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ABSTRACT

We address the problem of recognizing 2-D shapes in im-
ages via multi-class classifications. Our approach has three
key elements. First, a signed distance transform is intro-
duced to represent a shape more informatively. Second,
a filter bank is generated such that its filters can capture
multiple-scale local and global features between two shapes
of different classes. We then apply boosting to combine
useful filters to construct discriminant classifiers. Third, in
implementing our system, a new classification architecture
is developed to accomplish multi-class recognition. To ex-
amine the claimed efficiencies, we consider an example of
document recognition by pinpointing the strengths of our
method through experimental results and comparisons.

1. INTRODUCTION

Our primary goal is to establish a general approach to recog-
nize 2-D shapes/silhouettes through classifications. Specif-
ically, the crux of the proposed method is a learning tech-
nique that employs boosted filtering over an effective shape
representation model. With training data consisting of im-
ages of various shapes, we systematically identify important
local and global features to characterize the dissimilarities
among different classes. The resulting efficiency is illus-
trated with an extensive example of digit recognition. In-
deed, compared with other existing methods, our approach
achieves much higher efficiency with the accuracy rate ap-
proaching the state-of-the-art, e.g., [1], [2].

2. SHAPE REPRESENTATION

In many image processing and computer vision applications,
e.g., OCR [1], gait recognition [3], and shape database man-
agement [4], to establish an effective and compact shape
representation model often plays a critical role on the over-
all performance of such a system.

Perhaps the most explicit way to represent a 2-D shape
is by a set of pixels contained within the shape. Alterna-
tively one can describe a shape by its boundary contour(s),
which is typically a more compact representation than the
straightforward region representation. For more sophisti-
cated shape descriptors, the work of Felzenszwalb [5] uses
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Fig. 1. (a)-(d) Examples of silhouettes/shapes of inter-
est. (e)—(f) Their respective compact representations after
applying signed distance transform, where the color bars
show pixels’ signed distance values to the boundaries.

a triangulated polygon representation for shapes with pos-
sible deformations. In [6], based on the self-similarity of
shapes, Geiger et al. introduce a variational framework that
computes their shape axes, and establish a compact repre-
sentation to account for deformations and articulations. The
shape context [2] proposed by Belongie et al. can be used
to compute the coarse distribution with respect to each point
on a shape, and it naturally induces a shape matching algo-
rithm via bipartite matching. However, while these systems
are useful for various problems, they are often computation-
ally too expensive for on-line applications.

In view of efficiency, we instead consider a new shape
descriptor based on the following two practical issues.

e Most information about a shape/silhouette is given
by the foreground pixels (e.g., those white pixels in
Fig. 1a-Fig. 1d). However, the background (black)
pixels often occupy most of the regions. They both
should be taken into account in constructing an infor-
mative representation.

e To encode the background and the foreground infor-
mation of a shape, we simply use the Euclidean dis-
tance to depict their topological relations to the shape
boundaries, i.e., those foreground pixels having back-
ground pixels as their neighbors.

Given a shape image I (such as those plotted in Fig. la—
Fig. 1d), let I be the set of its foreground pixels, and I' =
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where d((x,y),T) is the Euclidean distance from pixel (x, y)
to its nearest pixel in I'. Clearly, the DT transform of a
shape encodes both its local and global information in that
foreground and background pixels are simultaneously eval-
uated. Examples of shape images after the signed distance
transform are illustrated in Fig. le-Fig. 1h. Note that the
formulation in (1) is different from the 2-D level-set repre-
sentation, of which the level-set signed distance is defined
with respect to a unique zero level set.

3. CLASSIFICATION BY BOOSTED FILTERING

To use the representation (1) for shape recognition, we first
investigate a fundamental case of dealing with two-class
data, denoted as D = D4 U DF. Intuitively, one could
just try to experiment with most of the well-known similar-
ity measures, e.g., shape context [2], earth mover’s distance
(EMD) [7], and Chamfer distance [8], and then use nearest
neighbor criterion to accomplish the task of shape recogni-
tion. Nevertheless, evaluating such similarity measures are
often slow, and the situation is further deteriorated by the
search of the nearest neighbors. Our approach therefore fo-
cuses on efficiently performing shape recognitions, where
its effectiveness is resulting from a boosted filtering frame-
work using the DT transform.
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Fig. 2. (a) A filter f is specified by three parameters, in-
cluding a pair of samples, say s; and s;, and their com-
mon ROI, 6. Thus, the filtering applying to a sample s is
denoted as f(s) = (s; — s;) - 0(s).

