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ABSTRACT

Trajectories have been shown to be robust and widely used
in surveillance video event analysis. They encode spatial and
temporal evidence simultaneously. Hence, clustering trajec-
tories in a video can detect representative events. How to ef-
fectively represent trajectories is thus essential to video event
detection. However, no a single representation of trajectories
suffices in increasingly complex video analysis tasks. To ad-
dress this issue, this paper presents a hierarchical clustering
algorithm for grouping trajectories in multiple heterogeneous
representations. It turns out that our method can not only
group trajectories of highly similar events but also identify
rare events from the dominant events. Experimental results
show that our method can retrieve both dominant events and
rare events compared with the state-of-the-art methods, lead-
ing to a better performance.

Index Terms— Video surveillance, event detection, mul-
tiple feature representations, trajectory clustering

1. INTRODUCTION

Trajectories are extracted by tracking spatially and tempo-
rally coherent keypoints in a video. The joint extraction of
spatial layout and temporal motion has made trajectories cru-
cial to various applications related video event analysis, such
as [1, 2, 3, 4]. For detecting events in videos, supervised tra-
jectory labeling is labor intensive and less practical since the
learned trajectory models may not adapt themselves well to an
unseen video due to the high diversity of videos. Therefore,
in this work, we present an unsupervised method that jointly
considers trajectories in multiple feature representations and
can compensate for the absence of trajectory labeling.

The literature of video event detection is extensive. Vla-
chos et al. [5] proposed the longest common subsequence
(LCSS) to measure the similarity between trajectories, and
carry out trajectory retrieval. Naftel and Khalid [6] used
self-organizing maps (SOM) to cluster trajectories in the
forms of discrete Fourier transform (DFT) coefficients for
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grouping objects with similar activities. DFT coefficients
are also adopted in [7] with a time-sensitive Dirichlet pro-
cess mixture model (tDPMM) to cluster similar trajectories.
Hu et al. [8] presented a clustering-based tracking method
to hierarchically group spatially and temporally similar tra-
jectories. In [9], trajectories are represented by principal
component analysis (PCA) coefficients, and spectral cluster-
ing [10] is applied to trajectory grouping. Jung et al. [11] used
trajectory clustering with motion histograms to achieve event
detection. Jiang et al. [12] proposed to use hierarchical clus-
tering and hidden Markov models (HMM) for unusual video
event detection. Atev et al. [13] compared the performance of
the longest common subsequence (LCSS) [5], dynamic time
warping (DTW), and the modified Hausdorff distance with
agglomerative clustering and spectral clustering for event
detection. Zhou et al. [14] proposed a dynamic pedestrian-
agents (MDA) based mixture model to unsupervisedly learn
crowd behavior from videos. Nawaz et al. [15] clustered
trajectories in urban scenes by mapping object trajectories
on a reference plane with discrete wavelet transform (DWT)
coefficients extracted from trajectories. Huang et al. [16]
combined trajectory entropy descriptors (TED) and affinity
propagation [17] to cluster trajectories of moving foreground
objects. Bastani et al. [18] applied the Dirichlet process
mixture model to incremental trajectory clustering.

Unlike existing unsupervised methods, our method can
leverage heterogeneous trajectory representations to better
discover both representative and unusual events without pre-
defining the number of clusters. In our method, trajectories
are compiled by using the scheme in [19] in advance. Com-
plementary characteristics are extracted to yield the multiple
feature representations of trajectories. Our method performs
a two-stage clustering. At the first stage, trajectory clustering
is applied based on each individual feature representation. At
the second stage, the clustering is performed to divide tra-
jectories into groups by fusing the multiple clustering results
obtained at the previous stage. As shown in the experiments,
our method achieves better accuracy compared with the state-
of-the-art methods. In addition, our method can also identify
trajectories of rare events from the dominant trajectory clus-
ters, which is valuable for unusual event detection.



2. THE PROPOSED METHOD

Our method is introduced in this section. We first describe
the multiple representations of trajectories and then specify a
two-stage algorithm for multi-modal trajectory clustering.

2.1. Heterogeneous Trajectory Representations

For a given video, we extract a set of trajectories by using the
method in [19]. For the ith trajectory Ti, we define it by

Ti = [pi(tsi) . . .pi(t) . . .pi(tei)] ∈ R2(tei−tsi+1), (1)

where pi(t) = [xi(t) yi(t)] ∈ R2 is the 2D spatial position
of Ti in the tth frame, and tsi and tei are the first and last
appearing frames of Ti, respectively. In this work, we employ
four heterogeneous representations for better trajectory de-
scriptions, including the starting positions, ending positions,
velocities, and accelerations.

The first trajectory representation of Ti is its starting po-
sition, namely

f1i = [xi(tsi) yi(tsi)] ∈ R2. (2)

Similarly, its ending position serves as the second repre-
sentation, i.e.,

f2i = [xi(tei) yi(tei)] ∈ R2. (3)

Despite their simplicity, the first two feature representations
record the spatial information, which is quite crucial to event
identification.

