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ABSTRACT

We aim to resolve the difficulties of action recognition arising
from the large intra-class variations. These unfavorable vari-
ations make it infeasible to represent one action instance by
other ones of the same action. We hence propose to extract
both instance-specific and class-consistent features to facili-
tate action recognition. Specifically, the instance-specific fea-
tures explore the self-similarities among frames of each video
instance, while class-consistent features summarize within-
class similarities. We introduce a generative formulation to
combine the two diverse types of features. The experimental
results demonstrate the effectiveness of our approach.

Index Terms— Action recognition, video understanding

1. INTRODUCTION

Human action recognition has received strong attention in the
fields of computer vision and video processing. As one of
the most important components for video understanding, ac-
tion recognition is essential to a wide range of applications,
such as video surveillance, anomaly detection, and human-
computer interaction. Despite the great applicability, a fun-
damental difficulty hindering the advance of action recogni-
tion is large intra-class variations [1]. Such variations can re-
sult from both intrinsic and extrinsic factors, such as posture
differences among persons, ambiguities from clutter back-
ground, different camera perspectives, or partial occlusions.

1.1. Related work

Designing more robust feature representations for action
recognition has gained significant progress recently. Global
representations, in which the region of an action is encoded
as a whole, are widely used for their simplicity. Bobick and
Davis [2] extract silhouettes of an action and construct two
templates, motion energy image (MEI) and motion history
image (MHI), to describe motions of silhouettes. Blank et
al. [3] consider actions as 3D space-time shapes, and charac-
terize those shape volumes by saliency and oriented features.
However, global representations are very sensitive to self-
occlusions, view variations, and noise. Local representations,

especially the bag-of-words approaches [4, 5, 6], are popular
recently. Approaches of this class compile histograms of lo-
cal quantized features. Nevertheless, the geometric structure
of the local features in the spatio-temporal space is ignored in
these approaches. It often causes performance degradation.

A vast amount of research effort has been made on mod-
eling the correlations among local features. Matikainen et
al. [7] specify correlations by a frequency lookup table of
quantized geometrical displacements. Prabhaka et al. [8] esti-
mate the causalities between visual words, and integrate them
as parts of feature representations. Sun et al. [9] detect and
track interest points to yield trajectories, and adopt Markov
chaining to analyze the transitions of local features. Besides,
approaches in [10, 11, 12] apply graphical models, such as
HMM, MRFs, or CRFs, to handling the temporal variations of
human actions. However, strong independence assumptions
are required in these graphical models. Hence it is almost
infeasible to deal with long-term temporal dependency.

1.2. Our approach

In this work, we aim to address the difficulties caused by large
intra-class variations in action recognition. Due to the intra-
class variations, an action instance cannot be well described
by other instances of the same class. Hence we propose to
represent actions by extracting two disjoint types of features,
i.e., instance-specific and class-consistent features. While
the former investigate characteristics that may vary from in-
stance to instance, the latter explore properties that commonly
shared by instances of the same action.

Specifically, we develop a general method to capture
temporal dynamics of an action via referencing the self-
similarities among frames of an action sequence. Multivari-
ate linear prediction (MLP) is adopted to aggregate all the
causalities of previous frames on the current ones. The re-
sulting action dynamics are instance-specific in the sense that
frame is approximated by other frames of the same video
instance. On the other hand, we use support vector machines
(SVMs) to discover the class-consistent features based on
the bag-of-words model. Finally, a generative formulation
is introduced to integrate the two complementary types of
features, and leads to a performance improvement of action



recognition.

2. THE PROPOSED FRAMEWORK

In the section, we first give the adopted formulation that si-
multaneously takes the two feature sets into account for ac-
tion recognition. Then its two components that extract and
model the two sets of features are described respectively.

2.1. Our Formulation

Suppose we are given a set of data of one particular action c,
Sc = {Xi ∈ RT×D, yi = c}Ni=1, where Xi is a video with T
frames and each frameXi(t) is described by aD-dimensional
vector. In this work, a generative approach is adopted to learn
the class-conditional densities p(X|c), as well as the class
prior p(c) from Sc. We assume information embedded in X
can be divided into temporal dynamics and static spatial in-
formation, and the two types of information are conditionally
independent when the class of X is known, i.e.,

p(X, c) = p(X|c)p(c) = p(X ′|c)p(xµ,xσ|c)p(c), (1)

where xµ ∈ R1×D and xσ ∈ R1×D are the mean vector and
the standard deviation vector of the rows of X respectively,
and X ′ ∈ RT×D is obtained by normalizing X with respect
to (xµ,xσ).

