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ABSTRACT

This paper proposes a novel loss, soft ranking threshold
loss, for driving deep networks to learn better representations
for image retrieval. Instead of working in the metric space,
our loss works in the rank space which has a more uniform
distribution and explicit scale and bounds. Our loss reduces
the ranks of the distances between anchor-positive pairs be-
low the threshold while increasing the ones between anchor-
negative pairs above the threshold. In addition to the basic
form, two extensions are proposed for improving the effec-
tiveness: hard thresholds and ranking margin. Experiments
show that the proposed loss outperforms the state-of-the-art
losses on image retrieval applications.

Index Terms— Image and video retrieval, deep learning

1. INTRODUCTION

Content-based image retrieval (CBIR) has been a popular
topic in the computer vision and multimedia community.
Given a gallery image set and a query image, the goal is to
find images in the gallery that have the same class label as the
query image. A common practice for CBIR is to first project
all images from high-dimensional space to a low-dimensional
feature space (i.e., feature extraction). Then, use a distance
metric to measure the distance between query and gallery
features. Finally, output a sorted/ranked list of the gallery.

The recent booming deep learning technology offers a
powerful tool for feature extraction. But its performance
relies heavily on loss functions. Quite a few losses have
been proposed for using deep learning in image retrieval
tasks, such as triplet loss [1], center loss [2], additive an-
gular margin loss [3] for face recognition, and batch-hard
triplet loss [4], quadruplet loss [5] for person re-identification
(reID). Notably, most of these losses operate in the distance
space by maintaining certain properties, e.g., keep distances
to be less or greater than a pre-selected threshold. It can be
problematic to use a pre-selected threshold since the distribu-
tion of distances can vary from batches to batches (Fig. 1).

Solutions to the problem can be categorized into two
folds. One fold is to introduce adaptive hyper-parameters [6],
while the other fold [7, 8, 9, 10, 11, 12, 13, 14], is to ex-
plore the information of ranking. The ranking is the value
that shows how an element is related to others in a list or
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Fig. 1: Motivation. (Top) Previous deep metric learning methods,
using the distance to obtain the loss, suffer from the problem that the
distribution of distances varies from batches to batches. (Bottom)
We propose to use the ranking representation, whose distribution is
more uniform with the explicit scale and bounds, to compute loss.
The differentiable soft ranking approximation makes the ranking-
based loss trainable. Red boxes highlight our contributions.

set. Compared with distance, it have three advantages. (1)
The distribution is more uniform. (2) The rank values have
a fixed lower bound (i.e., zero), and upper bound (i.e., the
number of the elements). It is easier to choose appropriate
hyper-parameters due to their fixed range. (3) A single rank
value contains more information than a single distance value.
A distance only indicates the dissimilarity between two in-
stances, but a ranking value puts things in context by showing
how dissimilar they are compared to other pairs of instances.

Keep it in mind, we design loss functions directly using a
differentiable approximation of ranking value [7], named soft
ranking threshold loss. By introducing the mechanisms of a
negative term and thresholds into, our loss can keep the rank-
ings of positive samples below the threshold and those of neg-
ative samples above it. Two extensions are proposed to further
support our ranking-based loss: hard thresholds and ranking
margin. The former employs stricter thresholds for better tol-
erating the approximation errors of soft ranking. The latter
encourages learning from more samples. Experiments show
that our loss outperforms the state-of-the-art losses including
the triplet loss and its variant on person reID and fashion re-
trieval. Chen et al. [13] proposed a ranking-based loss similar
to ours. However, their loss only contains a positive term and
the formulation is much simpler compared to ours.

The contributions of this work are highlighted as follows:



• We propose a novel loss function using the ranking as
input, with both a positive and a negative term, to assert
the ranking values to satisfy certain adaptive thresholds.

• We introduce the hard thresholds and ranking margin
as extensions for further improving its performance.

• Experiments on CBIR applications, including person
reID and fashion retrieval benchmarks, demonstrate
that our loss outperforms other distance-based losses.

2. RANKING-BASED THRESHOLD LOSSES

Let’s consider the scenario of image retrieval. Given an
image I , assume that we have a deep model fθ that can
extract its feature vector x = fθ(I). For a batch of B
training images I = {I1, · · · , IB} with corresponding la-
bels y = {y1, · · · , yB}, we first extract their features x =

{x1, · · · , xB}. For a training batch x = {(xi, yi)}i=1,··· ,B ,
let dij = 〈xi, xj〉 be the pairwise distance between sam-
ples xi and xj . So, we can use dij as the element to
construct the distance matrix D ∈ RB×B . The row vec-
tor di = [di1, di2, . . . , diB ] is the set of pairwise distances
between the sample xi and all samples in the batch. If
operate the ranking function R(•) on each element of D,
we can get the ranking matrix R ∈ RB×B , whose element
R̃ij =R(dij) =# {dij | dij ≤ dik}. Our goal is to derive a
loss function L(R̃ij) based on the ranking R.

