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ABSTRACT
Image deblurring is a highly challenging and ill-posed image restora-
tion problem. Contemporary deep learning-based approaches usu-
ally tackle this problem by exploiting the encoder-decoder-based
models trained by the commonly used mean squared error loss with
the feature matching loss as a regularization to obtain perceptual
consistent restored results as the ground truths. We argue that since
the general backbone models for computing feature matching loss
are usually not trained on the image deblurring task, the loss lacks
specific knowledge of blur and usually leads to suboptimal perfor-
mance. To address this issue, we propose a task-adaptive feature
matching loss for image deblurring where we synthesize blurred im-
ages in different blur extents and employ triplet loss to finetune the
backbone model for learning specific blur priors. Then, we lever-
age the finetuned backbone to compute feature matching loss which
can greatly enhance the existing image deblurring models for bet-
ter perceptual results. With extensive experiments on the GoPro and
RealBlur datasets, both qualitative and quantitative results show that
the SOTA deblurring models trained with the proposed loss can ef-
fectively obtain better and sharper restored images in terms of vari-
ous perceptual image quality metrics than the original models while
maintaining comparable PSNR and SSIM performances.

Index Terms— CLIP, feature matching loss, image deblurring

1. INTRODUCTION

Image deblurring is one of the most challenging image restoration
tasks which has been studied for decades in the computer vision
community. It is a highly ill-posed inverse problem with infinite
potential solutions since it has to recover a sharp image from its blur
version and to estimate blur kernel. Thus, it requires proper priors as
the regularization to correctly recover the accurate sharp image.

Deep learning-based image deblurring approaches usually em-
ploy the encoder-decoder-based models [1] to solve this problem
trained by the commonly used mean squared error (MSE) loss and
the like with the feature matching loss as a regularization. The
feature matching loss [2] is computed by taking the Lp-norm dis-
tance between the features of the restored and ground-truth images
extracted from the intermediate layers of pretrained deep networks
(e.g., AlexNet or VGGNet) on the ImageNet dataset. However, since
these pretrained models for computing feature matching loss are usu-
ally trained for other image tasks instead of image deblurring, the
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Fig. 1. Restored results of HINet [3] and our proposed task-adaptive
feature matching loss based on CLIP (TFMLC). It illustrates that the
restored image by the deblurring model (HINet) without employing
the feature matching loss usually lacks texture details and is usually
smoother than the one with (the proposed HINet-TFMLC) which is
perceptually closer to the ground truth.

loss lacks specific knowledge of blur and usually leads to subopti-
mal restored results as shown in Fig. 1.

To address this issue, we propose a task-adaptive feature match-
ing loss where we first adapt the pretrained deep networks in self-
supervised learning paradigm for image deblurring. For this pur-
pose, we synthesize blurred images in different blur extents from
sharp moving videos (GoPro dataset) and employ triplet loss [4] to
finetune the model to learn specific blur priors. Then, we can com-
pute the feature matching loss using the finetuned model as usual
to enhance the existing image deblurring models to generate the re-
stored images which are perceptually closer to the ground truths.
In our work, we employ Contrastive Language-Image Pretraining
(CLIP) [5] released by OpenAI as the backbone model to compute
the feature matching loss where the pretrained CLIP model is trained
contrastively using 400 million image-text pairs and shows strong
zero-shot capability for various vision and language tasks, including
zero-shot image recognition, zero-shot reference-free quality met-
rics for image captioning (i.e., CLIPScore [6]), etc. We thus name
our proposed loss after task-adaptive feature matching loss based on
CLIP (TFMLC) and the one without adaptation after feature match-
ing loss based on CLIP (FMLC). We apply the proposed methods
with two state-of-the-art image deblurring models, MPRNet [7] and
HINet [3], which are trained with their original losses along with the
proposed FMLC and TFMLC and conduct careful evaluations on the
challenging GoPro, RealBlur-J, and RealBlur-R datasets. Both qual-
itative and quantitative experimental results show that the deblurring
models trained with the proposed loss are able to obtain sharper re-
stored images with lower Blind/Referenceless Image Spatial Quality
Evaluator (BRISQUE) [8], Perceptual index (PI) [9], Learned Per-
ceptual Image Patch Similarity (LPIPS) [2], and Perceptual Image-
Error Assessment through Pairwise Preference (PieAPP) [10] scores
which are perceptually closer to the ground truths than the original
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Fig. 2. The overview of the proposed task-adaptive feature matching loss based on CLIP (TFMLC). We first synthesize blurred images in
different blur extents using the sharp moving videos from the GoPro dataset by taking the average frame from different sizes of video clips
where longer clips usually result in more blurry average frames, and the center frame t is used as the reference sharp image. Then, we add
additional MLP layers over the backbone model (CLIP) and finetune the MLPs while freezing the backbone using the triplet loss for feature
adaptation. Finally, we compute the final TFMLC loss using the adapted MLP features as the regularization for image deblurring models.

