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ABSTRACT

Fine-grained image classification is quite challenging due
to high inter-class similarity and large intra-class variations.
Another issue is the small amount of training images with a
large number of classes to be identified. To address the chal-
lenges, we propose a model for fine-grained image classifi-
cation with its application to bird species recognition. Based
on the features extracted by bilinear convolutional neural
network (BCNN), we propose an on-line dictionary learn-
ing algorithm where the principle of sparsity is integrated
into classification. The features extracted by BCNN encode
pairwise neuron interaction in a translation-invariant manner.
This property is valuable to fine-grained classification. The
proposed algorithm for dictionary learning further carries out
sparsity based classification, where training data can be rep-
resented with a less number of dictionary atoms. It alleviates
the problems caused by insufficient training data, and makes
classification much more efficient. Our approach is evaluated
and compared with the state-of-the-art approaches on the
CUB-200-2011 dataset. The promising experimental results
demonstrate its efficacy and superiority.

Index Terms— Sparse representation, on-line dictionary
learning, deep learning, fine-grained image classification

1. INTRODUCTION

Fine-grained image classification targets at distinguishing
fine-level image categories in images, such as bird species,
airplane types, and animal breeds. In addition to the diffi-
culties inheriting from generic image classification such as
large intra-class variations and insufficient training data, fine-
grained classification is much more challenging due to subtle
inter-class differences. For instance, the inter-class differ-
ences between a glaucous-winged gull and a Larus mainly
lie in the patterns in their beaks, which are significantly more
subtle than the intra-class variations on a popular fine-grained
dataset for birds [1]. In this work, we investigate the task
of fine-grained bird species recognition, which is considered
quite challenging since some of the species are difficult to
recognize, even for humans.

The major difficulties hindering the advances in accurate
fine-grained image classification result from diverse factors.
First, modern benchmarks datasets for fine-grained classifica-
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Fig. 1. The overview of our approach including both the train-
ing and the testing phases.

tion consist of a small amount of training data per category.
Second, there exist large intra-class variations and small inter-
class variations. Third, the number of fine-grained categories
to be recognized is often large in increasingly complex appli-
cations. Conventional approaches to generic image classifi-
cation suffer from these difficulties, and cannot be applied to
fine-grained image classification without modifications.

Two research focuses are widely adopted in existing ap-
proaches to fine-grained classification. The first one is the use
of the part-based representation as stated in Rosch et al. [2].
Part-based models recognize images by considering not only
the appearances of individual parts but also their geometric
layout. They are more robust to unfavorable intra-class varia-
tions. However, part-based algorithms rely on the extra efforts
on collecting part-level annotation, such as adopting human-
in-the-loop methods [3, 4], using data with part-level anno-
tations [5, 6, 7], or carrying out unsupervised patch discov-
ery [8]. The second focus is to explore more discriminative
feature representations [9]. Recent studies have shown that
this task can be accomplished by using convolutional neural
networks (CNNs) [10, 11]. By employing deep CNN fea-
tures extracted from pre-trained models on large datasets and
domain-specific fine tuning approaches, significant improve-
ments in a image classification and detection tasks can be
achieved [12]. Modern approaches using CNNs has shown
notable improvement over the conventional approaches that
adopt handcrafted features [13, 14].

However, the two aforementioned research focuses lead
to two unfavorable effects, i.e. the demand for part-level an-
notation and the high dimensions of the resultant feature pre-
sentations. Part-level annotation results in an expensive cost



of manual labeling in training data collection. CNNs extract
discriminative features and learn non-linear classifiers simul-
taneously, but the resultant feature representations, i.e. the in-
put to the final decision layer, are typical of high dimensions.
The main contribution of this paper lies in the development
of a fine-grained classification approach that addresses these
drawbacks.

In this work, we use the features extracted by bilinear
CNN (BCNN) [1], which computes the outer products be-
tween feature maps for image description. The pairwise cor-
relations between the feature maps can be considered the in-
teraction between object parts since the corresponding neu-
rons of these feature maps are often sensitive particular pat-
terns (or parts) in the image. In this way, part-level annotation
is not required. But the output dimension of BCNN is quite
large. To reduce the dimension of outputs, we will adopt di-
mensionality reduction methods with different data supervi-
sion conditions [15, 16] to make data more compact.

