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ABSTRACT

Most learning-based approaches to face detection suffer from
the problem of performance degradation on faces that are not
covered by training data. However, including all variations of
faces in training is practically infeasible due to the scalabil-
ity restriction of machine learning algorithms and expensive
manual labeling. In this work, we focus on face detection in
videos, and alleviate this problem by exploiting strong corre-
lation among video frames. We augment a pre-trained multi-
view face detection with an incrementally derived Gaussian
process regressor. The regressor can extract and propagate
visual knowledge across frames, and adapts the detector to
handle unseen faces. Testing on two datasets, the promising
results manifest the effectiveness of the proposed approach.

Index Terms— Face detection, video analysis, transfer
learning, boosting, Gaussian process regression

1. INTRODUCTION

Face detection is an important and challenging problem in the
fields of computer vision and pattern recognition. As a key
component for image and video analysis, face detection is an
inherent part in plenty applications, such as surveillance, hu-
man computer interface, image and video retrieval [1, 2, 3]. In
literature, e.g., [4, 5, 6, 7, 8], face detection is often cast as a
classification task through supervised learning. Although the
design of face detectors has gained significant progress, ow-
ing to the nature of supervised learning, most face detection
algorithms suffer from a common problem that the perfor-
mance degrades when testing faces are not covered by train-
ing data. The appearances of faces are determined by miscel-
laneous factors, such as illuminations, poses, and their com-
binations. It is practically infeasible to have all possible vari-
ations of faces in training due to expensive labeling cost and
scalability restrictions in machine learning.

In this work, we aim to alleviate this problem in detecting
faces in videos. Motivated by the strong correlations among
video frames, we propagate visual knowledge regarding de-
tection across frames, and leverage the additional informa-
tion to dynamically adapt the pre-trained detector. Besides,
we propose an efficient way to carry out online detector adap-
tation along streamed video frames.

1.1. Related work

The literature of face detection is quite comprehensive [9, 10].
A number of techniques, e.g., [4, 5, 6, 11], have been demon-
strated to be effective for detecting frontal faces in a wide
range of image databases. Since faces in images often appear
with different illuminations, poses, and occlusions, numerous
approaches, such as [7, 12, 13, 14, 15], have been proposed
for tackling multi-view (class) face detection. However, those
approaches rely on a large amount of training samples for
each class of faces, say 104, to compile a stable detector. Fur-
thermore, although most previous approaches can deal with
one kind of face variation effectively, such as rotation, occlu-
sion, and lighting condition, they generally fail to find faces
with combination of multiple variation soruces. In realistic
applications, both issues induce difficulties for representative
and sufficient data collection. It results in differences between
the distributions of training and testing data.

Object tracking [16, 17, 18] gives another way for face de-
tection in videos. Despite the fact that several tracking models
have met the challenge caused by alternation of face appear-
ances, if target faces are occluded for a period of time and if
the faces enter or leave the scene, most trackers fail. More-
over, face trackers require prior knowledge about target faces
and the number and type of parameters being tracked, all of
which are needed to be specified by users in advance.

Transfer learning [19] aims at delivering abundant knowl-
edge available in the source tasks to facilitate the target task.
For face detection, Jain and Learned-Miller [20] have pro-
posed an adaptive face detector via transferring information
in an image. They collect the patterns that are predicted by the
detector with high confidence, and use these patterns to train
a model of Gaussian process regression (GPR). The resulting
GPR can adapt the detector and improve performance. How-
ever, information propagated within an image is typically re-
stricted, since only one or few faces appear in a single image.
Besides, learning GPR leads to a computational burden [21,
22], and may hinder face detection from real-time processing.
In this work, we leverage correlation among video frames,
and carry out spatial-temporal adaptation. Specifically, we
treat sub-windows confidently predicted by the detector as a
knowledge source, and design an incremental mechanism to
efficiently adapt the pre-trained face detector.



 

Fig. 1. Faces of nine views used in learning the detector.

1.2. Our Approach

In this work, we address the task of face detection in videos,
and aim to resolve the difficulty arising when testing faces
are not completely covered by the training data. To this end,
we leverage the spatial and temporal correlation among video
frames, and propose to augment the pre-trained detector [15]
with an incrementally learned GPR models. The GPR is de-
signed to capture the evidences regarding the face and non-
face distributions in the video, and transfer the additional vi-
sual knowledge across frames. It follows that the resulting
detector can be adapted to deal with faces unseen in training.
Our approach gives the advantage that once the face detector
is trained, the whole procedure is run in an unsupervised man-
ner. Besides, we make use of the streamed frames, and design
an block-wise update structure to efficiently derive GPR mod-
els. Our approach is evaluated on two datasets. One is the
NRC-IIT facial video dataset [23]. The other is a set of vari-
ety & talk shows collected by ourselves.

2. PRELIMINARY

This section describes two key components used in the es-
tablishment of the proposed framework, including multi-view
face detection and Gaussian process regression.

2.1. Multi-View Face Detection

There exist several off-the-shelf face detectors, upon which
our approach can be developed. Among these detectors, we
illustrate our approach with the detector derived by MBH-
Boost [15], and improve its performance of finding faces
in videos by online detector adaptation. The reasons why
MBHBoost detector is adopted are three-fold. First, it sup-
ports real-time, multi-view face detection. These properties
increase the generalization of our approach to work on un-
constrained video pools, e.g., YouTube, since those videos
may be composed of numerous frames and faces of various
poses may appear. Second, it implements the principle of
classifier sharing [24], and iteratively derives weak learners
with theoretic merit to ensure the accuracy. Third, it carries
out multi-view/class detection, and treats each face class in
a unified manner. Namely, we could develop our approach
without worrying about the relationships among face classes.

Specifically, we learn the face detector with training data
of nine classes, shown in Fig. 1. Then we investigate the cor-
relation among frames in a video, and adapt the detector to
handle unseen faces, such as faces with mix of in-plane and
out-of-plane rotations. An example is given in Fig. 5.

 

Fig. 2. Online detector adaptation in a video.

2.2. Gaussian Process Regression

Gaussian process regression (GPR) [25] will be used to adapt
the detector in this work. It is a stochastic process that adopts
Gaussian prior distribution with Bayesian treatment for lin-
early predicting the target value g(x) = w>x ∈ R of an
instance x. With a set of training data, S = {(xi, yi)}Ni=1,
let X = [x1 x2 · · · xN ] and y = [y1 y2 · · · yN ]> denote
the data matrix and target vector, respectively. The posterior
distribution of weight w in GPR is modeled as

p(w|X,y) = N (
1

σ2
A−1X>y, A−1), (1)

where A = 1
σ2XX

> + I , and σ is a positive constant.
Gaussian process, like SVM [26], is a kernel machine. It

can be derived that all operations regarding data samples in
GPR can be completed in form of inner product. It follows
that the kernel trick/fuctnion [27] can be adopted to efficiently
compute the inner product of data that are nonlinearly pro-
jected into some predefined high dimensional feature space.
After learning a GPR model with kernel, the regression value
y∗ of a testing sample x∗ is predicted by

y∗ ≡ g(x∗) = k(x∗)(K + σ2I)−1y, (2)

where k(x∗) = [k(x∗,x1) · · · k(x∗,xN )] ∈ RN , (3)

K = [k(xi,xj)] ∈ RN×N , (4)

and k is the kernel function. In this work, we use RBF ker-
nel, i.e., k(xi,xj) = exp (

−||xi−xj ||2
γ ), for its stability and

good performance. In all the experiments, we set the value of
parameter γ as the average squared distance among training
data, which is suggested in [27], and determine σ by method
used in [28].

3. THE PROPOSED FRAMEWORK

Our approach, augmenting the pre-trained detector with an
incrementally learned GPR, is described in the section. For a
quick start, we outline the proposed approach in Fig. 2.