models while maintaining comparable Peak Signal-to-Noise Ratio
(PSNR) [11] and Structural Similarity (SSIM) [12] performances.

2. RELATED WORK

In this section, we briefly review relevant works on image quality
metric and image deblurring.

Image Quality Metric: Image quality metrics are classified into
two categories, subjective and objective metrics. For image deblur-
ring, most existing models adopt objective metrics, which are di-
vided into other two types: full-reference [11, 12, 13, 14, 15, 16, 17,
2, 18, 9, 10] and no-reference metrics [19, 20, 8, 21, 22, 23, 24].
The difference between these two methods is whether the restored
images are compared with ground-truth images for evaluation. Al-
though commonly used PSNR [11] and SSIM [12] metrics are sim-
ple to calculate and have clear physical meanings but hard to ad-
dress many subtleties of human perception. On the other hand, the
non-reference metric, BRISQUE [8] and PI [9], and full-reference
metrics, LPIPS [2] and PieAPP [10], focus on perceptual informa-
tion can better capture the perceptual similarity between images in
agreement with human judgments than PSNR and SSIM. BRISQUE
uses scene statistics of locally normalized luminance coefficients to
quantify possible losses of “naturalness” in the image. PI combines
two other non-reference image metrics and is highly correlated with
the ratings of human observers. LPIPS is computed based on the in-
termediate features of deep networks which are pretrained on the Im-
ageNet dataset and encode rich visual information to better capture
the perceptual relation between images than other metrics. PieAPP
learns to predict image perceptual error from a large-scale dataset
and is well-correlated with human opinion. As a result, we pay at-
tention to the perceptual image evaluation using the BRISQUE, PI,
LPIPS, and PieAPP metrics in our paper.

Image Deblurring: With the recent breakthroughs in deep
learning, people have widely started to solve the image deblurring
tasks by using various deep generative models to restore the sharp
images without estimating the blur kernel. Yang et al. [25] propose
a two-branch deep auto-encoder framework for image deblurring to
focus on high blur region with the help of the motion information
from the event camera and its attention modules. Zhang et al. [26]
propose two generative adversarial networks which jointly learn

how to blur and how to deblur to close the gap between synthetic
and real blurs. Purohit et al. [27] introduce a region adaptive dense
deformable modules with a self-attentive module into a densely con-
nected encoder-decoder design for significantly improved accuracy
and speed. Liang et al. [28] propose a transformer-based method
with self-attention and image warping modules to better capture
the blur characteristics for improved deblurring performance on
numerous challenging blur benchmarks. In this paper, we apply
our proposed methods to two state-of-the-art multi-stage deblurring
models MPRNet [7] and HINet [3] due to their superior perfor-
mances where MPRNet adopts supervised attention module (SAM)
and cross-stage feature fusion (CSFF) modules to learn the blur
characteristics for effective deblurring. Similarly, HINet leverages
half instance normalization block (HIN Block) along with the same
SAM and CSFF modules for image deblurring.

3. THE PROPOSED APPROACH

In this section, we present the proposed task adaptive feature match-
ing loss for image deblurring which is computed in two phases:
(1) performing feature adaptation of the pretrained backbone model
towards image deblurring and (2) training the image deblurring with
the feature matching loss with the adapted features. Furthermore,
we utilize the features extracted from the pretrained CLIP model [5]
as the backbone model to compute feature matching loss based
on CLIP (FMLC) and the proposed task-adaptive feature matching
loss based on CLIP (TFMLC) to provide additional regularization
for two state-of-the-art image deblurring models MPRNet [7] and
HINet [3]. The overview of the proposed framework is illustrated in
Fig. 2 and the computation details are described as follows.

