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ABSTRACT

In this paper, we address fine-grained classification which is
quite challenging due to high intra-class variations and sub-
tle inter-class variations. Most modern approaches to fine-
grained recognition are established based on convolutional
neural networks (CNN). Despite the effectiveness, these ap-
proaches still suffer from two major problems. First, they
highly rely on large sets of training data, but manually an-
notating numerous training data is expensive. Second, the
learned feature presentations by these approaches are often of
high dimensions, leading to less efficiency. To tackle the two
problems, we present an approach where on-line dictionary
learning is integrated into CNN. The dictionaries can be in-
crementally learned by leveraging a vast amount of weakly
labeled data on the Internet. With these dictionaries, all the
training and testing data can be sparsely represented. Our
approach is evaluated and compared with the state-of-the-
art approaches on the benchmark dataset, CUB-200-2011.
The promising results demonstrate its superiority in both effi-
ciency and accuracy.

Index Terms— Part-based RCNN, sparse representation,
dictionary learning, fine-grained categorization

1. INTRODUCTION

Fine-grained classification (FGC) aims to distinguish fine-
level categories of images, such as bird species, airplane or
car types [1, 2], and animal breeds [3]. In addition to the
difficulties inheriting from generic object recognition such as
large intra-class variations, fine-grained classification is much
more challenging due to subtle inter-class variations. In this
work, we propose to learn a deep and sparse feature repre-
sentation to address the difficulties of FGC, and illustrate it
with the application to fine-grained bird species recognition.
This application is considered challenging, since some of the
species are difficult to recognize even for humans.

The major difficulties hinder the advances in accurate
fine-grained classification come from diverse factors. First,
there exist small inter-class variations and large intra-class
variations. Second, the training data of a category in the
benchmarks of FGC are often too few to reliably represent the
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data distribution of this category in the feature space. Mean-
while, the number of categories to be recognized is large.
Third, the learned feature presentations by conventional ap-
proaches are often of high dimensions, leading to a high com-
putational cost.

To address the first difficulty, two research trends of FGC
arise. The first trend is the use of part-based representa-
tions [4]. Part-based models recognize objects by referring
to not only the appearances of object parts but also their spa-
tial relationships. Thus, these models are robust to intraclass
variations caused by different poses. Meanwhile, the distinct
characteristics for fine-grained recognition are often carried
by object parts, instead of the whole objects. The second trend
is to extract more discriminative feature representations [5] by
using convolutional neural networks (CNN) [6]. Recent work
based on CNN has shown notable improvement over the work
that adopts handcrafted features [7, 8].

However, the two trends of FGC have worsened the other
two difficulties, the demand for large training data and the
high dimensions of the resultant feature presentations. Learn-
ing part-based models typically needs training data with part-
level annotation, which leads to the expensive cost of manual
labeling in collecting training data. The powerful CNN can
extract discriminative features and learn non-linear classifiers
simultaneously, but the resultant feature representations, i.e.
the input to the last decision layer, are of high dimensions.
Take part-based RCNNs (PRCNN) [10] as an example. It
achieved promising results for FGC by using part annotations
and CNN-based feature representations. However, further im-
provement based on PRCNN is very difficult, because learn-
ing part-based CNN requires a large set of strongly annotated
training data, which is currently not available in the bench-
mark datasets for FGC.

The main contribution of this work lies in the develop-
ment of a fine-grained classification approach that addresses
these drawbacks of the part based models and reduces the
computational cost caused by the high-dimension represen-
tation. We address the lack of training data by using addi-
tional web images, which can be obtained by querying the
categories to be recognized in search engines. This additional
dataset contains a large volume of images with image-level
labels. Weakly supervised learning is conducted on the small



strongly-labeled data and the abundant weakly-labeled data.
Specifically, we leverage the strongly labeled dataset to learn
the part-based representation, and transfer the learned repre-
sentation to the object parts in the weakly labeled dataset. In
this manner, both the strongly and weakly labeled data can be
used to derive a more reliable feature representation.