3.1. Filter Bank for Two-Class Data

Let Fp = {f1, f2, ..., fm} be a filter bank of size m over
the training data D. And each filter f € Fp is uniquely de-
fined by three parameters, including a pair of shapes from
different classes, and an area of region of interest (ROI).
More precisely, let 5;4 e D4, 533 € DB and 6 be some
ROIL. Since we choose to limit the ROIs into square regions,
we could simply write § = (center, length) to specify the
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Fig. 3. D = D° U D!, where D° and D! contain various
shapes of digits 0 and 1, respectively. (a), (b) The two
filters selected in the first two iterations of BHBoost [9].
Since each filter (weak learner) yields a pair of weighted
histograms for the two-class data, we also show the two
corresponding pairs of weighted histograms in (c) and (d).
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location and the size of an ROI. Consequently, we can rep-
resent a filter f by a particle of three parameters and write
out the correspondence as f < (s2, J ,0). (See Fig. 2 for
illustration.) In constructing Fp, we randomly sample m
particles from the parameter space. Notice that to ensure a
more uniformly distributed sampling over principal modes
of shapes in the same class, we have used K-means to cluster
each class of shapes into mixtures. Finally, filtering an in-
put sample, s, with f is simply the pixel-wise inner product
between s;* — s¥ and 0(s), i.e
f(s;sf‘,sf,ﬂ):(sf‘—sB)-Q(s), 2)
where 6(s)(x,y) = s(x,y) if pixel (x, y) is in the ROI of 6,
and 0, otherwise. Thus f is a real-valued filter that, depend-
ing on the location and the size of the ROI, the outcome of
applying f to a sample s emphasizes either the local or the
global correlations of s with the underlying parameters.

3.2. Discriminating Filter Selection via Boosting

In practice, the total number of filters in a typical Fp is
quite large, and their discriminating power could vary sig-
nificantly. This is indeed a critical issue if one intends to
build an efficient classifier based on as few filters as possi-
ble. Take, for example, the illustrations in Fig. 3, the data
D = D° U D' have around 6,000 images of digit 0 and
another 6,000 images of digit 1. (Each image is of size
28 x 28.) Even with random sampling, the filter bank Fp
in this example still has around 30, 000 filters. We therefore
adopt the BHBoost [9] for filter selection. Since each fil-
ter f projects a sample s into some real value, it will cause
a pair of distributions for the two-class data D° and D*.
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Fig. 4. Since the cost of each 2-class classifier can be computed in training, a DAG can be improved into an LCF-DAG.
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Hence selecting a filter/weak learner to distinguish the two
classes can be reduced to seeking an f that its pair of data
distributions have a small Bhattacharyya coefficient. With
BHBoost, we can conveniently obtain a classifier using only
a few filters to achieve the required recognition accuracy.
(Only 20 filters are needed for the example in Fig. 3.)

4. CLASSIFICATION ARCHITECTURE

Typical schemes to combine two-class classifiers for multi-
class recognition include, e.g., one-against-one, one-against-
all, ECOC (Error Correcting Output Code), and DAG (Di-
rected Acyclic Graph). Among these classification architec-
tures, DAG often yields higher efficiency with comparable
accuracy, as reported in [10]. For an n-class recognition
problem, a DAG is an n-level rooted tree, and contains ¢
nodes in its ith level. Thus, a classification procedure for
a test sample will be along some path from the root to one
of the leaves. Moreover, at any of the n — 1 internal nodes
(a two-class classifier) of such a path, one class candidate is
eliminated so that the leaf node would indicate the recogni-
tion result. An n = 4 example is given in Fig. 4a.

Often, the evaluation costs of these two-class classifiers
may vary significantly. For boosting, the complexity of each
classifier mainly depends on the number of weak learners.
In our implementation for digit recognition, classifying any
of the following pairs, {(2,7), (3,5),(3,8),(4,9),(7,9)},
is at least five times computationally more expensive than
classifying each of {(0, 1), (1,3), (1,8),(2, 5),(6,9)}. On
the other hand, classifications over a DAG inherit a property
that the closer an internal node is to the root, the more fre-
quently it will be visited. Taking account of these factors,
we formulate a new classification architecture, called LCF-
DAG (Lowest Cost First DAG), such that internal nodes of
lower computational costs are positioned near the root. See
Algorithm 1 for details about constructing an LCF-DAG.