We learn a category-specific dictionary with on-line dic-
tionary learning (ODL) for fine-grained categorization. The
main advantage of training a dictionary [17] is that the train-
ing data are sparsely represented. Such a representation facili-
tate various follow-up applications [18]. Another advantage is
that it gives more robust classification performance even with
a small dictionary size and a few training data. For data in
the sparse representation, we employ [;-lasso sparsity-based
classification method. It efficiently searches the sparsest rep-
resentation of a test sample in the trained dictionary, which
is composed of training samples of all classes. Thus, there is
no need to derive the decision boundaries. Sparsely learned
dictionaries give better classification performance results in
our experiments. To sum up, the overview of the proposed
method is shown in Fig. 1.

2. RELATED WORK

Fine-grained image classification has gained significant
progress in the fields of image processing and computer
vision within a short period of time. Recent CNNs-based
models [19, 7, 20] have demonstrated significant perfor-
mance improvement over the models using handcrafted fea-
tures [13, 14, 21]. Models employing part-based CNNs
achieve significant performance gains for fine-grained recog-
nition. For instance, the method in [20] learns the part de-
tectors and the whole-object detectors. It also applies the
constraints to enforce the learned geometric relationship be-
tween the detected parts and objects. It follows that the
resulting pose-normalized representation is used to carry out
fine-grained categorization. Their work does not require ob-
ject bounding boxes at the testing phase. However, the main
disadvantage of models of this category is that the part-based
annotation is the high cost of manually annotating object
parts in collecting training data. Branson et al. [22] proposed
a system for bird species classification by mingling human

interaction with the system. In their work, a non-localized
computer vision method is used to extract the bag-of-words
features from the entire image. The work in [23] is composed
of a human user and a machine. The machine interactively
provides two heterogeneous forms of information, i.e. click-
ing on object parts and answering binary questions arisen by
a user who is not able to carry out the recognition task. In
general, these human-in-the-loop methods are not practical.
In [24], Shih et al. proposed a deep co-occurrence feature
learning method for visual object recognition.

Encoding the image content into a highly-discriminative
visual signature by using both segmentation and part local-
ization techniques is proposed in [8]. The model is symbiotic
in the sense that part localization helps segmentation and con-
versely segmentation facilitates part localization. Specifically
in [8], part localization is accomplished by using the part-
based detector in [8], while the segmentation results are ob-
tained by using GrabCut. Despite effectiveness, extra work
for part localization and segmentation is required. In [19],
an architecture for bird species fine-grained classification was
presented. it computes features by applying deep CNNs to
image patches. These image patches are located and normal-
ized by poses. For learning a compact pose normalization
space, higher order geometric warping functions and a graph-
based clustering algorithm are included in the work. We in-
stead use the BCNN model [1] for image description. The
major difference is that the reduced dimension bilinear fea-
tures are used in our work to learn category specific dictio-
naries. Our approach can derive a better representation model
and a sparse-based classification technique, which are jointly
applied to a test sample to get better performance.

The method in [17] employs category specific and shared
dictionaries for fine-grained classification. Our work is devel-
oped with three major differences from [17]. First, HOG fea-
tures are used in [17]. It has been pointed out in the literature
that handcrafted features typically lead to sub-optimal perfor-
mance. We instead integrate the deep model for feature ex-
traction into our work. Second, the category-specific and the
shard dictionaries for feature encoding are derived by the K-
SVD algorithm. However, shared dictionaries often degrade
the classification accuracy in fine-grained classification, like
bird species identification. Another drawback of the K-SVD
algorithm is that it is much slower than ODL, especially when
the batch mode is used for dictionary update. Third, an SVM
classifier is used for classification in [17]. In [25], we address
the fine-grained classification problem by using on-line dic-
tionary learning with its integration into CNN. In this work
weakly supervised data is used to solve the less availability of
data problem. Our work uses sparsity representation based
classification (SRC), which searches for the sparsest repre-
sentation of a test data in a dictionary composed of all training
data of all classes, and achieves better performance.



3. OUR APPROACH

In this section, we first describe the feature extraction process
by using bilinear CNN. Then, we present the key components
of the proposed approach, including on-line dictionary con-
struction and sparse representation based classification.

3.1. Bilinear CNN for feature extraction

In the following, we describe bilinear CNN (BCNN) for fea-
ture extraction, which is composed of two CNNs and their
combination via computing the outer products between fea-
ture maps.