Using deep convolutional layers can extract features of
high quality, but the dimension of the extracted features
is quite large. Dimensionality reduction methods [9] can
be used to reduce the dimension of feature representations.
Specifically, kernel principal component analysis (KPCA) is
employed. In this work, we propose a new method for fine-
grained categorization that learns robust CNN-based feature
representations, and carries out classification based on dictio-
nary learning and sparse representation. With the aid of the
extra data borrowed from the Internet, the problem caused by
the lack of training data problem is alleviated. The use of dic-
tionary learning further reduces the computational cost, and
improves the accuracy of FGC.

Our approach increases the classification performance
while reduces the computation cost. The main contribution of
this work is three-fold. First, additional training data are used
to prevent the problem of overfitting when training CNN with
a small dataset available for FGC. Second, we learn category-
specific dictionary using both strongly and weakly labeled
training data. Thus, our approach is more efficient compared
with the method in [11], since training data can be repre-
sented by just a few dictionary atoms. Another advantage
of using on-line dictionary learning (ODL) is the reusabil-
ity of existing dictionaries [12]. Namely the dictionary can
be incrementally learned by using the extra weakly labeled
data obtained from the Internet. The learned dictionary can
be used to reduce the computational cost for processing web
images. Third, we employ [/;-lasso sparsity to enhance the
performance of predicting test data. Our method can effi-
ciently search the sparsest representation of a test sample in
the trained dictionary, which is composed of training samples
of all classes. Thus, there is no need to derive the decision
boundaries. These sparsely learned dictionaries give better
classification performance. An overview of the our proposed
method is shown in Fig. 1.

The experimental results show the effectiveness of the
proposed approach. With the additional weakly labeled
dataset acquired from the web, we achieve the recognition
rate of 84.3% on the CUB-200-2011 dataset, which is com-
parable to those by the state-of-the-art approaches. Besides,
our approach reduces the computational cost by 30% when
comparing with the related work [11].

2. RELATED WORK

Significant progress has been made on fine-grained classifica-
tion (FGC) in the field of computer vision. Recent methods
for FGC using CNNs have achieved performance gains over
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Fig. 1. Overview of our approach.

the methods that adopt handcrafted features [7, 8, 13]. The
major disadvantage of part-based methods is the high cost of
manually annotating object parts in collecting training data.
Branson et al. [14] described an architecture for bird species
fine-grained classification. In this work, features are com-
puted by applying deep CNN to image patches. These im-
age patches are located and normalized by poses. For learn-
ing a compact space of normalized poses, higher order func-
tions for geometric warping and graph-based clustering al-
gorithms are included in their work. However, this approach
does not give satisfactory classification accuracy in predicting
bird species.

For fine-grained recognition, many current methods em-
ploy a two-stage pipeline, part detection followed by classifi-
cation, to accomplish this challenging task. Zhang et al. [10]
learned a more robust model for fine-grained classification
without using the bounding boxes of objects at the phase of
testing. They method adopts the RCNN detector [15] to learn
the whole object, locate the parts and make the prediction. It
employs the constraints to enforce the learned geometric re-
lationship between the detected parts and the whole objects.
The learned pose-normalized representation is used to carry
out fine-grained categorization. Huang et al. [16] proposed
the part-stacked CNN for fine-grained classification. They
leveraged a two-stream structure to capture both object-level
and part-level information. Krause et al. [17] presented an
approach that carries out fine-grained recognition without us-
ing part-level annotation. In their approach, part-level infor-
mation is derived by using co-segmentation and image align-
ment. Compared to [10,16,17], our proposed method has the
advantages in both classification accuracy and computational
efficiency.

In [18], Lin et al. proposed a bilinear model for repre-
senting bird species, and applied it to fine-grained classifica-
tion. They employed two CNN models, and generated the fea-
ture representations by computing the outer product of feature
maps. Namely, every two feature maps are multiplied at each
location and pooled across locations to obtain an image de-
scriptor. In [19], Shih et al. presented a network layer, called
the co-occurrence layer, which explores the co-occurrence of



visual patterns to enhance the performance of fine-grained
recognition. The work in [11] compiles more discrimina-
tive CNN features. It uses a training set augmented by addi-
tional part patches obtained from weakly labeled web images,
and generates more robust feature representations. A multi-
instance learning algorithm is applied to both the strongly and
weakly labeled datasets to learn a more robust classifier. The
disadvantage of the method in [11] is that the dimension of the
feature representation is large. It results in the high computa-
tional cost of processing the two CNN models. Our proposed
method instead balances classification accuracy and compu-
tation cost in fine-grained recognition.