Algorithm 1: LCF-DAG(C) for digit recognition

Input : The set of digit classes, C' = {0, 1,...,9};
cost(a,b), 0<a<b<9;

Output : A |C|-level binary tree;

LCE-DAG( C'){

if |C| = 1 then

| Create a leaf node for this class;

9}

else
(a*,0%) = argmin, pecra<p cost(a, b);
Embed the classifier (a*,b*) in the node;
Point to the right child: LCF-DAG(C — {a*});
Point to the left child: LCF-DAG(C' — {b*}); }

Unlike the DAG having its nodes uniquely determined
by the order of leaf nodes, the nodes in an LCF-DAG are
arranged according to the costs of their corresponding two-
class classifiers. In Fig. 4b, a four-class example of LCF-
DAG is constructed with respect to the costs of classifiers
listed in Fig. 4c. In both DAG and LCF-DAG, n(n — 1)/2
classifiers are learned in training, and n — 1 classifiers will
be evaluated in testing an input sample. Clearly, the LCF-
DAG implementation is more efficient in testing.

5. EXPERIMENTAL RESULTS

We test the proposed method with the application of hand-
written digit recognition on a P4 3GHz PC. For the sake of
comparison, the MNIST benchmark database is used (avail-
ableathttp://yann.lecun.com/exdb/mnist/)in
evaluating our system. This database consists of 60,000
training samples and 10, 000 testing samples. Each sample
is centered in a 28 x 28 image by computing the mass of the
pixels. In learning each two-class classifier, we randomly
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Fig. 5. Some of the misclassified test data.

sample 30, 000 filters into the filter bank. The ROIs of fil-
ters are squares with various scales, ranging from 4 x 4 to
28 x 28, and the number of bins used in each weak learner
is set to 16. Then, the described boosting scheme over an
LCF-DAG is used to construct the recognition system.

Table 1. Recognition results on MNIST data.

Class|| O 1 2 3 415 6 7 8 9
0 976 O 0 1 00 1 1 1 0
1 0 (1131 2 0 0|0 1 0 1 0
2 3 1 |1019| 4 1 010 2 210
3 0 0 1 (1002 0 | 2 | O 2 310
4 0 0 0 0 [974] 0 | 2 0 2 | 4
5 1 0 0 4 0 | 883 3 0 1 0
6 4 2 1 0 1 2 1947 0 1 0
7 1 2 4 0 0| 0] O |1014] 2 | 5
8 2 0 2 1 1 3 0 1 1960 4
9 2 1 1 2 5 1 0 5 2 1990

Concerning the accuracy, the error rate yielded by our
system is 1.04% (104/10000). The result is superior to
many well-known methods, such as linear classifier, RBF
network, nearest neighbor classifier, and polynomial classi-
fier, is compatible to the Reduced Set SVM [11], and falls
slightly behind the boosted LeNet-4 [1] (0.7%) and the shape
context [2] (0.63%). The detailed outcomes are given in Ta-
ble 1, where each row gives the classification results of the
corresponding digit class. To illustrate, some of the misclas-
sified samples are displayed in Fig. 5.

The efficiency gain is even more impressive. Owing to
the high convergence rate of BHBoost, the resulting clas-
sifiers often need fewer weak learners to achieve satisfac-
tory recognition rates. For instance, the average numbers of
weak learners used in the 45 two-class classifiers to attain
error rates 2.37%, 1.53%, and 1.04% are 10.6, 34.3, and
87.3, respectively. In addition, to see the advantage of using
an LCF-DAG, our system is compared with one-against-one
and DAG (leaf nodes are arranged in an ascending order),
given the same classifiers and testing data. The quantita-
tive results are listed in Table 2. While delivering almost
the same accuracy rate, LCF-DAG is 1.83 times faster than
DAG, and 8.42 times faster than one-against-one.

Table 2. Comparison: One-against-One, DAG, LCF-DAG.

Architecture Error Rate | CPU Time (10,000 testings)
One-against-One 1.02% 8.42t
DAG 1.08% 1.83t
LCF-DAG 1.04% t(= 7.Tsecs)

6. CONCLUSION

We have described a new approach for 2-D shape recog-
nition, and demonstrated with an example of hand-written
digit classification. The proposed image representation pro-
vides richer information, and is nicely coupled with the boost-
ing algorithm to effectively capture useful features. With an
LCF-DAG, our system can efficiently accomplish the task
of shape recognition. This work is supported in part by
grants 93-2213-E-001-018 and 93-EC-17-A-02-S1-032.
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