To learn p(X ′|c), we investigate self-similarities among
successive frames from relative measurement X ′ to model
temporal dynamics of an action. On the other hand for
p(xµ,xσ|c), we explore commonly-shared properties among
videos in Sc from absolute measurement (xµ,xσ) to capture
static spatial properties. The features obtained in the former
part are thought of as instance-specific, while the ones in the
latter part are class-consistent. This point will be clarified
later. Both types of features are jointly considered for action
recognition in a principled way.

Specifically, we estimate temporal dynamics by multivari-
ate linear prediction (MLP), and learn a static spatial model
by support vector machines (SVMs) for each action c. For a
testing instance Z, we predict its class by

c∗ = arg max p(X ′|θc)p(xµ,xσ|θc)p(c), (2)

where θc is the set of parameters of the learned MLP and
SVMs for action c.

2.2. Temporal dynamics via MLP

Temporal dynamics are described via self-similarities among
frames, i.e., the current frame can be approximated by a linear
combination of its previous ones. The recovered action dy-
namics are thought of as instance-specific in that each frame
is described by only frames belonging to the same video in-
stance. To this end, we develop multivariate linear prediction,

which is a multi-dimensional generalization of linear predic-
tion [13]. Given a multivariate point-process X ′ with zero
mean and unit variance, it is formulated by

X ′(t) =

K∑
k=1

X ′(t− k)Ak + ec(t) = X̄tA+ ec(t)

= [X ′(t− 1) . . . X ′(t−K)]︸ ︷︷ ︸
X̄t

 A1

...
AK


︸ ︷︷ ︸

A

+ec(t), (3)

where Ak ∈ RD×D is the coefficient matrix and ec(t) ∈
R1×D is the reconstruction error. Variable A is typically opti-
mized by minimizing the expectation energy of reconstruction
error, i.e.,

A∗c = arg min
A
E

∑
t

||ec(t)||2 + λ
∑
i,j

A2(i, j)

 , (4)

where E[·] is the expectation operator over videos of action c.
Optimization problem (4) is convex with L2 regularization,
and has a globally optimal solution. We use cross-validation
to determine λ, and obtain A∗c by solving an equivalent linear
problem. The details of this part is omitted due to the space
restriction.

With A∗c by multivariate linear prediction and applying
the probability operator to both sides of (3), we have

p(X ′(t)|X ′(t− 1), ..., X ′(t−K), A∗c) = p(ec(t)). (5)

We see in (5) that high-order temporal dependency, which
is hardly modeled by graphical models such as HMM and
MRF, is described by the probability of reconstruction error.
It follows that term p(X ′|c) in (1) can be rewritten as

p(X ′|c) =
∏
t

p(X ′(t)|X ′(t− 1), ..., X ′(t−K), A∗c) (6)

=
∏
t

p(ec(t)). (7)

In our implementation, p(ec(t)) is defined by

p(ec(t)) = exp (−γ||ec(t)||2), (8)

where γ is a positive constant.

2.3. Static spatial model via SVMs

We learn p(xµ,xσ|c) in (1) via establishing the static spatial
model of action c. Gaussian or Gaussian mixture models ful-
fill this goal, but with empirical comparison we find that better
recognition performance of this part is obtained by adopting
a discriminative classifier with Bayes’ rule, i.e.,

p(xµ,xσ|c) =
p(c|xµ,xσ)p(xµ,xσ)

p(c)
∝ p(c|xµ,xσ). (9)



(a) walking (b) running (c) jogging

(d) boxing (e) clapping (f) waving

Fig. 1. The KTH dataset. (a) ∼ (f) Six action classes.

From (2), we know p(xµ,xσ) is irrelevant to recognition. The
class probability p(c) is typically determined by one’s prior
knowledge and is set as a uniform distribution in our cases.
As for p(c|xµ,xσ), we estimate it by learning an SVM classi-
fier with probability outputs [14]. The yielded SVM classifier
fc is specified by decision boundary wc. The static model
obtained in this way is considered as class-consistent, since
fc is developed to separate all videos of action c from the rest
by exploring their commonly shared features. With temporal
dynamics in (7) and static model in (9), the logarithm of (2)
becomes

c∗ = arg max
c
−γ

T∑
t=1

||ec(t)||2 + log fc(zµ, zσ;wc), (10)

where γ weighs the importance tradeoff between action dy-
namics and static spatial model, and is set by cross validation.