3. THE PROPOSED METHOD

In this section, we present our method for bird species fine-
grained categorization. Our method learns a CNN based fea-
ture representation and employs detailed object part annota-
tion in a unified framework. With the aid of weakly labeled
web data, it alleviates the problem caused by the lack of train-
ing data. Besides, it integrates dictionary learning into CNN.
Classification based on sparsity is carried out for bird species
prediction.

3.1. Feature Representation

Recently feature representations based on deep CNN are
widely used for fine-grained categorization. Specifically,
PRCNN has demonstrated the effectiveness of such feature
representations in this scenario. The main limitation of
PRCNN is that learning such feature representations is almost
infeasible with a small set of training data. In particular, CNN
requires a large set of training data to learn robust feature
representations. By using weakly labeled web images from
Flicker, our approach overcomes the lack of training data.

Suppose that we are given a training set with part-level
annotation. The set contains images of R fine-grained cate-
gories, and each image is annotated with a bounding box z of
the whole object and the bounding boxes {x1, xa, ..., T, } of
m different parts. We use the training set, and learn a detector
for the whole object and a detector for each part. Then, the
part detectors are used to collect additional part patches from
the weakly labeled images by localizing object parts during
testing. Specifically, we follow the augmented PRCNN to
learn the detectors where the part-based CNNs with k-way
fc8 classification layer are fine tuned.

Let {yo,y1, ---, Ym } denote the weights of R-CNN detec-
tors for the whole object x¢ and the m different parts {; } ™.
The corresponding detector scores {eg, €1, ..., €y, } are com-
puted for every region proposal b via

ei(b) = o(y! 6 (b)), M

where o () is the sigmoid function and ¢(*) (b) represents the
features extracted by the ¢th part detector at location b.

Although weakly labeled images contain only image-level
annotation, we use the learned part detectors to discover the
part patches in these weakly labeled images. After applying
the part detectors to all image locations, the detection scores
constrained by geometric relations are used to infer the lo-
cations of the object and its parts. The detected locations
H* = {hg,..,hy,} are given by maximizing the following
function:

H* = argmin [T 9no () [T ei(ha), )
=1 1=0

where

o (he) = {1’

0, otherwise.

if h; falls outside ho by at most 10 pixels,

3)

In this way, the part-based information of the weakly la-
beled images is revealed. We then use the newly obtained
information to fine-tune the CNN-based part detectors. On
the one hand, the part detectors can be more reliably trained.
On the other hand, the part locations can be more precisely
determined owing to the better part detectors.

However, the dimension of the feature vector ¢ is often
too high to build an effective dictionary. In order to reduce the
dimension, kernel principle component analysis is applied.
In the following, we will discuss the dictionary learning and
sparse representation for classification.

3.2. Dictionary Learning and Sparse Representation

Sparsity-dominated dictionaries give us an effective repre-
sentation for fine-grained classification. To process training
data, several dictionary learning methods have been devel-
oped such as K-SVD [20], on-line dictionary learning (ODL)
[12] and incremental dictionary learning (IDL) [21]. Earlier
work on dictionary learning and sparsity representation based
classification is typically used for high-level image classifica-
tion problems. However, these methods are not particularly
useful for fine-grained classification. In the following, we
explain how to construct category-specific dictionaries from
training data to resolve this issue.

In fine-grained datasets, the differences between cate-
gories are very subtle. In these datasets, similar parts across
categories may degrade the performance of the learned dic-
tionary. When we are applying sparse coding techniques, the
learned shared dictionary is possible to be influenced by the
matching parts of images. Most of the dictionary atoms en-
code common features, while only a few of atoms encode the
differences. Thus, the shared dictionary degrades the perfor-
mance of fine-grained classification. By using category spe-
cific dictionaries, most of the dictionary atoms are helpful in
encoding the differences between data of different classes.