2.1. Soft ranking threshold loss

Consider the case that xi is selected as the anchor. There
exist a positive sample set p(i) = {j | yj=yi, i 6=j} and a
negative sample set n(i)={j | yj 6=yi, i 6=j}. Let Pi and Ni
be the sizes of p(i) and n(i) respectively. We have Pi+Ni=
B−1. Since positive samples should be closer to the anchor
xi and have smaller distances in di, their rankings should be
on the small side. Thus, we define the hard positive samples
as those positive samples whose rankings are greater than a
given threshold T+

i . They are difficult samples because they
are not ranked properly in the current feature space and more
effort should be spent on them. Thus, we define the positive
term of our loss function as

Lp =
1

Pi

∑
j∈p(i)

[
Rij − T+

i

]
+
, (1)

where [•]+ is a hinge function. In this way, only hard samples
(mis-ranked ones) will be penalized and the ones with larger
deviation will be penalized more. Therefore, the training will
focus more on correcting the difficult samples since not all
data pairs are equally important to training [4, 15].

Similarly, for negative samples, we define the hard neg-
ative samples as those negative samples whose rankings are
less than a given threshold T−i . For each hard negative sam-
ple, we aim to increase its ranking so that it is greater than

T−i . Hence, the negative term of our loss is given by

Ln =
1

Ni

∑
j∈n(i)

[
T−i −Rij

]
+
. (2)

Putting the positive and negative terms together, we obtain
the basic form of the proposed soft ranking threshold loss

LSRT =α

positive term︷ ︸︸ ︷ 1

Pi

∑
j∈p(i)

[
Rij − T+

i

]
+


+ (1− α)

 1

Ni

∑
j∈n(i)

[
T−i −Rij

]
+


︸ ︷︷ ︸

negative term

,

(3)

where α ∈ [0, 1] is a parameter to balance the trade-off be-
tween the positive term Lp and the negative term Ln. As
for the selection of the thresholds T+

i and T−i , a reasonable
choice is T+

i =Pi+1 and T−i =Pi+2 as there are Pi positive
samples in the given batch excluding the anchor xi itself. Ide-
ally, rankings of all positive samples should not exceed Pi+1,
and those of negative samples should be larger than Pi+1.

However, the ranking value is not differentiate, making it
impossible to directly use the output ranking of Rij in our
loss. In order to make LSRT trainable, we approximate the
hard ranking operationR(•) using the sigmoid function

R̃ij = R̃(dij) =
B∑
k=1

sigmoid(dij − dik) . (4)

Now, the loss function Eq. (3) now becomes trainable.

2.2. Hard thresholds

Using the soft ranking would introduce approximation error
and the error is bounded within (−Rij/2, (B−Rij)/2). To
accommodate the approximation error, we propose a stricter
thresholds (hard thresholds) according to the bound. When
considering the hard threshold for the negative term, T̂−i ,
we hope it fulfills the requirement that for all negative sam-
ples, their soft rankings are higher than the threshold, i.e.,
∀j ∈ n(i), R̃ij ≥ T̂−i . In general, setting a higher thresh-
old T̂−i would encourage rankings of negative samples to
be higher more. However, since R̃ij has an upper bound,
i.e., (B +Rij)/2, the threshold cannot exceed it, which con-
straints T̂−i , for all j∈n(i),

T̂−i ≤ (B +Rij)/2 ⇒ Rij ≥ 2 T̂−i −B . (5)

Considering ∀j ∈ n(i), the real ranking Rij ≥ Pi+1, we set
the hard threshold for the negative term T̂−i as (B+Pi+1)/2.