BCNN can serve as an image descriptor that compiles bi-
linear feature representation from two CNNs whose outputs
are multiplied using the outer product pooled across loca-
tions. Specifically, a bilinear model B consists of two fea-
tures functions B = (fy1, fv2), where fy1 and fyo are de-
rived from CNN model-I and model-II, respectively. A fea-
ture function is defined as fy; : M x I — RY™Li where
it takes an image I and a location m € M as inputs, and
outputs features of size L;, for i € {1,2}. A matrix outer
product is then used at each location to combine the feature
outputs. At any given location m, the bilinear feature com-
bination of fy; and fy o is given by the bilinear function
FOm, I, fu1, fvo)=fr1(M, )T fyo(M,I). If the extracted
features by fy1 and fy o are of size L1 and Ly respectively,
the bilinear features, i.e. (1) = > 1, f(m, 1, fvi, fva),
are of size L; x Lo. The bilinear feature matrix is then re-
shaped to obtain the bilinear vector of size L1 Lo x 1.

Following [1], the sum pooling technique is used to ag-
gregate the bilinear features across the image. If the bilinear
vector obtained above is denoted by « = ¢(I), we can obtain
a signed square-root representation (y <— sign(x)\/W) fol-
lowed by I3 normalization (z < y/||y||2) to obtain the final
bilinear representation. However, the dimension of the bilin-
ear feature vector z is too large to build an effective dictionary.
In order to reduce the dimensionality, PCA is applied. In the
next section, we discuss the dictionary learning and sparse
representation based classification.

3.2. Dictionary learning and sparse representation

Sparsity dominated dictionaries give us an effective represen-
tation for fine-grained classification. To process training data,
several dictionary learning methods have been developed
such as K-SVD [18], on-line dictionary learning (OLD) [26]
and incremental dictionary learning (IDL) [27]. These ap-
proaches to dictionary learning and sparsity based classifica-
tion are typically used for high-level, generic image classifica-
tion. However, these methods are not particularly suitable for
fine-grained classification problems where category-specific
features are required to separate data of a class from the rest.
Hence, we describe how to construct the category-specific
dictionaries to enhance fine-grained classification.

The differences between classes are very subtle in fine-
grained classification. The shared dictionary is probably dom-
inated by atoms that capture patterns commonly shared across
classes. Only a few of atoms encode the discriminative differ-
ences. Thus, the shared dictionary degrades the performance
of fine-grained classification. By using category specific dic-
tionaries, most of dictionary atoms will become helpful in en-
coding the differences between data of different classes.

In the proposed method, on-line dictionary learning is
used to train the dictionaries from training data. Specifically
for a given number of categories R, we learn R dictionaries,
one for each category. Based on a learned dictionary, an im-
age can be compactly described by the coefficients that give
the most sparsest representation. Consider a database of N
training images and of R classes. Training samples {z; }¥ | in
form of bilinear features are denoted by C' = [C}...C;....CR],
where C, is the data matrix of class 7. Let I be an image
belonging to class r. Then it can be approximated by a linear
combination of the dictionary atoms of that class, i.e.

I~ D, (D

where D,. is the learned dictionary of class r, whose columns
are the atoms. v, is the resultant coefficient vector. The pro-
posed method has a two-step process. The first step is to
construct category-specific dictionaries. The second one is
to yield the sparse representation for classification. The two
steps are detailed below:

1) Dictionary Construction: The ODL algorithm is used
to construct a dictionary for training samples of each class.
The dictionaries D = [Dy, ..., Dg] are constructed by solv-
ing the following optimization problem:

o1 2
(D, ¥,) = arg g?,l‘ilr §||Cr = Dy |l3 + AW |1,
forr=1,2,...,R, (2)

where A is a positive constant and W, is the matrix whose
columns are the coefficient vectors of data of class r.

2) Sparsity based Classification: Given a test sample z,
its coefficient vector v based on all the category-specific dic-
tionaries, D = [D; ... Dg], is firstly computed via solving
the following optimization problem:

1
¢ =argmin iz = Dyfl3,  subjecttollylly < T, (3)

where 7' is the sparsity threshold. Then, z is predicted as the
class with the least reconstruction error, i.e.

i = argmin |z — D& (¥) |3, S

where §; is a characteristic function that selects only the coef-
ficients of class 7. Namely for a given test sample, we find its
sparsest representation based on all the category-specific dic-
tionaries by using /; -lasso algorithm. Then, the test sample is
assigned to the class with the least reconstruction error. In the
experiments, we will show that the sparsity based classifica-
tion improves the recognition performance.



Table 1. Performance of different approaches on CUB-200-
2011 dataset. [BB=bounding box]

method BB | ACC (%)
DeCAF6 [11] v 58.8
Symbiotic [8] v 61.0
CNNaug [12] v 61.8
Alignment [29] v 67.0
Part R-CNN [7] 73.9
PoseNorm CNN [19] 75.7
Xu et al. [20] 78.6
BCNN[D,M] [1] 84.1
Ours 84.6

4. EXPERIMENTAL RESULTS

In this section, we evaluate our approach on the CUB-200-
2011 birds dataset [28], which contains 11,788 images of 200
bird classes. A central square patch is cropped from each
image in this dataset. The patch is then resized to resolution
448 x 448. Different results have been reported with various
experimental settings on this dataset, such as the availability
of the bounding boxes and the part-level annotation at training
and/or test phases. We follow the setup in [1] where neither
part-level annotation nor bounding boxes are available.

In our experiments, BCNN [1] is used for feature ex-
traction. It is composed of two different CNN models, i.e.
the very deep network D-net [30] and M-net [31]. In both
models, we consider the feature vector as the outputs of the
last convolution layer with non-linearity activation, i.e. layer
convs 4+Relu for D-net and layer convs+Relu for M-
net. Both models produce 1 x 512-dimensional features at
each location. The D-net produces slightly larger output fea-
tures compared with M-net. Like [1], we downsample the
output of the D-net by removing one row and one column.
The output spatial sizes of D-net and M-net are then equal,
i.e. 27 x 27. The pooled bilinear features, the pairwise in-
ner product between feature maps, are of size 512 x 512, or
1%262144 equivalently. We employ PCA to reduce its dimen-
sion to 1 x 1000, which serves as the input to our approach
to category-specific dictionary learning and sparsity-based
classification.

Our approach is compared with the powerful approaches
on CUB-200-2011 dataset. Their performance is reported in
Table 1. In competing approaches [1, 7, 19, 20] and our ap-
proach, bounding boxes are not used. The approaches [7, 19]
give the recognition rates of 73.9% and 75.5%, respectively.
Both approaches employ part-based detectors to capture part-
level information for improving performance, but lead to extra
computational costs. In [1, 20], their approaches apply SVM
to the extracted deep features for classification, and achieve
the better performance of 84.1% and 78.6% respectively. Our
approach instead learns category-specific dictionary to grab
the discriminative information, and gives a promising accu-
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Fig. 2. Performance with different (a) dictionary sizes and (b)
feature dimensions (V; = 600, 1000, 2000, and the original
dimensions).

racy rate of 84.6%. It is superior to the competing approaches,
and achieves the state-of-the-art performance.

We evaluate the effects of the dictionary size and the re-
duced dimension on our approach. The performance of our
approach with various dictionary sizes is shown in Fig. 2(a).
The results indicate that dictionaries of small sizes suffice to
achieve satisfactory results. We also evaluate the proposed
method with four different feature dimensions, including
V4 = 600, 1000, 2000 and 262144 (the original dimensions).
The results in Fig. 2(b) show that the proposed method gives
better classification accuracy when the dimension is set to
1000, even better than with the original dimensions. The
results demonstrate that our approach works well with low-
dimensional features and small dictionaries. Thus in addi-
tion to accuracy, our approach has the advantage in a set
of follow-up applications such as retrieval or visualization
where a compact representation of data is appreciated.

5. CONCLUSIONS

In this paper, we have presented an effective and efficient ap-
proach to fine-grained image classification. Our approach
adopts a bilinear feature representation, and carries out
category-specific dictionary learning and sparsity-based clas-
sification. The category-specific dictionaries can capture the
discriminative features for fine-grained classification, and al-
leviate the problems of high computational costs since data
are sparsely represented. The promising experimental results
demonstrate that our approach can tackle the issues of insuffi-
cient training samples and the large number of categories, and
achieve the state-of-the-art performance. For further work,
we plan to leverage the flexibility of dictionary learning, and
explore weakly labeled or even unlabeled training data to
further enhance fine-grained image classification.
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