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Abstract g
Although object recognition methods based on local ‘ .
learning can reasonably resolve the difficulties caused by §s B
the large variations in images from the same category, the Em
-

high risk of overfitting and the heavy computational cost -
in training numerous local models (classifiers or distance (.a) face (b) airplane

functions) often limit their applicability. To address #ee Figure 1. Images from categories (a) face and (b) airplaite, w

two unpleasant issues, we cast the multiple, independentyrge intraclass variations in appearance, shape, colaig,stc
training processes of local models as a correlative multi-

task learning problem, and design a new boosting algo-
rithm to accomplish it. Specifically, we establish a para- use multipleview-baseddetectors to specifically uncover
metric space where these local models lie and spread as afaces within a certain range of poses. Similar strategies ar
manifold-like structure, and use boosting to perform local also adopted in recent researches for image classification
model training by completing the manifold embedding. Via and recognitione.g, [12, 13, 19, 21]. However, except for
sharing the common embedding space, the learning of eactcertain cases such as the face images that can be reasonably
local model can be properly regularized by the extra knowl- aligned and divided into subsets by their pose, itis geheral
edge from other models, while the training time is also sig- a difficult task to partition image data into meaningful sub-
nificantly reduced. Experimental results on two benchmark sets, each of which is covered by one local model. In the
datasets, Caltech-101 and VOC 2007, support that our ap-aforementioned approaches, the learning is performed for
proach not only achieves promising recognition rates but each sample or its neighborhood, and results in local mod-
also gives a two order speed-up in realizing local learning. els as many as the number of training data.lln [L3, 21],

the local model corresponds to a distance function, while in

[14, 19 it relates to a kernel matrix.

Even for a modest size of training data, learning the

1. Introduction sample-specifitocal models may already not scale well.
Take, for example, the two popular benchmark datasets for
object recognition, Caltech-101.(] and VOC 2007 §].

One of the major challenges in designing an object

recognitio.n system is tq r.eso"’e the diffi.cullty arising from Each comprises thousands of images, and learning all the
the large intraclass variations depicted in images from thelocal models often takes time in the order of hours or even

same object category. Such complications can be due todays. It almost makes parameter tuning, a key step for ob-

bothintrinsic and extrinsic factors, and they significgmt taining satisfactory classification results, infeasibkur-

crease the complexity of separating data of one class from : . -
. ther, local learning may suffer from the risk of overfittin
those of other classes tire rest of the world In Figurel, g may 9

I fi ith substantial intracl i in that it often considers a relatively small group of train-
examples of images with substantial intraciass vana Ionsing data. Addressing these two unfavorable issues of local
are shown to illustrate the scenario.

L ST . . learning will be among the main focuses of this work.
Local learningis effective in tackling large intraclass

variations in data. Unlike the global approach, it consid-
ers multiple local models, each of which is learned to ac-
count for only a subset of data. For instance, to detect both Local learning has been an active research topic in ma-
frontal and profile faces, Schneiderman and Kanad® [  chine learning Z]. It draws on the idea that a local model

1.1. Related work



should most likely better characterize the distinctivegero  redundancy. 3) We establish a new way of carryingouk
erties shared by a small subset of data than a global ondiple kernel learning(MKL) [ 17, 25] when several image
does for the whole data. Consequently adopting multiple descriptors are used to account for the given data. It can
locally adaptive models would achieve better performances yield recognition rates comparable to those reported by the
For example, to enhance the nearest neighbor rule for classtate-of-the-art MKL toolse.g, [25].

sification, Domeniconi and Gunopulog] [propose docal The proposed approach is relatedJmntBoost{29] in
flexible metricby adaptively reweighting dimensions of the the sense that multiple boosted classifiers are simultane-
feature space according to the sample location. ously generated under a specific form of multi-task learning

An importantissue in local learning is how to deploy the However, our method can accomplish it more efficiently.
local models among data points. Ind], Kim and Kittler We also note that our use dyadic hypercutgntroduced in
usek-means clustering to partition data into several clus- Moghaddam and Shakhnarovict?], as the weak learners
ters, and train &inear discriminant analysig¢LDA) classi- for boosting is pivotal to the formulation in that they can ef
fier for each cluster. Dadt al. [7], motivated by that more  fectively capture useful information in a kernel matrixdan
local models should be located near data with high risks elegantly connect multiple kernel learning with boosting.
of being misclassified, propose thesponsibility mixture
mode] in which an EM algorithm is adopted to place lo- 2. Multi-task local learning
cal classifiers according to the distribution of data uncer-
tainty. However, for approaches of this kind, it is hard to
pre-determine the optimal number of local models. After
all, the Gaussian assumptions for the data distribution or
uncertainty distribution are not always valid.

Alternatively, in [L2, 13, 21], a local model is specifi-
cally designed for each training sample. Thus, no assump- Since the multi-class object recognition can always be
tions about the data distribution are required. In addjtion reduced to an array of two-class problems by adopdimer
local learning in these works is often coupled with feature against-oneor one-against-allrules, we assume a binary
fusion. That is, not only the discriminant functions butals datasetS = {x,, € X,y, € £1}_,, whereN is the data
the discriminant visual features are jointly selected te en size andt denotes the input space.
hance the power of each local model. Nevertheless, training  In view of the complexity of visual object recognition,
the sample-specific models is time-consuming. it is hard to find a universal descriptor to well characterize

Pertaining to object recognition, the tasks of learning a the whole dataset. Instead, we consider representing each
local model from a given dataset are typically correlated. x,, with totally M kinds of different descriptors.e., x,, =
As is pointed out from the literature of multi-task learning  {Xn,m € Xm}hi—_,, and each descriptor is associated with a
e.g, [1, 6, 29, investigating related taskgintly in most ~ distance measuig,, : X, x X, — R.
cases can achieve a considerable performance improvement The useful data representations are often of high dimen-
thanindependentlysince the extra knowledge from other sional and in diverse forms, such as vectar,[histograms
tasks may convey useful information to the completion of [5], bags of features3], or pyramids [§. To avoid the

We begin by specifying the notations used in this work,
defining the problem of local learning for object recogni-

tion, and describing its link to the multi-task learning.

2.1. Notations

the underlying task. difficulties caused by working with these varieties, we rep-
resent data under each descriptor by a kernel matrix. And
1.2. Our approach it leads toM kernel functions{k,, }2’_, together with the

- _ corresponding kernel matricg#,,, }_,:
Our method focuses on efficiently learning sample- P g €mime

specific local models to improve the accuracies on object K,,(n,n) = ku (Xn, Xn/) = exp(—Ymd2, (Xn, Xn)) (1)
recognition. In our framework, each local model is a clas- _ .

sifier derived by boosting, and has a special form such thatVNeréym is a positive constant.
the collection of them spreads as a manifold-like structure
in the resulting classifier space. By respecting this global
structure of local classifiers, we design a boosting algorit Our goal is to carry out local learning by deriving a
to learn them jointly. The main contributions of our ap- classifierf; for each training sample; such thatf; is ex-
proach can be characterized as follows: 1) We propose topected to give good performances for testing samplesdgallin
cast the independent training procedures of local classifie aroundx;. To this end, we specify theeighborhoodf x;

as a multi-task learning problem. 2) We introduce a boost- with a weight distributionw; = {w; ,}_; overS by

ing algorithm that solves the underlying multi-task prable _

with good efficiency, scales well to the data size, and pro- e 1/C, if x, € C-NN of x;, @)
duces local classifiers with proper regularization and less o 0, otherwise,

2.2. Local learning



(b)

(o7 hl

Figure 2. (a) Two training sampleg, andx;,,, and their respective neighborhoods (denoted by blue digiteles). (b) All the local
classifiers, includingf; and f;,, spread as a manifold-like structure in the high-dimeraliatassifier space induced By. (c) These
classifiers can be obtained by incrementally completingribeifold embedding. The embedding space is spanned by waatelrs . },
and the new coordinates ¢f and f;, in the embedding space are their respective ensemble deeffio;; anda;.

where C-NN of x; denotes theC' nearest neighbors of
x; (includingx; itself). In cases that multiple descriptors
are used, we compute; for data under each representa-

tion and average the outcomes. Then each local classifier

fi can be obtained by coupling an optimal function with

ensemble coefficientse.,

T
fix) =) aiih(x), fori=1,2,..N.  (3)
t=1

suitable features to best discriminate the weighted dataseVith (3), all the classifiers will be learned jointly. We will

Si = {Xn, Yn, win}N_,. The purpose of our local learning
is to learn such classifiefsf; } 2, .

Specifically, eacly; is resulted from the boosting algo-
rithm, and consists of a set of weak learners. Hedenote

later describe a systematic way for constructinfy} Y,
with multi-task learning in the next section. For now we
give justifications on why the two unfavorable effects can
be eased by setting local classifiers in the form3)f (

the domain of weak hypotheses. Our formulation assumesproper regularization. It is instructive to think as if all

that each weak learnér € H is generated by referencing
only the M kernels defined in1). The main advantage of

the local classifiers lie in a parametric space induceté(by
The space dimension j&{|, and the coordinates of a classi-

SO dOing is that it uses these kernels as the unified informa'ﬁer (i'e', a po|nt) in the space are its ensemble coefficients

tion bottleneck, and enjoys the convenience of working with

over the weak learners. Consider now two local classifiers

different descriptors and distance measures. In our discus ¢, and f,, corresponding to two nearby sampiesandx; .

sions below, we will treat the training of each local classifi
as a particularask It follows that the numbers of tasks and
training samples are botN. For sake of clarity, hereafter
we will use subscript as the index to tasks or classifiers,
andn to the training samples.

2.3. Multi-task formulation

While local learning is effective for addressing compli-
cated vision problems like object recognition, care must be
taken to ensure that the learning procedure has been pro
erly done for a given dataset. In particular, we pinpoint the
following two critical issues related to learning local s3&
fiers{f;}I¥,. First, eachf; is learned with a small portion
of training data. When the number of weak learner candi-
dates|H| is large or infinite,f; is at the high risk of over-
fitting. Second, learning a local classifier for each tragnin
sample is indeed an inefficient procedure. And the situation

Pe

According to @), the highly overlapping neighborhoods;
andw;/, should lead to the high similarity betweg¢nand

fir. Hence,f; and f;; are expected to be close in the clas-
sifier space. Extending the concept to all the classifiers, it
suggests that they would spread as a manifold-like struc-
ture. We instill this property into regularizing the traigi
process of each classifier. In other words, we learn all the lo
cal classifiers simultaneously by respecting the undeglyin
manifold structure. This could lessen the instability (dite
ting) problem when otherwise independently learning each
lassifier with insufficient training data would cause. Ob-
serve that constructing the local classifiers of the form in
(3) can capture the idea faithfully. As we will show later,
while the ensemble coefficienfsy; : }_, are to represent
the embedding coordinates ¢f, the shared weak learners
{h:}I_, can be optimized to span the embedding space. An
illustration of the regularization is given in Figu?e

gets worse when dealing with a large dataset, but it is oftenRedundancy elimination. If {f;}}¥ , are learned indepen-

the case for vision applications.

To alleviate the two above-mentioned unfavorable ef-
fects, we view completing the independent training pro-
cesses of f;}I¥ | as a correlative multi-task learning prob-

lem. This is accomplished by assuming these local classi-

dently, redundancy can easily become an unpleasant con-
cern. The phenomenon can be understood from both the
aspects of weak learners and training data. Since a weak
learner generally yields similar performances in the ezglat

tasks, learning each of them separately is to overlook such

fiers share the same weak learners, but have their respectiveelatedness. On the other hand, as a training sample can



be accessed by multiple tasks, inefficiency can occur when

Algorithm 1 : Multi-task Boosting for Local Learning

measuring the loss induced by the sample is evaluated in-
dependently throughout the relevant tasks. Our strategy is
to learn all local classifiers o8] jointly so that information

Input : N tasks: task involves weighted dataset
S’ - {xn7 Yn, Wi n}f:[:y

redundancy among them can be reasonably circumvented Output: Local classifierq f;}~ ,, where

with a substantial speed-up in the training process.

3. A multi-task boosting algorithm

The main theme of this section is to detail the steps of
the proposed multi-task boosting algorithm, and to discuss
its justifications and useful properties.

3.1. Design of weak learners

We consider dyadic hypercutg]] as the weak learners
in that they can achieve good classification performances,
and be generated by referencing only the kernel functions
{km}M_, or matrices{ K, } i, of (1). A dyadic hypercut
his specmed by a kernel and a pair of training samples of
opposite labels. Specifically,is parameterized by positive
samplex,,, negative sample,,/, and kernel functiork,,,
and can be expressed by

h(x) = sign(km(xn, X) — kp (X7, x) — 0), 4)

whered is for thresholding. The size of the resulting pool
of weak learners ifH| = N* x N~ x M, whereN+ and
N~ are the numbers of positive and negative training data.

filx) = S0 aiihi(x).

Initialize: wflg =w;pn,fori,n=1,2,.... N.

fort—1,2,...,Tdo
. t
1. Compute the cross-task data welg{ﬁé) Ny
) = Ziv 1 w(t)

2. Select the optimal dyadic hyperdut

hy = arg miny, Z =1 wsl) Ln(xn) )

3. Compute task-wise weighted errdes ; } Y ;:

N t
Ci,t = Zn:l wf,r)L ’ 1[ht(xn)¢yn]'
4. Compute task-wise weighted accuradies; } ¥

N t
Cit =D p—1 wz(r)z Alheen)=ynl-
5. Set task-wise ensemble coefficiefts ; } 2 ;:
@iy = max(0, 1 In ?z)

6. Update data weightao" }N _:
(t+1) _ (t)

wzn

exp( ynai,tht (xn))

To have an efficient boosting process, we randomly sample
a subset of weak learners from the pool at each iteration.

3.2. The boosting algorithm

The multi-task setting of local learning is accomplished
via a boosting algorithm, in which task is to learn
classifier f; as in @) with the weighted datases$;
{%Xn, Yn, win }2_, . Steps of the proposed multi-task boost-
ing are listed in Algorithml. Note that the algonthm main-

tains a two-dimensional weight arra(yu _, to link

successive iterations, wheué_r)l denotes the Welght of,
in taski at iterationt. In what follows, we describe the
details of running iteratiot.

We start by defining the loss function of taskAt iter-
ationt, f; = Z‘;—:ll o +h- is a linear combination of the
(t — 1) selected weak learners. With tegponential loss
model [L1], the loss offi with respect taS; is

L(fi, S Z Wy, €XP(—Yn fi(Xn)).

n=1
Since all the classifiers are trained jointly, a reasonable
choice of the joint objective function is the total loss in-
duced by these classifiers in all the taskes,

(%)

N
Loss= Zﬁ(fi, S (6)

i=1

To decide the best weak learnershared by all classifiers
at iterationt, we minimize the total loss as i6)

N

hy = argmhinz L(fi+h,S;) (7)
N

= arg m}%n Z Z Wi eXP(—Yn (fi(Xn) + h(x,))) (8)
=1 n=1
N N

= arg mhin Z Z wf?l exp(—ynh(xy,)) 9)
=1 n=1
Nl

— (10)

: = (t) _
arg m}%n ; Wy, exp(—ynh(xn))

In (9), we havewgi)I = w; n, exp(—yn fi(x,)) from the ini-

tialization and step 6 of Algorithmi. The cross-taskdata
weight ofx,, is defined to be its total weight in all tasks,and

is denoted byzl;ﬁf) = val w(t) Thus, (0) implies that

the optimal discreté is the one with the minimal cross-
task weighted error,e.,

(11)

N
ht = arg min Z:l B Lnoc,) -



Once we havé,;, the remaining work at iteratiohis to gradually distributed to the difficult data and tasks, and re

determine its task-specific ensemble coefficignts; } Y ; . sults in more emphases on them. The strategy ensures that
Analogously, the optimal value af; ; is set to minimize  all learning tasks will be appropriately addressed.
(6). We observe that; ; has influence only o (f;, S;), One final remark about the multi-task boosting is that

and is irrelevant to the loss of other tasks. Thus the optimalit iteratively learns classifiers by fusing information rino
value of; ; can be obtained by setting the first derivative multiple kernels and thus inherently leads to an on-line

of £ with respect tay; ; to zero. It follows that and incremental way to perform multiple kernel learning
(MKL). In addition, compared with conventional optimiza-

iy = lln @’ where (12) _tion techniques Iikesemi-definite_z programm_ir@DP) B2,

€it it does scale better when the size of data is increased.

N N
_ (t) _ (®) ,
€t = Zwi,n Lineen)£yals Cit = Zwi,n Ane)=va)- 4. Experimental results
n=1

n=1
) . . To evaluate the performances of the proposed method,
Note that the resulting; ; is notgu.aranteeo! to l_Je positive. o carry out experiments of object recognition on two
However, we allow only nonnegative combinations of weak benchmark databases, Caltekth-[10] and VOC2007 [9].
learners. Thusy; ; will be set to zero if it is negative. Fi- gy the two datasets contain images with multiple class
nally, iterationt is completed by updating the data weights |anels and are complicated by large intraclass variations
as in stefs of Algorithm 1. Therefore, they serve as good test beds for justifying the
effectiveness of our approach to local learning.

Novel sample prediction. In the testing phase, given a
new sample, the proposed technique will first find its near- 4.1. Caltech-101
est training sample, say,, and then use local classifigr
to predict the label of. Sincez belongs to the neighbor-
hood ofx;, such a tactic is justified by thgt is optimized
to give good classification performances arostid

We implement thene-against-alfule for our approach
to handle multi-class recognition on Caltetht. In the
following, we respectively describe the image data, the
adopted descriptors, the experiment setting and the sesult

3.3. Useful Properties

. L . 4.1.1 Dataset
The proposed multi-task boosting is simple, easy to im-

plement, and has theoretic merit. At each iteration, it pick The Caltecht01 dataset containg)1 object categories and
the optimal weak learner and computes its ensemble coefone additional category of background images. Each cate-
ficients by directly minimizing the total exponential loss a gory consists 081 ~ 800 images. Although the object is

in (6). Although the selected weak learners are shared crospositioned near the central region of each image, the large
tasks, it can be readily verified that the exponential loss of class number and intraclass variations still result in d-cha
each task is monotonically decreased in training. Thisfprop lenging recognition task. Since the resolutions of images i
erty guarantees the convergence of our algorithm. the dataset are different, we resize them to arcith@00

Regarding the gain efficiency of leaning all the local pixels before performing feature extraction.
classifiers, we elucidate this point with two aspects of con-
siderations. First, observe that accordingl)( no matter
how many tasks sample, is associated with, evaluating
whetherx,, is misclassified by some weak learrteis per-  To enrich the set of weak learners, several image descsiptor
formed only once. Second, each selected weak learner isand their associated distance function are used to extract
shared cross all the tasks, and the degree of sharing in thesgiverse image features. Fror)(the resulting kernels are
tasks is adaptively controlled by the ensemble coefficients
Itis in this aspect that the proposed approach has the advan- ¢ GB-Dist: For a given image, thgeometric blurde-
tage over other related work.g, JointBoost[29], where scriptor [3] is applied to each of00 randomly sam-
jointly training would quickly become infeasible due to an pled edge pixel. Coupling with the distance function
exponential growth in the number of search hypotheses as  suggested in (2) of{4], the kernel is constructed.
the size of training dataset increases.

As is noted before, the algorithm maintain®-® weight
array{w;  } throughout the boosting iterations. It records
not only the difficulties of training data but also those of e SIFT-Dist: The same as GB-Dist, excefiFT de-
the tasks. With iterative re-weighting, high weights wid b scriptor 0] is used instead.

4.1.2 Descriptors and kernels

e GB: The same as GB-Dist, except the geometric dis-
tortion term is excluded in evaluating the distance.



1-NN SVM AdaBoost Ours 90
GB-Dist |424+1.3 61.4+0.8 61.5+0.7 63.2+0.8 ool ol
GB 37.4+09 57.6+1.0 585+0.7 59.7+1.2 T
SIFT-Dist |49.6 £ 0.8 58.7+0.9 57.5+1.0 57.8+0.7
SIFT-SPM | 48.8 + 0.7 56.1+ 0.9 53.3+0.8 55.2+0.7
SS-Dist {31.7+1.4 534+1.0 56.1+0.7 56.3+0.9
SS-SPM [41.74+0.9 53.94+0.9 55.5+0.7 56.9+ 1.3
C2-SWP |22.0 £0.8 28.3+0.8 26.0+0.9 2694 1.0
C2-ML |37.74+0.7 463+1.0 448+0.9 46.6+0.6
PHOG [27.74+1.0 43.940.8 41.3+1.0 429+0.8

GIST [36.8+1.1 48.7+08 49.1+1.0 51.24+0.8

--Qurs
«| + Boiman et al. 2008
A Bosch et al. 2007
% Frome et al. 2007
*-Zhang et al. 2006
Lazebnik et al. 2006
‘A Mutch and Lowe 2006
-&-Grauman and Darrell 2005
® Berg et al. 2005
‘0 Serre et al. 2005
4 Fei-Fei et al. 2004
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Al 713112 726 £ 1.3 758+ 1.1 Figure 3. The.reco.gnition rates of severgl .approaches aecal
3.96 % 102 sec. 1.87 x 10° sec. 3.92 x 103 sec. 101 dataset with different numbers of training data per class.
(b)
Table 1. Recognition ratgmean= std %]_ of seve_ral approaches We first investigate the effectiveness of each kernel by
?” thebcit”eﬁmlldatas_et: (t?) A ker_gel 'Ztake“ Into accountata comparing our method with thene-nearest-neighba( -
ime. (b) €Inels are jointly considered. NN) classifier, SVM, and AdaBoost. When the value of

Nirqin 1S 15, the recognition rates are reported in Tabde
e SIFT-SPM: With a densely sampled grid, SIFT fea- The 1-NN serves as the baseline for the experiment. By
tures are extracted and quantized into visual words. transforming a kernel to a set of dyadic hypercuts (weak
The kernel is built by matchingpatial pyramidg18). learners), AdaBoost and our approach can fuse these hy-
e SS-SPM/ SS-Dist The same as SIET-SPM and SIET- Percuts into a global classifier and a set of local classjfiers
Dist respectively, except theelf-similarity descriptor respectively. Observe that Adal_300§t achieves comparable
[2] is used to replace the SIFT descriptor. performance to that of SVM. It implies that the hypercuts

_ ) ] o can capture useful information in a kernel. Overall, the pro
o C2-SWP/ C2-ML: We adopt biologically inspired 4564 |ocal learning consistently outperforms AdaBoost,

features to depict images. Both ti2 features sug- 5 gives the best recognition rates in most cases.
gested by Serret al. [27] and by Mutch and Lowe4{3]

are respectively used to establish the two RBF kernels.

e PHOG: The PHOG descriptor f] is used to summa-
rize the distributions of edge orientations. Together
with the 2 distance, the kernel is established.

Focusing now on the case that multiple kernels are con-
sidered simultaneously, we evaluate the performances of
SimpleMKL [25], AdaBoost for local learning, and our
method. SimpleMKL is a well-known software for multi-
ple kernel learning, and can learn an optimal ensemble ker-
e GIST: The images are resized 108 x 128 pixels prior nel by searching the convex combinations of kernels. With

to applying thegistdescriptor P4]. The RBF kernelis  SimpleMKL, a global classifier is obtained with training

then constructed with the? distance. time 326 seconds, and achieves recognition fat8%. We
. . . then compare AdaBoost and our approach in realizing lo-

The distance matr_lces result from d|fferent parametgr cal learning. While AdaBoost carries out local learning for
values of each _descrlptor are CO’T‘b'”ed n ad_\/ar)c-e. It 'Sa total of N = 1530 classifiers one by one, our method
used for ensuring that the resulting kernels individually constructs them via a joint training. The recognition rates
reach their best performances. and computational costs are shown in Tallle The results

demonstrate that our approach achieves not only a better
4.1.3 Quantitative results performance but also gives a two order speed-up.

Like in [3, 33, 34], we randomly pick30 images from each In Figure 3, the accuracy rates of several recent tech-
of the 102 categories, and split them into two disjoint sub- niques, including ours, on Caltedl- are plotted with re-
sets: one contain¥y,..;,, images per category, and the other spect to different numbers of training data. The outcomes
consists of the rest. The two subsets are respectively useaf ours are60.1 + 1.1%, 70.5 + 0.7%, 77.5 + 0.7%, and

for training and testing. The whole evaluation process are79.1 + 2.1% when Ny, IS set to5, 10, 20, and 25 re-
repeate@0 times by using different splits between the train- spectively. For the case that;,... is 15, the recognition
ing and testing subsets. Recognition rates are measured imate75.8% by our method is either better or comparable to
cases thalVy,...,, is set tob, 10, 15, 20, and25. those by other published systems, e.§.5] 13, 15, 18, 34].



4.2.VOC 2007 Train Train+Val
SVM Ours SVM Ours
The second set of our experiments is performed on the 5T 76.3 475 50.7 51.4
dataset provided by the VOZD07 classification challenge, |TC-SIFT 46.8 46.9 51.1 51.1
which serves as a benchmark for comparing image classifiy{ SS 48.4 48.8 52.4 52.1
cation methods in dealing with realistic scenes. GB 45.4 42.8 47.5 46.7
Gist 38.6 39.4 43.1 44.3
C2-ML 34.6 36.2 39.8 39.6
4.2.1 Dataset SimpleMKL  Ours |SimpleMKL  Ours
The VOC 2007 dataset contain0 object categories, in- Al 514 55.2 573 59.3

cluding indoor objects, vehicles, animals, and peoplehEac
category consists df95 ~ 4192 images, and most of them
are of similar sizes. Unlike Caltectt1, objects in the im-
ages are neither centrally located nor with similar scales.4_2.3 Quantitative results
Besides, more than one kind of objects can be present in an

image. The overall learning task contaisbinary clas-  The vOC2007 dataset provides two training sets: the larger
sification problems, each of which is to predict the pres- e (Train+val) contains011 images, and the other (Train)
ence/abcense of objects from a certain category. has2501 images. We experiment on both training sets and

use the same test set, which consistsl@f2 images, for
4.2.2 Descriptors and kernels performance evaluation.

. ) ) For each category, one needs to predict if there exists
We usel8 distance matrices generated from the combina- at least one object of that class in a test image. Each pre-

tions of six kinds of descriptors and three kinds of spatial diction should be a real value to reflect the confidence of

pyramids. The image descriptors are object presence. The precision-recall curve is built on the
prediction values of all test images, and the performance is
measured by thaverage precisiofAP), which is propor-
tional to the area under the precision-recall curve. Fnall
the average of0 APs is used for the comparison.

In Table 2, we report the results of comparing our
method with SVM and SimpleMKL. When training with
one individual kernel at a time, our method performs
e TC-SIFT: The same as SIFT, except that SIFT fea- slightly better than SVM on the Train set, and compara-

tures are computed over three normalized RGB chan-bly as SVM on the Train+Val set. It shows that the learned

nels separately3[]. local models give the same or better results than a global
one does. When learning with multiple kernels, our method
achieves average A/.3% on the Train+Val set, and yields
significant improvements to those learned on each individ-
ual kernel. The performance gain in the classification accu-
e C2-ML: This is constructed with the C2 feature by racy supports that the use of various distances can comple-

Table 2. Average APSX) for the VOC2007 dataset.

e SIFT / GB/ SS We extract the SIFT features from a
densely sampled grid over multiple scales, and quan-
tize them into4000 visual words. The¢? distance is
adopted as the distance function. Following the same
procedure, we build the other two using the geometric
blur and self-similarity features.

e GIST: Allimages are resized to resolutid@8 x 128
before performing feature extraction. Then fhredis-
tance is used as the distance function.

Mutch and Lowe 3, and theL? distance function. ment each other and the concept of local models can better
capture the structures of complex data. When SimpleMKL
Three kinds of spatial pyramidsx 1 (whole image)2 x 2 is applied to the same kernels to learn a global model, the

(image quarters)I[d], and1 x 3 (horizontal bars), are con-  resulting average AP i57.3%.

sidered to exploit the spatial information. Coupling the de Table 3 summarizes the per-class results on the
scriptors and the spatial pyramids yieldsdistance matri-  Train+Val set of our method, SimpleMKL, the top three
ces. However, using all the distance matrices will lead to (denoted respectively as INRIA, XRCE, and TKK) in VOC
large memory consumption, and it can be resolved by usingChallenge2007 [9], and van Gemerét al. [31], which has
only one average distance matrix for each descriptor. Toproduced by far the best results for the dataset. Our method
address the possibly large variations due to using differen achieves average AM.3%, and performs the best ihout
distance measures, the distance matrices are normalized bgf 20 categories. The performance by the proposed ap-
dividing their respective standard deviation. After gexter  proach is consistently better than that of SimpleMKL, while
ing the distance matrices, the hyper-parametgrsn (1) it is also comparable with that by INRIA and meanwhile
are tuned to form kernels that achieve best performances. falls slightly behind the average A®.5% reported in B1].



p3.2

avg.| Aero. Bicy. Bird Boat Bott. Bus Car Cat Chair Cow Table Dog Bb®r Moto. Pers. Plant Sheep Sofa Train v
INRIA 59.4| 775 63.6 56.171.9 33.1 60.6 78.0 58.8 535 426 549 458 775 640 859 36.3 447 506 792
XRCE 575 72.3 575 53.2 689 285 575 754 503 522 39.0 46.8 4537 7%85 84.0 326 39.7 509 751 495
TKK 51.7| 71.4 51.7 485 634 27.3 499 70.1 512 517 323 46.3 4156 7260.2 822 31.7 301 39.2 711 410
van Gemeretal [31] | 60.5| 80.4 64.9 57.0 69.1 24.6 65.8 78.2 54.3 56.9 424 537 47.0 815 656 879 383 523 539 832 533
SimpleMKL 57.3| 741 627 48.7 66.9 29.1 62.6 75.0 56.9 545 427 548 44.23 765.8 83.6 287 425 515 747 50{9
Ours 59.3| 76.5 64.6 51.8 683 322 613 775 57.8 56835 58.8 44.8 784 652 854 304 47.754.6 76.4 54.6

Table 3. Average APSX) of several approaches on Train+Val set of the VE&0O7 dataset.

5. Conclusion

We have introduced an efficient local learning approach 13
to resolving the difficulties in object recognition caused b

[12] A. Frome, Y. Singer, and J. Malik. Image retrieval andsdgiification

large intraclass variations. We cast multiple, independen

training processes of local classifiers to a correlativetimul
task learning problem, and develop a boosting-based algo-
rithm to accomplish it. The proposed technique is com-

[14]

prehensively evaluated with two benchmark datasets. Thejg)
recognition rates in both datasets are comparable to those
yielded by the respective state-of-the-art approaches. Ou
method can be considered as a general multi-task learn{l7]
ing tool for vision applications where multiple correlagiv

classifiers are required, such as multi-view face detegction (18

multi-part object tracking, or user-dependent media rank-
ing. The framework also provides a new way to carry out
multiple kernel learning in an incremental manner.

Acknowledgements. The work is supported in part by

[19]

[20]

NSC grants 95-2221-E-001-031-MY3 and 97-2221-E-001- 27
019-MY3.

References

(1]
(2]
(3]
(4]
(5]

(6]
(7]

(8]
El

[10]

(11]

R. Ando and T. Zhang. A framework for learning predictis&uc-
tures from multiple tasks and unlabeled dai®ILR 2005.2

C. Atkeson, A. Moore, and S. Schaal. Locally weightedéag.
Artificial Intelligence Review1997.1

A. Berg, T. Berg, and J. Malik. Shape matching and objecbgni-
tion using low distortion correspondences.ONPR 2005.5, 6

O. Boiman, E. Shechtman, and M. Irani. In defense of retare
neighbor based image classification.GWPR 2008.6

A. Bosch, A. Zisserman, and X. Mufioz. Representing shajth a
spatial pyramid kernel. I€IVR 2007.2, 6

R. Caruana. Multitask learningviL, 1997.2

J. Dai, S. Yan, X. Tang, and J. Kwok. Locally adaptive siéisation
piloted by uncertainty. IRCML, 2006.2

C. Domeniconi and D. Gunopulos. Adaptive nearest neigldtas-
sification using support vector machines.NHPS 2001.2

M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Challend#/20
(VOC2007) Resultsl, 5, 7

L. Fei-Fei, R. Fergus, and P. Perona. Learning gemnveratsual mod-
els from few training examples: An incremental bayesianr@ggh
tested on 101 object categories. GWPR Workshop on Generative-
Model Based Visigr2004.1, 5

Y. Freund and R. Schapire. A decision-theoretic gdimton of
on-line learning and an application to boosting. Gomputational
Learning Theory1995.4

[22]
[23]
[24]
[25]
[26]
[27]
(28]
[29]
(30]
(31]
[32]
(33]

[34]

[15]

using local distance functions. MIPS 2006.1, 2

A. Frome, Y. Singer, F. Sha, and J. Malik. Learning glbba
consistent local distance functions for shape-based imeigieval
and classification. IWCCV, 2007.1, 2, 6

M. Gonen and E. Alpaydin. Localized multiple kernehtaing. In
ICML, 2008.1

K. Grauman and T. Darrell. The pyramid match kernel:diimina-
tive classification with sets of image features.I@tCV, 2005.6
T.-K. Kim and J. Kittler. Locally linear discriminantralysis for
multimodally distributed classes for face recognitionhnét single
model image PAMI, 2005.2

G. Lanckriet, N. Cristianini, P. Bartlett, L. Ghaouiné M. Jordan.
Learning the kernel matrix with semidefinite programmiddLR
2004.2

] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags ofirfest

Spatial pyramid matching for recognizing natural scenegmtes.
In CVPR 2006.2, 6, 7

Y.-Y. Lin, T.-L. Liu, and C.-S. Fuh. Local ensemble ketdearning
for object category recognition. I@VPR 2007.1

D. Lowe. Distinctive image features from scale-ineati keypoints.
1JCV, 2004.5

T. Malisiewicz and A. Efros. Recognition by associatida learning
per-exemplar distances. GVPR 2008.1, 2

B. Moghaddam and G. Shakhnarovich. Boosted dyadiceketis-
criminants. InNIPS 2002.2, 4

J. Mutch and D. Lowe. Multiclass object recognition hviparse,
localized features. ICVPR 2006.2, 6, 7

A. Oliva and A. Torralba. Modeling the shape of the scehfolistic
representation of the spatial envelop&CV, 2001.6

A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalebreveffi-
ciency in multiple kernel learning. IFCML, 2007.2, 6

H. Schneiderman and T. Kanade. A statistical metho®ébobject
detection applied to faces and cars OWPR 2000. 1

T. Serre, L. Wolf, and T. Poggio. Object recognition lwfeatures
inspired by visual cortex. ICVPR 2005.6

E. Shechtman and M. Irani. Matching local self-sinitias across
images and videos. I8VPR 2007.6

A. Torralba, K. Murphy, and W. Freeman. Sharing visutfires for
multiclass and multiview object detectioRAMI, 2007.2, 5

K. van de Sande, T. Gevers, and C. Snoek. Evaluation lof cie-
scriptors for object and scene recognition.OWPR 2008.7

J. C. van Gemert, C. J. Veenman, A. W. M. Smeulders, ari. J.
Geusebroek. Visual word ambiguit?AMI, 2009.7, 8

L. Vandenberghe and S. Boyd. Semidefinite programmiStAM
Review 1996.5

M. Varma and D. Ray. