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ABSTRACT

We address offensive tactic recognition in broadcast basket-
ball videos. As a crucial component towards basketball video
content understanding, tactic recognition is quite challeng-
ing because it involves multiple independent players, each of
which has respective spatial and temporal variations. Moti-
vated by the observation that most intra-class variations are
caused by non-key players, we present an approach that in-
tegrates key player detection into tactic recognition. To save
the annotation cost, our approach can work on training data
with only video-level tactic annotation, instead of key play-
ers labeling. Specifically, this task is formulated as an MIL
(multiple instance learning) problem where a video is treated
as a bag with its instances corresponding to subsets of the
five players. We also propose a representation to encode the
spatio-temporal interaction among multiple players. It turns
out that our approach not only effectively recognizes the tac-
tics but also precisely detects the key players.

Index Terms— group behavior analysis, offensive tactic
recognition, key player detection, video understanding

1. INTRODUCTION

Basketball offensive tactic recognition is drawing attention,
because it brings new insights into the games and has great
impacts on the outcomes of the games. As an important topic
of group behavior analysis, it helps review the performance
of offense and defense executions, understand opposing team
strategies, and even investigate certain players’ habits. These
tactics are often recognized and annotated by experts like as-
sistant coaches. Due to the explosive growth of broadcast bas-
ketball videos, there has been a strong demand for an accurate
tactic recognition system. However, tactic recognition is quite
challenging because it involves multiple independent players
with respective spatial and temporal variations.

We consider the players who execute a certain tactic
key players, such as the two players who sequentially circle
around the wing area of the court in tactic wing-wheel. In-
spired by the observation that most unfavorable intra-class
variations are caused by non-key players, we propose an ap-
proach where key player detection is integrated into tactic
recognition. In this way, the performance degradation caused
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tactic video

Fig. 1. We integrate key player detection into tactic recogni-
tion using multiple instance learning. Consider a tactic with
three key players. The video is treated as a bag with C3 in-
stances, each of which corresponds to a particular group of
three of the five offensive players. The positive instance is the
one corresponding to the three key players.

by large intra-class variations can be alleviated. Furthermore,
it makes the recognition results more interpretable since we
realize which players execute the predicted tactic.

Key player detection can be formulated as a supervised
learning problem, but training data with player-level anno-
tation are required. In this work, we save the annotation cost
and assume training data with only video-level annotation, i.e.
the ground truth of the offensive tactics, are available. Our
approach carries out key player detection to facilitate tactic
recognition, and deals with the absence of play-level annota-
tion by using multiple instance learning (MIL) [1]. Specif-
ically to recognize one particular tactic say wing-wheel, we
treat a video clip as a bag with the player subsets as instances.
A video is positive if tactic wing-wheel is performed in it. In
a positive bag, the positive instance is the one that covers ex-
actly all key players. An example is given in Fig. 1.

In our case, an instance corresponds to a subset of the
five offensive players, and its representation is crucial to the
performance. Therefore, we propose a novel representation,
called motion intensity map (MIM), that accounts for multiple
players simultaneously and is robust enough to characterize
players of different temporal lengths and at arbitrary spatial
locations. Specifically, MIM transforms a player’s temporal
positions and velocities into a distribution of motions over the
quantized court regions. The activity among multiple players
is encoded by summing up their distributions. With the two
key components, MIM for player group representation and
MIL for joint key player detection and tactic recognition, our
approach achieves superior performance.



2. RELATED WORK

Group Behavior Analysis. Team sport tactic analysis is an
important instance of group behavior analysis. Makris et al. [2]
analyzed the group behavior of a shoal of fish and estimated
the number of fishes around the world. They [3] further an-
alyzed the group behavior in both the spatial and temporal
domains, and more precisely predicted the number of fishes,
the traveling route and so on. Solar et al. [4] suggested using
proxemic theory, Granger causality, and dynamic time warp-
ing (DTW) to perform socially constrained structural learn-
ing and group detection. Tsai et al. [5] enhanced team sports
player segmentation via image co-segmentation. Lin ef al. [6]
improved action recognition by leveraging auxiliary RGB-D
visual clues. We are aware of two research trends in group
behavior analysis. One is that scalability becomes critical
in practice. The other is that finding coherent subgroups is
crucial. The proposed approach does not rely on player-level
annotation. Besides, it can identify key players, who are
coherent across videos of the same tactic.

Sport Tactic Recognition. Players’ trajectories are
widely used for sport tactic recognition. For example, Intille
and Bobick [7] recognized a football play by using Bayesian
network to describe the interaction between players’ trajec-
tories. Siddiquie et al. [8] used a handcrafted spatiotemporal
descriptor to classify elementary moves in American football.
To bridge the semantic gap between low-level movements and
high-level tactics, Perse et al. [9] designed a behavior detec-
tor from basketball players’ trajectories, and identified tactic
patterns as specific sequential combinations of behaviors.
The performance of aforementioned approaches rely on high-
quality players’ trajectories. However, noisy trajectories are
often present in practice. Bialkowski et al. [10] presented two
representations, including team occupancy and team centroid,
to alleviated the problems caused by noisy tracked sequences.
Chen et al. [11] adopted DTW as the distance measure be-
tween trajectories, and further extended DTW to measure
video-video similarity. Our approach detects key players and
recognizes tactics simultaneously. More accurate tactic pre-
diction can be achieved because the unfavorable intra-class
variations from non-key players are excluded. To the best of
our knowledge, the integration of key player detection and
tactic recognition is novel in this field.

Multiple Instance Learning. MIL is a weakly super-
vised learning technology. It was firstly introduced by Di-
etterich et al. [1] for drug activity prediction. MIL has been
used in various applications, such as image classification [12],
object detection [13], text or document categorization [14],
and semantic segmentation [15, 16]. Other than exploring the
applications, many machine learning algorithms have been
adopted to better solve MIL problems, such as diversity den-
sity [17], support vector machines [18], artificial neural net-
works [19], decision trees [20] and AdaBoost [21]. In this
work, MIL is used to model the uncertainty caused by the
absence of key player annotation in training data.

Fig. 2. A video frame of tactic wing-wheel and the five of-
fensive players’ trajectories with those of the two key players
highlighted in orange. The centroid of each of the 13 tactic
semantic sub-regions is shown in white.

3. OUR APPROACH

3.1. Notations and Problem Definition

We are given a set of IV training videos for offensive tactic
recognition, D = {(V;,£;)}}¥,, where V; is the ith video
with tactic ¢; € {1,...,C} label, and C is the number of tac-
tic classes. Like our previous work [11], a player tracking
algorithm is applied to extract players’ trajectory, and each
video is firstly represented by the five offense players’ trajec-
tories, i.e. V; = {T; ,}5_,. Each trajectory is a time sequence
of player position T} , = {T; . (¢), Ti p, (t) }/—1, where F is
the frame number or the time interval of this video.

The videos could be of arbitrary lengths and are unsyn-
chronized. Namely, the value of F' could vary from video
to video, and the player correspondences across videos are
not clear. To address these issues, we follow [11] and apply
the DTW algorithm to equalize and synchronized the trajecto-
ries. The DTW algorithm estimates a proper player alignment
reference and compiles the optimal warping matrices. After
warping, we further divide each trajectory into S R equal-size
intervals (temporal stages), and the features of each trajectory
will be a concatenation of the characteristics extracted from
individual intervals. This helps to have a compact feature rep-
resentation, so the training and testing time can be reduced ac-
cordingly. Besides, it also reduces the synchronization error
via quantization. However, it may lose the information about
the chronological order of frames in a stage. Thus, the value
of SR controls the trade-off between robustness and distinc-
tiveness. We empirically set it to 10 in the experiments.

For reducing manual labeling effort, our approach can
work without the labeling of key players in a training video
is available, but we assume the tactic label based on [22] and
the number, n., of the key players for each tactic c are given.
We set the numbers of the key players for different tactics, as
reported in Table 1. In Fig. 2 shows a video frame of tactic
wing-wheel and the five players’ trajectories. This tactic fea-
tures two players sequentially circle around the wing area of
a basketball court. Thus, the number of key players is set to
two. Our goal in this work is to recognize the basketball of-
fensive tactics and detect the key players. In the following, we
will describe how to accomplish the two tasks simultaneously
via multiple instance learning (MIL).



3.2. Joint Key Player Detection and Tactic Recognition

We consider one tactic ¢, say wing-wheel, and convert the
training set into a binary one. That is, videos of tactic wing-
wheel, are considered positive training data, while the rest are
negative. We leverage MIL for joint key player detection and
tactic recognition. Specifically, these videos are treated as
bags with C;EC instances, each of which corresponds to a par-
ticular group of n. offensive players. n. equals 2 in wing-
wheel. The positive instance is the one covering the n. key
players. Thus, a positive bag contains one positive instance,
while the instances in a negative bag are all negative.
Specifically for tactic ¢, we have the converted training
set of binary classes, {(Vi,y; € {1,—1})}Y, where bag
Vi contains instances {x; ;|j € {1,2,..,C} }}. The fea-
ture vector for instance x; ; will be given later. MIL works
with the labels attached to bags instead of to instances. The
relationship of bag label y; and the unknown instance labels
{vijli € {1,2,...,C}_}} in MIL is formulated below:

it 1 . .
Z % > 1, ify; = 1land y; ; = —1, otherwise. (1)
J

That is, positive bags have positive instances and instances in
negative bags are all negative.

According to Andrew et al.’s model [18], MIL can
be solved by a generalized soft-margin SVM. We use the
instance-level MIL (mi-SVM) learning:

{yiit wb{&i;} 2

st. Vi, j: ym'((W, Zi7j> +b)>1- &g &g >0,
yi,j € {~1,1}, and (1) holds,

min  min 1||w||2+CZfi )

where w is SVM hyperplane normal vector, b is hyperplane
offset. z; ; is transformed variable of instance x; ; with kernel
function ¢(-), i.e. z; j; = ¢(x; ;). Our work uses radial basis
function (RBF) as the kernel function. Operator (-) stands for
inner product, C'is the loss cost, and &; ; is the slack variable.

In general, the number of positive instances in a positive
bag is not constrained. In our case, we look for only the in-
stance that cover exactly all the key players. Thus for a bag
predicted as positive, we use the instance posterior probability
of SVMs to calculate the posterior probability. Specifically,
we adopted the sigmoid probability approximation proposed
by Platt et al. [23]. The instance with the highest probability
is selected as top instance X; j-. The probability of a bag is
equal to that of its top instance probability. For tactic classi-
fication, if the bag probability exceeds a threshold, the video
is predicted as this tactic. Multi-class tactic recognition can
be carries out by simply using one-vs-all fashion. In the next
section, we will describe how to design the features of an in-
stance x; ; that represents multi-players’ spatiotemporal po-
sitions and velocities.

Table 1. Tactics considered in the experiments

tactic abbr. | # video | # key players
2-3 Flex F23 15 3
Elevator EV 11 3
Hawk HK 20 3
Pin-Down PD 9 3
Princeton PT 13 5
Back-Side Pick and Roll RB 15 3
Side-Pick Slip and Pop Sp 15 2
Warrior Single WS 13 3
Weave wv 16 5
Wing-Wheel ww 7 2

3.3. Group Feature Representation

Inspired by the occupancy map [10], we separate the basket-
ball half court into 13 sub-regions, i.e. those in white in Fig. 2,
by referring to [9, 24]. A drawback of using occupancy maps
results from the hard assignment of player positions into sub-
regions, which introduces the quantization error and is sensi-
tive to noise in trajectories. Thus, soft assignment is used:
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1; is the player position, p; is center of sub-region j and T is
the common deviation of Gaussian distributions. Thus, p;; is
the probability of player ¢ in sub-region j. The other draw-
back of occupancy maps is that only static position informa-
tion is recorded. We extend the maps by including dynamic
velocity information via quantizing the orientations of veloc-
ity into m = 8 directions, i.e.
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|Vj]| is the velocity magnitude of player j, 6; is the velocity
direction, g is von mises distribution (normal distribution on
unit circle), « is the variation level, and Iy(x) is modified
Bessel function of order 0.

After quantizing velocity magnitudes into m directions,
we follow Eq. (3) and assign a player into the 13 subregions
based on the location. We call this feature motion intensity
map (MIM), which encodes both position and velocity infor-
mation. Based on MIM, we will show in the experiments that
simply summing over all the players in an instance suffices to
describe multi-player interaction and the group behavior.

4. EXPERIMENTAL RESULTS

We adopt the dataset used in our previous work [11], which
contains 134 videos of NBA 2013-2014 season. These videos



Table 2. Accuracy of five approaches for comparison.

method average accuracy
unsupervised GMM [11] 0.8550
supervised GMM [11] 0.8867
team centroid [10] 0.7474
team occupancy [10] 0.8875
ours 0.9467

Table 3. The confusion matrix of our approach.