In the proposed method, ODL is used to train a dictio-
nary for each category. Namely, for the training data of R



categories, we construct R dictionaries to represent the cate-
gories. Each image is associated with the dictionary that gives
the sparsest representation. For a given test sample, it can be
represented as a linear combination of training data from cate-
gory specific dictionary atoms. Specifically, given a database
of N training images of R classes, training samples {y;}¥ ;
collected from both the strongly and weakly labeled data are
denoted by C = [C},..., Cy, ..., Cr], where Cy is the data
matrix of class d. Let L; denote the number of training data
of class d. Let a be an image belonging to the dth class. Then
it can be represented as a linear combination of these training
samples:

a = qu)d7 (4)

where Dy, a matrix of size m X Lg4, is a dictionary whose
columns are (atoms) the training samples in the dth class and
®,; represents the dth class related sparse coefficients. The
proposed method is a two-step process: the first step is dic-
tionary learning and the second one is sparse representation
based classification. These steps are detailed below:

3.2.1. Dictionary Construction:

The ODL algorithm is used to construct the dictionary for
each class of training samples. The sparse stage in ODL is
a Cholesky-based implementation of LARS-lasso algorithm.
Thus, the dictionaries D = [Dy,..., Dg| are computed by
using the following equation:

1
D;, ®;) = in —||C; — D;®;|3 ®;
(Dy, @) arggil’l(giQ”Cz i ©ill3 + AP,

fort =1,2,..., R. (&)

3.2.2. Sparsity based Classification:

In the classification phase, we seek the sparse vector ® for a
given test image g. Using the dictionaries of training samples
D = [D; ... Dy], the sparse representation ® is obtained by
solving the following optimization problem:

1
o= argmqiniﬂg — D®||3, subjectto||®|; <T1, (6)

where T} represents the sparsity threshold. Then, the predic-
tion is made based on

i= argmax ||9;(®)||1, fori =1,2,--- | R, @)

where §; is a characteristic function that selects the coeffi-
cients for class i. Define §;(®) = (®;1,.., ; gr,) which is
the contribution of i*" class to the represent of g in the dic-
tionary. This test clip g is assigned to class i if the absolute
sum of sparsity coefficients associated with the ith dictionary
is the maximum among other classes. This method chooses
{1 norm as it is found to be better for the classification results.
According to our implementation, sparsely learned dictionar-
ies give better classification performance.

Table 1. Accuracy comparison between APRCNN [11] and
our method on the CUB200-2011 dataset. A = APRCNN, P
= our method, ft = fine-tuning, and dn = denoising.

Part Localization Predict BBox
Train Train+Weak
Method x P A P
ft on Train 78.6 | 82.1 | 799 | 834

ft on Train/Weak 81.2 | 83.3 | 82.2 | 84.3
ft on Train/Weak dn | 83.2 | 83.6 | 84.6 | 84.3

4. EXPERIMENTAL RESULTS

In this section, we describe the used dataset and explain the
experimental results with different dictionary sizes. Experi-
ments are carried out on CUB-200-2011 birds database [22],
which contains 11,788 images of 200 bird classes. About 30
images of each class are used for training while about 30 of
each class are used for testing. Each image is associated with
an image-level label, object bounding boxes and part land-
marks. To solve the problem of lacking such strongly la-
beled data in fine-grained classification, we collect an addi-
tional weakly labeled dataset from Flicker. We augment the
strongly labeled dataset with the weakly labeled one. This
additional dataset contains 100 images for each category to
be recognized. These additional web images are with only
image-level labels, which may not be correct due to the am-
biguity of query words and label noise.

We implement this work on the deep learning package
Caffe and use part-based RCNN for robust feature repre-
sentations. The performance of our approach is evaluated
with various settings, such as with or without part-level an-
notations in the training and/or testing phases and with or
without using the weakly labeled data to fine-tune the net-
works. Specifically, we follow the work in [11] and use the
same setting for the ease of comparison in the experiments.
Table 1 shows the performance of the proposed method and
the related paper [11] with these different settings. When
fine-tuning the part CNN on the training set, the proposed
method gives the recognition rate of 82.1%. By augmenting
the part patches from weakly labeled dataset and fine-tuning
the part CNNs, the accuracy is improved to 83.3%. The re-
sults show the advantages of using the additional dataset to
better train the CNN. A further improvement in the classifica-
tion accuracy can be obtained by denoising the weakly labeled
dataset. The resultant accuracy is 83.6%. In these two cases
the proposed method gives promising results compared with
APRCNN [11]. Finally, our proposed method achieves the
recognition rate of 84.3% with the aid of the weakly labeled
data.