Except for the spatial locations, distributions of velocities
and accelerations provide temporal evidence to distinguish
the motions of different trajectories. For example, a vehicle
and a pedestrian move from the same starting position to the
same ending position. To separate the trajectories on the ve-
hicle from those on the pedestrian, trajectory velocities and
accelerations are discriminative in this case. Nevertheless, the
lengths of trajectories of the vehicle and the pedestrian may
be different. Thus, how to compare trajectories of different
lengths becomes an issue.

To solve this issue, the trajectory entropy descriptor
(TED) [16] was proposed to characterize the velocity and
acceleration distributions of trajectories with a unified length
based on the entropy of velocities and accelerations. Our
third trajectory representation f3i of Ti is the entropy of the
velocity defined by
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representation f4i of Ti is the entropy based on accelerations
defined below
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All the elements in (5) are the same as those in (4) except all
the velocity statistics are replaced by the acceleration statis-
tics in the computation of entropy. Due to the space limit,
please refer to [16] for the details.

2.2. Hierarchical based Clustering

A trajectory is described by different feature representations,
including the positions at each time slot, the moving ve-
locities, and the accelerations. Variations among different
representations often make cross-representation comparison
difficult. Consider a trajectory on a fast-moving vehicle. This
trajectory is often much shorter than that on a slow-moving
pedestrian with the same moving distance. To consider mul-
tiple representations simultaneously, a feasible way is to
normalize each representation in advance and merge the nor-
malized trajectories into a supervector for similarity measure.
The dimensions and scales of each representation are in-
consistent. Thus, representations with higher dimensions or
larger variations dominate in similarity estimation.

To avoid the aforementioned problems, we propose to
fuse multiple feature representations in the domain of clus-
ters and present a two-stage clustering algorithm to carry it
out. At the first stage, we get the clustering results by group-
ing similar trajectories for each trajectory representation. At
the second stage, clustering is performed again to obtain the
new groups of similar events under heterogeneous trajec-
tory representations by fusing their cluster labels obtained
at the previous stage. The details of the proposed clustering
algorithm are given in the following.

The similarity between trajectories under each feature
representation is evaluated prior to clustering. Specifically,
the similarity between trajectories Ti and Tj under the kth
trajectory representation is computed by

sk(Ti, Tj) = e−‖f
k
i −f

k
j ‖, for k ∈ {1, ..., 4}, (6)

where fki and fkj are the kth trajectory representations of Ti

and Tj , respectively.
For each trajectory representation, we apply affinity prop-

agation (AP) [17] to cluster all trajectories by taking their
pairwise similarities, given in (6), as input. Based on the re-
sponsibility and availability of data points, AP produces the
clustering result Lk for data under each representation k. Let
nk denote the number of resultant clusters. The clustering
result Lk can be defined by

Lk = {Lk
1 , L

k
2 , . . . , L

k
n, . . . , L

k
nk}, for k ∈ {1, ..., 4}, (7)

where Lk
n is the index set of data falling into the nth cluster.



Because different clusters represent different trajectory
characteristics under each representation, we perform the
enumerative combinatorics based on the clusters of all tra-
jectory representations to obtain the fusion results. Here,
a combination is a selection of the cluster label from each
individual clustering result. Specifically, the combination
label L`, the `th element in the combination set of the fusion
results, is defined as

L` = (`1, `2, `3, `4), (8)

where 1 ≤ `k ≤ nk, for k ∈ {1, ..., 4}, is the cluster label se-
lected from the clustering result under the kth representation.
Thus, the total number ω of clusters of our hierarchical based
clustering method is

ω =

4∏
k=1

nk, (9)

where nk is the number of clusters yielded under the kth rep-
resentation.

Based on the combination labels, trajectories are reas-
signed to new groups where a group will contain the trajec-
tories of the same labels in all individual clustering results.
In our paper, we consider four heterogeneous trajectory rep-
resentations including the starting position f1i , ending posi-
tion f2i , TED of velocities f3i , and TED of accelerations f4i .
We cluster trajectories under each representation individually,
and fuse all the clustering results. It is easier to understand the
two-stage clustering through an example. The trajectories are
grouped to 2 clusters with respect to f1i , say trajectory groups
starting at the right and the left sides of the frame, respec-
tively. Trajectories are grouped to 3 clusters with respect to
f2i , say trajectory groups ending at the top, the middle, and
the bottom sides of the frame, respectively. The feature rep-
resentation f3i divides trajectories to 4 clusters. The feature
representation f4i divides trajectories to 5 clusters. The total
number ω of clusters is 120 (= 2 × 3 × 4 × 5) by combin-
ing the 2 clusters of f1i , 3 clusters of f2i , 4 clusters of f3i , and
5 clusters of f4i . Note that if a trajectory has a different la-
bel combination with respect to other trajectories, our method
will reserve the group for the trajectory instead of merging it
to other dominant groups. As a result, trajectories of rare and
unusual events can be reserved in our method. Certain combi-
nation labels may contain no trajectories, which implies that
these kinds of events do not exist in the video.

3. EXPERIMENTAL RESULTS

In the experiments, one indoor (hall) and three outdoor
surveillance videos (sidewalk, street and QMUL) from
[19, 20] are employed to serve as the testbed. Detailed infor-
mation of the videos is shown in Table 1. The ground truth of

Table 1. Resolutions and frame numbers of the four videos.
Resolution # of Frames

hall [19] 320× 240 66,771
sidewalk [19] 320× 240 104,864

street [19] 320× 240 79,449
QMUL [20] 360× 288 90,000

Table 2. Performance comparison in accuracy (%).

hall sidewalk street QMUL

Vlachos et al. [5] 49.593 26.538 41.431 29.673
Hu et al. [7] 54.878 38.462 42.373 38.663
Hu et al. [8] 43.415 29.000 31.959 31.909

Bashir et al. [9] 42.480 31.962 32.467 32.612
Atev et al. [13] 40.366 33.192 32.599 31.357
TED [16] + AP 21.138 32.308 20.527 12.404
TED [16] + SC 44.919 34.000 34.237 28.890

Ours 53.659 52.308 50.094 46.316

events was labeled manually according to the starting posi-
tions, ending positions, velocities, and accelerations of fore-
ground objects. To evaluate the performance of clustering re-
sults, clustering accuracy and normalized mutual information
(NMI) [21] were adopted. We compared our method with the
state-of-the-art methods using different trajectory representa-
tions and clustering algorithms, including [5, 7, 8, 9, 13, 16].

The comparison results are shown in Table 2 and Table 3
for accuracy and NMI, respectively. Our method achieves the
best performance on videos sidewalk, street and QMUL,
and the second best accuracy on video hall. In the out-
door videos, both pedestrians and vehicles appear at the same
frames. Using features related to velocities and accelerations
can better separate trajectories on pedestrians from those on
vehicles, even if these trajectories have the same moving di-
rections. The competing methods such as ”TED + AP” and
”TED + SC”, which combine the trajectory entropy descriptor
(TED) [16] with affinity propagation (AP) [17] and spectral
clustering (SC) respectively [22], do not perform well. The
main reason is that concatenating normalized heterogeneous
features to a supervector often leads to the scale problem. In
addition, the position information is lost during clustering.
Similar results can be observed in Table 3 for NMI.

Fig. 1(a) shows the clustering results on the hall video.
The starting positions of the trajectories are marked in red.
The first three figures in Fig. 1(a) show the most dominant
three trajectory clusters moving from the main gate to the el-
evator, from the main gate to the left stair, and from bottom
to the left stair, respectively. The last two columns display
two individual events which are not merged to others clusters
because their starting and ending positions are different from
those of other trajectories. By individually considering het-
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Fig. 1. Five trajectory clusters, one in each column, detected by our approach on four videos, including (a) hall, (b)
sidewalk, (c) street, and (d) QMUL. See the text for the details.

Table 3. Performance comparison in NMI (%).

hall sidewalk street QMUL

Vlachos et al. [5] 86.584 63.802 83.120 76.033
Hu et al. [7] 86.804 73.688 83.672 84.890
Hu et al. [8] 82.039 57.254 68.992 67.980

Bashir et al. [9] 78.781 57.798 67.725 68.940
Atev et al. [13] 84.081 60.271 76.675 76.714
TED + AP [16] 65.199 57.864 65.037 67.244
TED + SC [16] 84.691 64.086 74.041 74.288

Ours 87.698 77.523 87.506 87.811

erogeneous trajectory representations, our method can sepa-
rate these distinctive trajectories from the rest. As shown in
Fig. 1(b), the trajectories in the first column are extracted from
pedestrians, and the trajectories in the second column are ex-
tracted from motorcycles and bicycles. Although these two
groups have similar starting and ending positions, our method
can distinguish them referring to the clustering results related
to velocity- and acceleration-based features. The fourth col-
umn displays an unusual event walking on the non-sidewalk
area. The fifth column gives a trajectory resulting from track-
ing failure. Although these events are rare, our method can
successfully identify them from dominant groups.

The first three columns in Fig. 1(c) show the dominant

groups of events moving near the entrance of the underground
parking lot. The fourth column illustrates a trajectory of a
pedestrian moving straight and then changing his moving di-
rection. The fifth column shows a miss-tracked trajectory.
The first four columns of Fig. 1(d) give the dominant groups
of events. Because our method considers the starting and end-
ing positions individually, vehicles of different lanes can be
separated to two groups as shown in the first two columns.
The fifth column shows a trajectory of a vehicle making a
U-turn. Such a rare and interesting event is detected by our
method.

4. CONCLUSIONS

We propose a novel hierarchical clustering algorithm that
groups trajectories in heterogeneous feature representations
for event discovery. The proposed method leverages com-
plementary evidence extracted from diverse features, and
effectively and efficiently divides trajectories into clusters of
high quality. It turns out that our method can not only group
trajectories to discovery dominant events but also detect rare
events. Our method is evaluated and compared to state-of-the-
art methods, and achieves superior results in the experiments.
In the future, we will apply the proposed method to applica-
tions, such as anomaly detection and object tracking, where
high-quality trajectory clusters are appreciated.
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