[Accu. [ F23 [ EV [HK [ PD | PT [ RB | SP | WS | WV [ WW |

F23 | 093 0 0 0 0.07 0 0 0 0 0
EV 0 0.90 0 0 0 0 0 0 0 0.10
HK 0 0 1.00 0 0 0 0 0 0 0
PD 0 0 0 1.00 0 0 0 0 0 0
PT 0 0 0.07 0 0.93 0 0 0 0 0
RB 0 0 0 0 0 1.00 0 0 0 0
SP 0 0 0 0 0 0 1.00 0 0 0
WS | 0.07 0 0.07 0 0 0 0 0.76 0 0.10
WV 0 0 0 0 0.07 0 0 0 0.93 0
wWw 0 0 0 0 0 0 0 0 0 1.00

are labeled by the experts with 10 different half-court offen-
sive tactics summarized in Table 1. Each video clip comes
with the trajectories of the five offensive players. Such trajec-
tories are acquired automatically as indicated in [11].

We compare our method with four different methods. The
first one is our prior work [11] which uses unsupervised Gaus-
sian mixture model (GMM) to build tactic spatio-temporal
templates. For comparison, we further generalize it to the su-
pervised setting by providing tactic labels to learn GMM. The
other two competing methods are based on [10] with team
centroid and team occupancy as the group features, respec-
tively. Our approach adopts the proposed MIM feature rep-
resentation. Five-fold cross validation is used for tuning the
hyper-parameters in MIL.

As Table 2 shows, the four competing approaches reach
the accuracy rates of 0.75 ~ 0.89. Our approach achieves the
accuracy of 0.95. The performance gain of 6 ~ 20% is quite
significant. Except the first one, all the competing methods
are supervised. The poor performance of using team centroid
as features results form that the centers of all tactics lie in
the center line of the court in the half court offense, so the
centroid actually reduces the discrimination. We consider our
performance gain result from two factors. First, our approach
leverages the additional information, the numbers of key play-
ers, and integrates key player detection into tactic recognition.
Second, the proposed MIM includes both the information po-
sition and velocity for better feature representation.

To gain insight into the average accuracy, the confusion
matrix of our approach is given in Table 3, where the pre-
dicted tactics are given in columns. Diagonal entries rep-
resent correct classification. The confusion matrix indicates
that except tactic WS, all the tactics have accuracies higher
than 90%. The lower performance of tactic WS is due to
mis-classifying it as other tactics like F23 (7%), HK (7%),
and WW (10%). The mis-classification is caused by the less

Table 4. Performance of different feature representations

feature | # dim | tactic acc. || key player acc.

MIM P 20 0.89 0.6813
MIM V 20 0.8133 0.5857
MIM HA 130 0.8967 0.632
MIM 1040 0.9467 0.7853

c'/(.”_; Y

/ “
e

(@)
Fig. 3. Visualization of the detected key players.

accurate key player detection, because it is more difficult to
distinguish the key players in tactic WS from the rest.

To further examine the performance of the proposed
MIM, we compare MIM with its degenerated versions, in-
cluding 1) MIM P: only position information is included in
the representation; 2) MIM V: only velocity information is
encoded in the representation; 3) MIM HA: MIM uses hard
assignment in quantization. Our approach with the MIL
formulation is applied to MIM and the three variants. The
recognition rates are reported in Table 4. The results point out
the importance of joint consideration of position and velocity
information in tactic recognition as well as the critical issue
of quantization errors in spatio-temporal analysis.

Fig. 3 visualizes the detected key players. The two videos
of tactic EV. in Fig. 3(a) were originally mis-classified until
the integration of key player detection, which excludes unfa-
vorable intra-class variations caused by non-key players. In
Fig. 3(b), the detected key players in tactic PT have long-
distance running. The yielded variations can be well handled
by using merely either position or velocity information. It
supports the use of MIM which joint consider position and
velocity information for group behavior description.

5. CONCLUSIONS

Automatic group behavior analysis is always in demand due
to the explosive growth in broadcast team sports videos where
valuable information is included. In this work, we have pre-
sented an approach that integrates key player detection into
basketball offensive tactic recognition. It works with training
data with only video-level annotation, but can carry out key
player detection, player-level classification, via formulating
the task as a multiple instance learning problem. Besides, a
new feature presentation MIM is proposed to better encode
both spatial and temporal information. Both the quantitative
and visualization results confirm that our approach achieves
effective and remarkably superior performance.
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