Table 2 reports the classification accuracy of the proposed
method and the state-of-the-art methods on CUB-200-2011
dataset. On this challenging dataset, we achieve a promising
recognition rate of 84.3%. In addition, our approach inte-



Table 2. Performance of different approaches on the
CUB200-2011 dataset. Part = part-level annotation, BBox =
bounding box, ACC = accuacy rate (%).

Train | Train | Test

Method BBox | Part | BBox | 2
DPD+DeAF [23] v v v 65.0
POOF [24] v v v 56.8
Symbiotic [25] v v 61.0
Alignment [26] v v 62.7
CNNaug [27] v v 61.8
PRCNN [10] v v 73.9
PoseNorm CNN [14] | vV v 75.7
Co-segmentation [17] | v 82.0
Bilinear Model [18] 84.1
Co-occur. Layer [19] 85.8
APRCNN [11] v v 84.6
Proposed Method v v 84.3

grates online dictionary learning for producing a sparser fea-
ture representation. Thus, another advantage of our approach
is that it is more computationally efficient when comparing
with most CNN-based approaches.

It is worth mentioning that our approach induces less
computational cost. The dimensions of CNN-based feature
representations are often very high. For instance, the dimen-
sion is 12288 in RCNN. Working on high-dimensional data
takes more computational time. In this work, we use kernel
PCA to reduce the dimension to 1000. We evaluate the per-
formance of the proposed method with three different types
of kernels, including the sigmoid kernel, the RBF kernel, and
the polynomial kernel. Results are shown in Fig. 2(b).

We conduct the experiments with different dictionary
sizes. The results are shown in Fig. 2(a). In the experiments,
the CUB-200-2011 dataset consists of 200 bird classes, each
of which has about 30 images for training. As can be observed
in Fig. 2(a), 80 atoms, i.e. D = 80, suffices to achieve sat-
isfactory results. It means that the coefficient vector of each
image is of dimension 80, which is much lower than those in
CNN and those after applying KPCA. Thus, the main advan-
tage of our approach over the existing CNN-based methods is
that data can be represented in a more compact way, but the
representation still achieves the state-of-the-art classification
accuracy. Besides, online dictionary learning is particularly
suitable in our cases where weakly labeled images are ob-
tained sequentially.

We evaluate the performance of the proposed method with
three different feature dimensions when applying kernel PCA,
i.e. Vg = 600, 1000 and 2000. The results are shown in Fig.
2(c). When the dimension is set to 1000, the proposed method
gives better classification accuracy. Fig. 2(d) shows the re-
sults of computational cost when comparing the proposed
method with the related work APRCNN [11]. Our approach
is executed with a lower computational cost. It results from
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Fig. 2. Performance comparison be with (a) different dic-
tionary sizes (D = 10, 20, 30, 60 and 80), (b) differ-
ent Kernel functions, and (c) different feature dimensions
(Vg = 600, 1000 and 2000). (d) Comparing our approach
with APRCNN [11] in running time.

the use of KPCA and dictionary learning for sparse data rep-
resentation. Therefore, our method reduces the computation
cost compared with other techniques. In addition, sparsely
learned dictionaries give better classification performance re-
sults in the experiments.

5. CONCLUSIONS

In this paper, we present an approach to compile a deep and
sparse feature representation, and illustrate it with the appli-
cation to fine-grained classification. The approach integrates
dictionary learning and sparsity classification into the CNN
framework. We also alleviate the problem caused by the lack
of fully labeled training data via using additional weakly la-
beled dataset collected from Flicker. The experimental results
show that augmenting the additional part patches from weakly
labeled dataset to the strongly labeled training data helps fine-
tune the CNN models as well as achieve better classification
results. Using dictionary learning also helps alleviate the is-
sue of the high computational cost required for fine-grained
categorization. It follows that a given training or testing data
is represented by a compact vector, whose dimension is equiv-
alent to the number of dictionary atoms. In our case, the di-
mension is reduced from 12288, the number of the features
in the last layer of CNN, to 80, the dictionary size. More im-
portantly, such a low dimensional representation still achieves
the recognition rate of 84.3% on the CUB-200-2011 database,
which is comparable to the state-of-the-art accuracy.
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