3. IMPLEMENTATION DETAILS

The details of the adopted features for video description are
given in the section. First a set of dense trajectories is gener-
ated from each video using the algorithm by Wang et al. [6]
with parameter setting (L = 14, nz = 7). Each trajectory
is characterized by three different descriptors: 1) motion
boundary histogram (MBH), 2) histogram of oriented gradi-
ent (HOG), and 3) histogram of optical flow (HOF). Then a
dictionary is constructed in the similar way as the one in [6]
but with two differences: 1) We don’t quantize a trajectory
into one word but into multiple words according to its tem-
poral separation. For example, a 14-frame long trajectory is
temporally divided into 7 segments. Each segment (with 2
frames) is quantized into one word; 2) The dictionary size
is set to 300 for the concern of computational efficiency. Fi-
nally, a video is represented by a point-process matrix [12]
whose rows are temporally ordered histograms over words.
In our experiments, time interval between two successive
samplings is set to two frames in 25 fps video sequences.

Table 1. Recognition rates of various approaches.
Method Recognition rate

Rodriguez et al. [15] 88.7%
Wang et al. [6] 94.2%

Chen and Aggarwal [12] 90.9%
Le et al. [16] 93.9%

Ours (instance-specific) 93.9%
Ours (class-consistent) 93.6%

Ours (combined) 95.0%

Table 2. The confusion matrix on the KTH dataset.

walk run jog box clap wave
walk 100% 0% 0% 0% 0% 0%
run 0% 82.6% 17.4% 0% 0% 0%
jog 0% 9.0% 91.0% 0% 0% 0%
box 0.7% 0% 0% 99.3% 0% 0%
clap 0% 0% 0% 2.8% 97.2% 0%
wave 0% 0% 0% 0% 0% 100%

4. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed approach on the
KTH [5] action dataset, one of the benchmark datasets for ac-
tion recognition. It consists of six action classes: walking,
jogging, running, boxing, waving, and clapping. One exam-
ple from each of the six classes is shown in Fig. 1. Each action
is repeatedly performed several times by 25 subjects. These
video sequences are recorded in four different scenarios: out-
doors, indoors with scale variation, outdoors with different
clothes. Totally 2391 samples are yielded. These samples
display rich intra-class variations caused by the combination
of subjects and scenarios. They nevertheless provide a good
test bed to demonstrate the importance of using both instance-
specific and class-consistent cues.

We follow the evaluation protocol in [5] for performance
measure. For parameter setting, parameter λ in (4) is set for
each action, so that the lowest energy of the reconstruction
error over the validation set is obtained. The reconstruction
errors of each action with respect to different values of λ are
plotted in Fig. 2. As for γ in (8), it is determined via two-fold
cross validation.

Our approach with three different settings, i.e., using
instance-specific features, class-consistent features, and both
of them, is compared with several published systems, includ-
ing [6, 12, 15, 16]. The recognition rates are summarized in
Table 1. We see that good performance is obtained by using
only instance-specific features. It implies that the temporal
dynamics can be well described by these instance-specific
features, and are discriminant enough for action recognition.
On the other hand, we observe that the two types of features



Fig. 2. The reconstruction errors vs. different values of λ for
each action class.

seem to complement each other, and lead to a recognition rate
of 95.0%. To our knowledge, this is the best recognition rate
reported on KTH dataset.

Tabel 2 gives the confusion matrix. It is worth noting that
relative to the state-of-the-art systems, such as [6, 12, 15, 16],
the proposed approach has better ability to distinguish walk-
ing, jogging, and running. This reveals that it can effectively
use the long-term dependency among successive frames to es-
tablish more reliable temporal dynamics. Finally, Fig. 3 visu-
alizes the learnedA∗c = [A1 A2 A3] in (4) for action walking.
It illustrates the causalities of the visual words.

5. CONCLUSIONS

We have presented a novel approach to action recognition by
using both instance-specific and class-consistent cues. The
instance-specific features are designed to describe action dy-
namics via MLP, while the class-consistent features conclude
within-class similarities via SVMs. We introduce a genera-
tive formulation to elegantly combine the two diverse sets of
visual features, and the proposed approach achieves the state-
of-the-art recognition rate on KTH dataset. For future work,
our approach will be more comprehensively evaluated under
different settings and with various human actions.
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