Algorithm 1: Adapted Detector of A Boosted Cascade
Input: Sub-windows to be classified: X;

The face detector: {fn,k}N,Kn=1,k=1;
The GPR models at time t: {gtn,k}

N,K
n=1,k=1;

Output: Detected faces of class k: Xk, k = 1 ∼ K;
Initialize: Xk ← X , for k = 1, 2, ...,K;
for n = 1;n ≤ N ; do

for k = 1; k ≤ K; do
Xm ← {x ∈ Xk| |fn,k(x)| < ε};
Xo ← Xk \Xm;
∀x ∈ Xo, f

′
n,k(x) = fn,k(x);

∀x ∈ Xm, f
′
n,k(x) = gtn,k(x);

Xk ← {x ∈ Xk| f ′n,k(x) ≥ 0};

3.1. Online Face Detector Adaptation

The multi-class face detector derived by MBHBoost [15] is
composed of a boosted cascade, i.e., {sign(fn,k(·))}N,Kn=1,k=1,
whereN andK are the numbers of stages and classes respec-
tively. In detection, a pattern x, a sub-window of 24 × 24
pixels here, is predicted stage-by-stage, and x is considered a
face of the kth class if and only if it passes all the classifiers
of the kth class, i.e., fn,k(x) ≥ 0 for n = 1, 2, ..., N .

The adaptation of the MBHBoost detector in this work
is developed based on two observations. First, video content
is spatially and temporally continuous. The appearances of
faces and non-faces vary gradually in a video. Hence, the pat-
terns reliably predicted in previous frames provide rich infor-
mation to facilitate detection in successive frames. Second,
the larger the prediction magnitude |fn,k(x)| in a boosted
classifier is, the more likely the prediction is correct. This
phenomenon has been pointed out in [20]. By integrating
the two observations, we aim to borrow the confidently pre-
dicted patterns in the past frames to adjust the detector. While
the procedure is done frame-by-frame, the adapted detector
will successfully locate a face in the video if the training data
cover the appearance of the face in some frame, rather than
the whole video.

Specifically at time stamp t, we derive the adapted de-
tector {f tn,k}

N,K
n=1,k=1 by augmenting it with GPR models

{gtn,k}
N,K
n=1,k=1. Suppose that the confidently predicted sub-

windows as well as the associated predictions in the previous
frames are collected. The GPR gtn,k is learned with training
data Stn,k = {(x, fn,k(x)) | |fn,k(x)| ≥ ε}. Here each
sub-window x resides in one of the previous frames, and is
represented by the pixel intensities.

For a testing image, the adapted detector will scan the
whole sub-windows generated with different scales and lo-
cations. However, after predicting these sub-windows by the
original detector, sub-windows that can’t be confidently pre-
dicted, i.e., |fn,k(x)| < ε, will be re-classified by GPR gtn,k.

 

Fig. 3. The ROC curves of different face detection methods.

 

Fig. 4. The average execution time of various adaptation
methods at each video frame.

Namely, the adapted detector {f tn,k}
N,K
n=1,k=1 is given by

f tn,k =

{
fn,k(x), if |fn,k(x)| ≥ ε,
gtn,k(x), otherwise.

(5)

The testing procedure of the adapted detector is sum-
marized in Algorithm 1. Note that the GPR models are
learned with training sub-windows collected in all the pre-
vious frames. For comparison, we implement two variants
of the adapted detector, including 1) single frame variant:
training data for GPR models contain sub-windows selected
in frame t. It can be considered to be the same as the work by
Jain and Leaned-Miller [20], except the MBHBoost detector
is used; 2) window-based variant: training data are collected
from the previous w frames, i.e., frames t− w ∼ t− 1.

3.2. Incremental Gaussian Process Regression

As shown in (2), the computation bottleneck of learning GPR
is to calculate the inverse of the kernel matrix. Block-wise
inversion can be applied to GPR for incremental update since
the new information comes into our system sequentially. Sup-
pose the matrix Xnew denotes the collection of P incoming
training data at frame t, and Xt−1 represents the collection of
all M training data from previous frames. Then Xt can be
defined as

Xt = [Xt−1 Xnew] . (6)

It denotes the collection of the M + P training input vectors
since beginning. Then the kernel matrix regarding data Xt



  

(a) Detection results by the original face detector

  

(b) Detection results by the adapted face detector

Fig. 5. Detection results by applying the face detectors to one of our variety & talk show video sequences.

can be represented by

K(Xt, Xt) =

[
K(Xt−1, Xt−1) K(Xt−1, Xnew)
K(Xnew, Xt−1) K(Xnew, Xnew)

]
=

[
A B
D E

]
.

As bothK(Xt−1, Xt−1) andK(Xnew, Xnew) are covari-
ance matrices, they share positive semi-definite property, and
their relevant inverses exist. Therefore, using the small rank
adjustment formula, the inverse of K(Xt, Xt) can be alterna-
tively written as[

A B
D E

]−1

=

[
A−1 + A−1B∆−1DA−1 −A−1B∆−1

−∆−1DA−1 ∆−1

]
,

where ∆ = E −DA−1B. In our cases where M >> P , it
can be verified that the computational complexity of calculat-
ing matrix inversion can be reduced from O(M3) to O(M2).

4. EXPERIMENTAL RESULTS

4.1. Datasets

Two datasets are used to measure the performance of the pro-
posed approach to online face detector adaptation, including
NRC-IIT facial video database [23] and variety & talk show
dataset collected by us. In NRC-IIT database, 18 single-face
videos with identical resolution (160 × 120) are used to ap-
proximately estimate the execution time. Those videos are
composed of faces belong to 10 persons in different poses,
scales, or orientations. In addition, 10 video sequences with
20 different faces taken from several variety or talk shows are
used to test whether our system can work robustly with multi-
face appearances, complex human actions, and miscellaneous
backgrounds. These videos were selected from the Internet.
These videos sequences are of resolution from 480 × 360 to
720× 480. The appearances of faces vary dramatically along
video frames, and are not fully covered in training data, i.e.,
those shown in Fig. 1. Although this makes the dataset very
challenging, the dataset hence serves as a good test bed to
evaluate our approach to detector adaptation.

4.2. Experimental Setting

We have the multi-view face detector by MBHBoost [15] as
the base detection algorithm. For comparison in both the as-

pects of accuracy and efficiency, we also implement three
types of adaptation methods, including the proposed approach
and its single frame and window-based variants, all of which
have been mentioned in section 3.1. Performance is measured
in form of the ROC curves which are generated with differ-
ent numbers of stages in the boosted cascades (with 17 ∼
22 stages). The less the stages are, the higher the detection
rates and false positive rates are. For evaluation of efficiency,
the average computational time of learning GPR and related
training data collection of different adaptation methods are il-
lustrated in Fig. 4.

4.3. Results

It can be observed in the ROC curves of Fig. 3 that the pro-
posed approach outperforms all of the other methods in al-
most the entire range of different numbers of stage usages
in the two datasets. Additionally, according to Fig. 4, the
proposed approach can effectively reduce the computational
cost. The good performances in both accuracy and efficiency
validate the effectiveness of our approach. For visualization,
Fig. 5 shows the improvement of detection performance by
applying the proposed adapted face detector to one of the
video sequences in the variety & talk show dataset.

5. CONCLUSIONS

One of the underlying problems in face detection is to col-
lect sufficient and representative training data. Leveraging
the strong correlation in a video sequence, we alleviate this
problem by proposing a novel approach to face detector adap-
tation. It uses the GPR to transfer visual knowledge across
frames without human labeling. To reduce the computational
cost, the block-wise incremental update framework is adopted
for fast GPR training. Besides, our system is comprehensively
evaluated under different settings with a public video dataset
and a collection of variety and talk shows. Promising perfor-
mances in both accuracy and efficiency are obtained.
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