi ∈ B|ci) is similarly set.

3.3.3. Coupling term U3(yi, zi)

U3(yi, zi) encourages the coherence between the co-saliency

maps and the co-segmentation result. For measuring the de-

gree of coherence on superpixel i, we compute the mean

saliency value of the fused map on this superpixel by

si =

M∑

m=1

yi,msi,m = y�
i si, (9)

where yi = [yi,1 . . . yi,M ]� is the weight vector for saliency

map fusion on superpixel i, and si,m is again the mean

saliency value of map m on superpixel i. Note that both the

values of yi and {si,m}Mm=1 are in [0, 1], thus si ∈ [0, 1]. To

enhance the consistency between co-saliency detection and

co-segmentation, this term, penalizing the cases where one of

si and zi is large while the other is small, is defined as

∑

vi∈V
U3(yi, zi) =

N∑

i=1

si(1− zi) + (1− si)zi. (10)

3.3.4. Binary term B1(yi,yj)

This term encourages smooth weights Y between the con-

nected superpixels in graph G. Its formulation is given below
∑

eij∈E
B(yi,yj) =

∑

eij∈E
A(i, j)‖yi − yj‖22 = tr(Y LY �), (11)

where L is the graph Laplacian of G with affinity matrix A.

3.3.5. Binary term B2(zi, zj)

This binary term is imposed to enforce the spatial smoothness

of co-segmentation results. It is defined as
∑

eij∈E
B2(zi, zj) =

∑

eij∈E
A(i, j)‖zi − zj‖22 = tr(ZLZ�). (12)

4. OPTIMIZATION PROCESS

An iterative strategy is adopted to optimize (2). At each itera-

tion, one set of variables Y and Z is optimized while keeping

the other fixed, and then their roles are switched. The alter-

nating optimization procedure is iterated until convergence of

the energy values.

4.1. On optimizing Y

By fixing Z, the optimization problem in (2) becomes

J(Y ) = α1

∑

vi∈V
U1(yi) + β1

∑

eij∈E
B1(yi,yj)

+ α3

∑

vi∈V
U3(yi, zi) + ||Y ‖22 (13)

s.t. ‖yi‖1 = 1,yi ≥ 0̄, for 1 ≤ i ≤ N.

The above constrained optimization problem is a quadratic
programming problem. We solve it by using the CVX [22].

4.2. On optimizing Z

By fixing Y , the optimization task in (2) becomes

J(Z) = α2

∑

vi∈V
U2(zi) + β2

∑

eij∈E
B2(zi, zj)

+ α3

∑

vi∈V
U3(yi, zi) (14)

s.t. zi ∈ {0, 1}, for 1 ≤ i ≤ N.

The energy function in (14) is graph representable and regu-

lar. Thus it can be efficiently minimized via graph cuts.

4.3. Implementation details

For initialization, we solve the weights Y for saliency map

fusion via (13) with the coupling term U3 removed. Then,

the fused co-saliency maps are binarized into foregrounds and

backgrounds to initialize GMMs θf , θb,1 and θb,2 in (8) and

enable the optimization of (14) at the first iteration. Follow-

ing [16], an adaptive image-dependent threshold for binariza-

tion is set to 2m, where m the mean saliency value of the

fused map. In the alternating optimization process, the value

of the objective function decreases and converges to a local

optimum when solving (13) and (14) iteratively.

5. EXPERIMENTAL RESULTS

5.1. Experimental setup

We evaluate our approach, and compare it with the state-of-

the-art methods on the Image Pair dataset [1], which is com-

posed of 105 image pairs with manually labeled ground truth.

We choose two groups of saliency map proposals to have

comprehensive studies of co-saliency detection. For the first

group, we follow [1] and get five saliency proposals consist-

ing of three single-image saliency maps (SISM) obtained by

methods IT [14], SR [15], and FT [16] and two multi-image

saliency maps (MISM) by using the algorithm in [1] with two

different features, color CC and texture CP. The second group

contains three SISMs by using methods CA [17], SF [18], and

RBD [19], and two MISMs obtained by using the detection al-

gorithm in [3] with two different features, spatial cues SP and

correspondence cues CO. Our approach is also compared with
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Fig. 2: (a) The energy curves of (2) (b) The AP curves, versus

iterations, in two different saliency proposal groups.

(a) (b)

Fig. 3: The PR curves of the evaluated approaches with the

saliency proposals in (a) group 1 and (b) group 2.

two fusion-based methods for co-saliency detections, includ-

ing the fixed-weighted summation method CSM [1] and the

self-adaptive fusion method SACS [8]. While our approach

(ours) and SACS adaptively determine the weights for pro-

posal fusion, the weight in CSM is set to 0.0167 for each SISM

and 0.4 for each MISM.

The performance is measured by precision-recall (PR)

curves, which are obtained by varying the saliency thresholds.

We also distill the overall performance of the PR and receiver
operating characteristics (ROC) curves into the areas under

the curves. They are denoted by AP and AUC respectively.

In all the experiments, we set α1 = 5, α2 = 2, α3 = 5,

β1 = 1, and β2 = 0.1 in (2) and λ = 0.05 in (3). The

objective function values in (2) and the performance AP by

our approach through alternating optimization are shown in

Fig. 2(a) and (b), respectively. Both of them converge rapidly.

We report the results of our approach at iteration 7.

5.2. Result Analysis
The PR curves of the evaluated approaches with saliency pro-

posal groups 1 and 2 are drawn in Fig. 3(a) and (b) respec-

tively. The performances in AP and AUC are also reported

in Tables 1 and 2. With saliency proposal group 1, it can

be observed in Table 1 that the proposal CC gives the best

performance among the five proposals. The fusion-based

methods CSM and SACS can exploit the five proposals to re-

markably improve the performance. Our approach integrates

co-segmentation into co-saliency detection so that high-level

object-aware information can guide the region-wise proposal

fusion. As shown in Fig. 3(a), it consistently outperforms all

the competing methods. Its performance gain over method

SACS, the best competing approach, is significant, i.e. 4.5%
in AP and 1.3% in AUC. Similar observations can be found in

method IT [14] SR [15] FT [16] CC [1] CP [1] CSM [1] SACS [8] ours

AP 0.640 0.471 0.559 0.702 0.681 0.824 0.836 0.881
AUC 0.872 0.718 0.756 0.881 0.865 0.930 0.944 0.958

Table 1: Performance in AP (average precision) and AUC

(area under the ROC curve) on saliency proposal group 1.

method CA [17] SF [18] RBD [19] SP [3] CO [3] CSM [1] SACS [8] ours

AP 0.595 0.701 0.847 0.813 0.692 0.879 0.900 0.914
AUC 0.843 0.922 0.936 0.915 0.886 0.948 0.970 0.974

Table 2: Performance in AP (average precision) and AUC

(area under the ROC curve) on saliency proposal group 2.

Fig. 3 and Table 2 for the approaches with saliency proposal

group 2, though the performance gain of the fusion-based ap-

proaches, including CSM, SACS, and ours, becomes less sig-

nificant. The main reason is that the proposal RBD individu-

ally gives satisfactory results. Thus, the proposals in group 2
are not as complementary as those in group 1. Nevertheless,

our approach still achieves more favorable performance than

all the competing approaches thanks to the adaptive region-

wise fusion.

To gain insight into the quantitative results, Fig. 4 dis-

plays the detected saliency maps on two image pairs, when

saliency proposal group 1 is adopted. The saliency proposals,

i.e. those in Fig. 4(c) ∼ 4(g), do not perform well individually.

They contain many false alarms and misses. Methods CSM
and SACS indeed get better results via proposal fusion. Our

approach with the aid of co-segmentation carries out region-

wise fusion, and can generate the saliency maps perceptually

closest to the ground truth. Fig. 5 shows another two exam-

ples when saliency proposal group 2 is used. We observed

that fusion-based methods CSM and SACS can only give com-

parable or even worse maps than the saliency proposal RBD,

since the proposals in group 2 are less complementary. Our

approach fuses these proposals in a region-wise fashion, so

it does not suffer from this problem. More importantly, our

approach gives sharper and more homogeneously highlighted

result without any additional post-processing.

6. CONCLUSIONS
In this paper, we have presented an unsupervised learning

framework that carries out saliency proposal fusion via jointly

exploring the common object evidence generated from co-

segmentation and the consensus among various saliency pro-

posals. The benefits of its joint optimization formulation

are evident as it produces the fused maps of high qual-

ity via making the most of multiple locally complementary

saliency proposals. Moreover, unlike existing models relying

on additional post-processing to smooth the fused maps, our

framework has already merged the advantages of such post-

processing into our unified optimization process, and gener-

ates even better results. In future, we plan to apply our algo-

rithm to vision applications where saliency maps of high qual-

ity are appreciated, such as object recognition, image feature

extraction, and scene understanding.



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Fig. 4: (a) & (b) Two image pairs for co-saliency detection and the ground truth. (c) ∼ (j) Saliency maps generated by different

approaches including (c) IT [14], (d) SR [15], (e) FT [16], (f) CC [1], (g) CP [1], (h) CSM [1], (i) SACS [8], and (j) ours.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Fig. 5: (a) & (b) Two image pairs for co-saliency detection and the ground truth. (c) ∼ (j) Saliency maps generated by different

approaches including (c) CA [17], (d) SF [18], (e) RBD [19], (f) CO [3], (g) SP [3], (h) CSM [1], (i) SACS [8], and (j) ours.

7. REFERENCES

[1] H. Li and K. N. Ngan, “A co-saliency model of image pairs,”

TIP, 2011.

[2] F. Meng, H. Li, and G. Liu, “A new co-saliency model via

pairwise constraint graph matching,” in ISPACS, 2012.

[3] H. Fu, X. Cao, and Z. Tu, “Cluster-based co-saliency detec-

tion,” TIP, 2013.

[4] H. Li, F. Meng, and K. N. Ngan, “Co-salient object detection

from multiple images,” TMM, 2013.

[5] Z. Liu, W. Zou, L. Li, L. Shen, and O. Le Meur, “Co-saliency

detection based on hierarchical segmentation,” SPL, 2014.

[6] C.-R. Huang, Y.-J. Chang, Z.-X. Yang, and Y.-Y. Lin, “Video

saliency map detection by dominant camera motion removal,”

TCSVT, 2014.

[7] L. Li, Z. Liu, W. Zou, X. Zhang, and O. Le Meur, “Co-saliency

detection based on region-level fusion and pixel-level refine-

ment,” in ICME, 2014.

[8] X. Cao, Z. Tao, B. Zhang, H. Fu, and W. Feng, “Self-adaptively

weighted co-saliency detection via rank constraint,” TIP, 2014.

[9] R. Huang, W. Feng, and J. Sun, “Saliency and co-saliency

detection by low-rank multiscale fusion,” in ICME, 2015.

[10] K.-Y. Chang, T.-L. Liu, and S.-H. Lai, “From co-saliency to

co-segmentation: An efficient and fully unsupervised energy

minimization model,” in CVPR, 2011.

[11] K. Jerripothula, J. Cai, and J. Yuan, “Image co-segmentation

via saliency co-fusion,” TMM, 2016.

[12] H. Yu, M. Xian, and X. Qi, “Unsupervised co-segmentation

based on a new global gmm constraint in mrf,” in ICIP, 2014.

[13] K. R. Jerripothula, J. Cai, and J. Yuan, “Cats: Co-saliency ac-

tivated tracklet selection for video co-localization,” in ECCV,

2016.

[14] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based

visual attention for rapid scene analysis,” TPAMI, 1998.

[15] X. Hou and L. Zhang, “Saliency detection: A spectral residual

approach,” in CVPR, 2007.

[16] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk,

“Frequency-tuned salient region detection,” in CVPR, 2009.

[17] S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware

saliency detection,” TPAMI, 2012.
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