The hard threshold for the positive term, T̂+
i , can be ob-

tained similarly. For all positive samples xj , j ∈ p(i), we re-
quire them to have a ranking smaller than the threshold, i.e.,
R̃ij≤ T̂+

i . We would like to set the threshold as strict as pos-
sible, but it cannot be smaller than R̃ij’s lower bound, Rij/2.
Thus, we have T̂+

i ≥ Rij/2. Considering ∀j ∈ p(i) the real
ranking Rij≤Pi, we set T̂+

i =Pi/2.
Theoretically, we can use the hard thresholds T̂+

i and T̂−i
to replace the thresholds T+

i and T−i in Eq. (3). However,
empirically, we found that it is difficult for the model to get
to a good starting training point and sophisticated warm-up
techniques would be necessary. To prevent training from be-
ing unstable, we only apply the hard version of the loss to the
batch-hardest samples after a few training iterations. We set
a parameter β = 0.01 to balance the hard terms and basic
terms. The full version of the proposed soft ranking threshold
loss is given by LSRT-F=LSRT+βLSRT-H, where

LSRT-H =

positive term︷ ︸︸ ︷
α

Pi

[
min
j∈p(i)

R̃ij − T̂+
i

]
+

+
(1− α)
Ni

[
T̂−i − max

j∈n(i)
R̃ij

]
+︸ ︷︷ ︸

negative term

. (6)

2.3. Ranking margins

Another problem with the soft ranking threshold loss is that
only a few samples contribute to the loss. Consider the exam-
ple in Fig. 2(B.1), where only two “mis-ranked” samples (
and ) are selected and others do not contribute to the loss.
Once and are corrected, LSRT = 0 and the learning will
stop. To have more samples contribute to the loss and learn
more from samples, we introduce ranking margins.
Hard margin. By introducing a hard margin m to the thresh-
olds, our basic loss becomes

LSRT-M = α

positive term︷ ︸︸ ︷ 1

Pi

∑
j∈p(i)

[
R̃ij − (T+

i −m)
]
+


+ (1− α)

 1

Ni

∑
j∈n(i)

[
(T−i +m)− R̃ij

]
+


︸ ︷︷ ︸

negative term

.

(7)

Thanks to the introduced margin, our loss can force the net-
work to keep training (Fig. 2(B.2)).
Soft margin. We use the softplus function σsp(x) as an ap-
proximation of the hinge function, which is also referred as
soft margin [4]. Unlike max(x, 0), the derivatives of σsp(x)
is not zero even when x less than zero (Fig. 2(B.3)). So, the

1.

m = 1
2.

3.

Ranking value ↑
Positive NegativeQuery

Ranking value ↑
Positive NegativeQuery

BA Hard threshold Ranking margin

m = 0
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3.

Fig. 2: (A.1) is the ideal scenario where the computed soft rank-
ing and actual ranking are coherent, and the approximation error is
small and can be ignored. indicate that the samples are ‘chosen’
by our thresholds. We can observe that all “mis-ranked” samples
( / ) are correctly chosen. (A.2) when the approximation error
cannot be ignored, and the thresholds are not good enough to find all
“mis-ranked” samples (neglect ). (A.3) shows that by modifying
the threshold to its hard version, this problem can be solved. (B.1)
Hard margin with m= 0 (the basic form). Only those disarranged
positive and negative samples contribute to the loss. The red arrows
on the top of samples indicate gradients. Their thickness indicate the
magnitudes of the gradients. After correcting the disarranged sam-
ples, the learning stops since the loss is zero. (B.2) Hard margin
with m=1. In addition to the disarranged samples, samples near the
boundary also contribute to the loss. (B.3) Soft margin. All samples
contribute to the loss depending how badly they are disarranged.

basic loss has this form:

LSRT-SM =α

positive term︷ ︸︸ ︷ 1

Pi

∑
j∈p(i)

σsp

(
R̃ij − T+

i

)
+ (1− α)

 1

Ni

∑
j∈n(i)

σsp

(
T−i − R̃ij

)
︸ ︷︷ ︸

negative term

.

(8)

3. EXPERIMENTS

3.1. Datasets and evaluation metrics

We conduct experiments on four popular image retrieval
datasets: three for person reID, including Market1501 [16],
CUHK03 [17], and DukeMTMC [18] and one for fashion
retrieval, i.e., DeepFashion [19]. We use the mean average
precision score (mAP) and the cumulative matching curve
(CMC) as the metrics to evaluate performance.

3.2. Compared losses

The goal of the work is to propose a new ranking-based loss
for improving retrieval performance, rather than reaching the
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state-of-the-art performance on individual applications. Thus,
we only compare to other designs of losses for improving
retrieval performance, including triplet loss [1], batch hard
triplet loss [4], hard negative triplet loss [20] and adaptive
weighted triplet loss [15].