Self-supervised Feature Adaptation for Image Deblurring: Since
most of the backbone models for computing feature matching losses
are not trained specifically for the image deblurring task, this usu-
ally leads to suboptimal performance when we train the deblurring
models with them. To address this issue, we first propose a self-
supervised learning strategy to synthesize blur images in different
blur extents. We then append additional multilayer perceptrons
(MLPs) to the backbone model followed by finetuning the MLP lay-
ers with triplet loss [4] which enforces the geometric constraint for



Table 1. The evaluation results of the proposed FMLC and TFMLC losses and compared baselines on the GoPro, RealBlur-J, and RealBlur-R
datasets. Best scores are highlighted. Our proposed TFMLC obtains the best BRISQUE, PI, LPIPS, and PieAPP values and comparable
PSNR and SSIM values simultaneously, while the proposed FMLC is the second best method.

GoPro RealBlur-J RealBlur-R
Method Origin FMLC TFMLC Origin FMLC TFMLC Origin FMLC TFMLC

MPRNet PSNR↑ 31.8819 31.8394 31.6548 26.4852 26.4867 26.3997 33.9438 33.9036 33.7888
SSIM↑ 0.9600 0.9599 0.9593 0.8484 0.8488 0.8469 0.8083 0.8075 0.8061

BRISQUE↓ 52.4175 51.0537 46.3271 48.2004 47.6759 44.5331 65.7721 65.5988 63.3873
PI↓ 5.2686 4.9309 4.2440 5.0767 4.8106 4.2586 7.2524 7.0697 6.7775

LPIPS↓ 0.1013 0.0844 0.0640 0.1612 0.1509 0.1387 0.0778 0.0714 0.0668
PieAPP↓ 0.7435 0.6963 0.6222 1.1182 1.0923 1.0602 0.6880 0.6626 0.6285

HINet PSNR↑ 32.7712 32.6660 32.4385 26.3620 26.3376 26.2858 33.8045 33.7690 33.7079
SSIM↑ 0.9593 0.9581 0.9553 0.8539 0.8519 0.8491 0.9467 0.9460 0.9441

BRISQUE↓ 52.0361 47.7858 42.7883 44.6924 44.0819 41.8833 66.1007 64.7499 57.1558
PI↓ 5.1837 4.5979 4.1837 5.0242 4.7747 4.5482 7.2053 7.0199 6.6362

LPIPS↓ 0.0904 0.0649 0.0554 0.1730 0.1685 0.1653 0.0775 0.0727 0.0717
PieAPP↓ 0.6562 0.5943 0.5484 1.2983 1.2821 1.2720 0.7259 0.7031 0.6616

better generalization to help the model learn the blur prior through
the task of ranking the blur extents where the backbone is frozen
during finetuning as shown in Fig. 2.

Ltriplet(a, p, n) = max{D(a, p)−D(a, n) +m, 0}, (1)

where a, p, n are the anchor, positive, and negative samples, respec-
tively and m = 1 is the margin. For blur data synthesis, we use
the GoPro dataset (i.e., GOPRO LARGE all) [29] which consists
of 22 sharp moving videos to generate a set of triplet data where
each triplet is composed of sharp (anchor) a, weak blur (positive),
and strong blur (negative) samples. We take the center frame from
a temporal window over the GoPro video as the sharp sample, the
average frame from 0.25 to 0.75 of the window in the normalized
temporal coordinate as the weak blur sample, and the average frame
of the whole window as the strong blur sample. Since there are
static frames, we further utilize the Lucas Kanade optical flow im-
plementation in OpenCV to dynamically determine the window size
Nw where the accumulated pixel displacement of the motion vector
between the starting and ending frames are more than 25 pixels and
Nw is no less than 15 frames.

Loss Function: After feature adaptation, we then can compute
two feature matching losses: Feature Matching Loss based on CLIP
(FMLC) and Task-Adaptive Feature Matching Loss based on CLIP
(TFMLC). FMLC is a simpler structure extracting the feature of
CLIP backbone model without MLP. As a result, the difference be-
tween FMLC and TFMLC are whether we use the original backbone
features or adapted MLP features to compute the losses, where we
denote the feature matching loss as LC which represents LFMLC

or LTFMLC in the following loss functions. In this paper, we adjust
the loss functions of the original deblurring models to show that
both FMLC and TFMLC are helpful for the image deblurring task.
The adjusted loss function of MPRNet with three stages is:

LMPRNet =

3∑
S=1

LS
Char + λM · LS

Edge + λ1 · LS
C , (2)

where LChar is the Charbonnier loss [30] and LEdge is the edge
loss, and λM = 0.05 and λ1 = 1. The adjusted loss function of
HINet with two HIN Blocks is:

LHINet =

2∑
S=1

−λH · LS
PSNR + λ2 · LS

C , (3)
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Fig. 3. Visual comparisons of the deblurring results of original
MPRNet and HINet and the proposed FMLC and TFMLC enhanced
models on the GoPro dataset.

where LPSNR is the PSNR loss, and λH = 0.5 and λ2 = 1, 000.
The parameters λ1 and λ2 maintain the balance between the losses
of original deblurring models and our loss in similar scale.

4. EXPERIMENT

Datasets: As in [7, 3], we train the deblurring models with the
proposed losses on the synthetic blur image dataset generated from
the GoPro dataset [29], which contains 2,013 images for training
and 1,111 images for evaluation. In addition, to verify the gener-
alizability of the proposed method, we also evaluate the deblurring
model trained using the GoPro dataset directly upon another real-
world benchmark, RealBlur [31]. The RealBlur benchmark con-
tains two datasets where the RealBlur-J dataset is generated from
JPEG images processed by camera Image Signal Processor, and
the RealBlur-R dataset is generated from camera raw images. The
blurred images are generated with camera shakes in low-light envi-
ronments where common motion blurs easily happen. Both datasets
contain 980 images for evaluation.

Evaluation Metrics: Besides commonly used PSNR [11] and
SSIM [12] metrics, we focus on BRISQUE, PI, LPIPS, and PieAPP



Table 2. The ablation results of image deblurring using the pro-
posed FMLC loss computed using different backbone features of the
pretrained CLIP model on the GoPro dataset. Best scores are high-
lighted. H-F means HINet trained using our proposed FMLC loss.

Method PSNR/SSIM↑ BRISQUE/PI/LPIPS/PieAPP↓

HINet 32.771/0.959 52.036/5.184/0.090/0.656
H-F-RN50 32.669/0.958 47.882/4.838/0.073/0.638

H-F-RN101 32.637/0.958 44.873/4.755/0.068/0.622
H-F-ViT-B/32 32.176/0.953 43.466/4.384/0.059/0.602
H-F-ViT-B/16 32.047/0.952 41.124/4.149/0.058/0.623
H-F-ViT-L/14 31.760/0.949 41.032/4.204/0.060/0.649

performance to reveal the perceptual information of the restored
images since they are more sensitive to perceptual information
compared to traditional image metrics where lower BRISQUE, PI,
LPIPS, and PieAPP indicate the image patches are more similar in
reality and with higher perceptual quality.

Implementation Details: We employ the MLP features from the
third residual attention block (ResBlock 3) of the ViT-B/16 back-
bone of the pretrained CLIP model for the proposed method. Fur-
thermore, we add three additional MLP layers of 1,024 neurons
with the ReLU and the batch normalization in-between MLPs to
perform feature adaptation for image deblurring while the weights
of the CLIP backbone are frozen during the process. We synthesize
1,105 triplets from 22 GoPro videos and train using the Adam opti-
mizer [32] with a batch size of 64, initial learning rate as 1× 10−4,
β1 as 0.9, and β2 as 0.999 until the loss converges. Then, we can
compute the proposed TFMLC loss using the features from the last
MLP layer. On the other hand, we apply the proposed loss to two
deblurring models, MPRNet and HINet, along with their original
losses through finetuning the models from their publicly available
pretrained weights for faster training purposes. We follow most
of their original training settings except the hyperparameters as
follows. For MPRNet, we finetune the model from the officially
released pretrained weights of its lite version with the initial and end
learning rates as 1×10−6 and 1×10−9, respectively. The networks
are trained using cropped 256 × 256 patches from the image with
the resolution of 1, 280× 720 with a batch size of 1 for 200 epochs.
For HINet, we also finetune the model from its official pretrained
weights with the learning rate as 2×10−5. The networks are trained
with 256× 256 patches with a batch size of 4 for 2× 104 iterations.
Data augmentations include flipping and rotation operations. The
image resolution of training samples is first cropped to 512×512 for
data preprocessing, while that of evaluation samples is 1280 × 720
on the GoPro dataset and 669× 760 on the RealBlur datasets.

Evaluation Results: In Table 1, we show the quantitative evalua-
tion results of MPRNet and HINet with and without the FMLC and
TFMLC losses on the GoPro, RealBur-J, and RealBlur-R datasets.
The results show that the models trained with both FMLC and
TFMLC can consistently achieve better perceptual image evaluation
metrics than the original models across different datasets while the
models employed the proposed TFMLC achieve the best BRISQUE,
PI, LPIPS, and PieAPP performances, especially outperforming
other approaches with a significant margin for the quality scores of
BRISQUE and the PI metrics. The proportion of perceptual im-
age evaluation metrics enhances much more than PSNR and SSIM,
while PSNR and SSIM still maintain comparable performance. This
trend follows the perception-distortion trade-off explained in [33].

Table 3. The ablation results of image deblurring using the proposed
TFMLC loss computed by the adapted features from different layers
of the pretrained ViT-B/16 CLIP model on the GoPro dataset. Best
scores are highlighted. The H-T-RB represents applying our pro-
posed TFMLC extracting from the ResBlock trained on HINet.

Method PSNR/SSIM↑ BRISQUE/PI/LPIPS/PieAPP↓

HINet 32.771/0.959 52.036/5.184/0.090/0.656
H-T-RB 1 32.511/0.956 43.913/4.316/0.063/0.500
H-T-RB 3 32.439/0.955 42.788/4.184/0.055/0.548
H-T-RB 5 32.304/0.955 45.214/4.386/0.061/0.601
H-T-RB 7 31.948/0.951 42.140/4.393/0.068/0.579
H-T-RB 9 32.184/0.954 45.122/4.377/0.064/0.596

H-T-RB 11 32.211/0.954 45.139/4.417/0.064/0.619

To further verify the effectiveness of the proposed approach, we also
perform the finetuning without employing the proposed losses from
the pretrained weights of both deblurring models but the evalua-
tion metrics scores are similar to the original models. In addition,
we also show the visual qualitative results of different methods in
Fig. 3. We find that the texture of the objects in the results from
the original deblurring models is smoother, while the results of the
proposed FMLC and TFMLC is closer to natural, realistic images.
We also find that FMLC and TFMLC excel at addressing shadow in
the images, which are obvious in Figure 1. These pieces of evidence
all demonstrate the effectiveness of the proposed methods.

Ablation Studies: Since there are several different pretrained back-
bones available for the CLIP model, we first conduct the perfor-
mance comparisons to choose the best one for image deblurring. We
train the HINet for image deblurring using its original loss along
with our proposed FMLC which exploits the features from the final
layer of each backbone. As shown in Table 2, the backbone of ViT-
B/16 based on Vision Transformer achieves more balanced results
among all the perceptual metrics than others. Therefore, we adopt
ViT-B/16 as the main backbone for our experiments. In addition, we
further evaluate the proposed methods with the features from dif-
ferent ResBlocks of ViT-B/16-based image encoder for CLIP to in-
vestigate the performance influence using the features from different
layers. Since the features of the middle layer strike a good balance to
contain both local and semantic information, we empirically choose
the middle layer as our backbone to compute the feature matching
loss. As shown in Table 3, we find that the ResBlock 3 achieves a
more balanced perceptual performance than others. To strike a com-
promise between the perceptual quality and both PSNR and SSIM
scores, we mainly choose to extract image features from ResBlock 3
as our prior in our paper.

5. CONCLUSION

In this work, we present a self-supervised finetuning strategy to
synthesize blurred images in different blur extents and to effec-
tively adapt the general pretrained deep networks on the large-scale
image datasets towards image deblurring to compute better fea-
ture matching loss. Both qualitative and quantitative experimental
results demonstrate that two existing state-of-the-art deblurring
models enhanced with our FMLC and TFMLC losses are able to
obtain sharper restored images with lower BRISQUE, PI, LPIPS,
and PieAPP scores than the original models while maintaining com-
parable PSNR and SSIM performances. This further shows the
effectiveness of the proposed feature matching loss to improve the
results of the image deblurring models in terms of perceptual quality.
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