3.3. Implementation details

Following [4, 15], we choose ResNet-50-v1[21] as the back-
bone. We discard the last softmax layer, then add one max
pooling layer, a 1024-dim fully connected layer followed by
a 128-dim one at the end. The batch sampling is performed
in the same way as the previous work [4], where each batch
has the size of 72, containing 18 persons (for person ReID) or
clothes items (for fashion retrieval) with 4 images each. We
also implement random erase augmentation [22] and hard
identity mining (HIM) [15] with the pooling size set to 50.

3.4. Parameter and ablation study

To study the performance of our loss under different settings,
we split the original training set of Market1501 into training
and validation set, with the split ratio of 7:3. All results in this
section are reported based on Market1501-validation.

Fig. 3(a) shows the impact of the parameter α on the per-
formance. The result demonstrates that both the positive and
negative terms in our loss are important. The model does not
learn well when one of the two terms becomes too dominant.
Fig. 3(b) shows the impact of the rank margin m on the per-
formance. With the introduction of non-zero rank margin to
LSRT, our model is generally improved by 2%∼ 3% in mAP.
The green dotted line in Fig. 3(b) indicates the performance
of the soft margin. It is clear that the soft margin yields the
best performance. Fig. 3(c) shows that our loss performs the
best when all components are included.

3.5. Comparison to state-of-the-art losses

Tab. 1 shows the comparison of our losses to the variants with
the triplet loss. All losses are trained with the same backbone
Resnet-v1-50 under the same training settings. Our soft rank-

Table 1: Comparisons with other losses on person ReID datasets,
Market1501, CUHK03-NP, and DukeMTMC. The asterisk (*) indi-
cates that the hard mining technique is used during training. SRT-F
denotes our full loss by including all extensions.

Loss
Type

Market1501 CUHK03-NP DukeMTMC
detected labeled

mAP CMC@1 mAP CMC@1 mAP CMC@1 mAP CMC@1

Softmax 53.8 79.2 23.6 28.9 27.9 31.8 47.0 68.3
Tri 68.7 85.0 52.4 58.9 56.4 62.9 59.1 76.2
Tri-HN 73.0 87.9 55.3 61.4 58.4 65.1 62.9 79.7
Tri-BH 74.0 88.5 56.0 59.4 58.9 64.4 63.6 78.9
Tri-AW 75.3 89.4 58.2 64.0 60.7 66.9 64.1 80.2
Tri-AW* 76.5 89.7 58.9 64.5 61.1 67.1 65.5 81.4

SRT 77.3 90.1 59.4 65.3 62.9 68.6 65.9 81.1
SRT-F 78.6 90.3 62.1 67.5 65.1 70.5 68.3 82.3
SRT-F* 79.2 90.8 63.0 68.1 65.8 71.3 67.9 83.0

Table 2: Comparisons with other losses on DeepFashion. × indi-
cates that the task is too difficult for the loss to perform well.

Loss
Type

Consumer-to-shop In-shop
w/o bbox w/ bbox w/o bbox w/ bbox

mAP CMC@20 mAP CMC@20 mAP CMC@1 mAP CMC@1

Softmax × × × × 53.0 73.2 51.3 71.2
Tri. 13.8 45.0 20.2 57.0 65.4 81.6 65.5 81.8
Tri-HN 20.6 56.5 28.8 68.5 69.2 85.4 68.1 84.4
Tri-BH × × 26.3 64.1 69.3 85.2 68.1 83.5
Tri-AW 19.7 55.8 27.1 66.9 70.4 85.9 70.3 85.8

SRT 19.4 55.1 27.3 67.0 71.4 87.2 71.4 86.9
SRT-F 21.2 58.0 28.9 68.7 71.6 86.9 71.2 86.5

ing threshold losses outperform all members in the triplet loss
family by 3% to 5% in mAP on the person reID dataset.

For fashion retrieval, Tab. 2 shows that our soft ranking
threshold loss is better than or comparable to most other
losses except for the hard negative triplet loss. However, the
full version of our loss (SRT-F) outperforms all losses. In ad-
dition, note that batch hard triplet loss only performs well on
cross-domain fashion retrieval, but fails on in-domain tasks,
while our loss performs well on both tasks.

4. CONCLUSION

In this paper, we design a new loss functions, called soft rank-
ing threshold loss, using the differentiable approximation of
ranking directly. It minimizes the ranking values of anchor-
positive pairs and maximize the ranking values of anchor-
negative pairs. In addition to the basic form, we have also ex-
plored two extensions: hard thresholds and ranking margin,
for further improving the performance. Experiments show
that our losses outperform other losses on person ReID and
fashion retrieval.
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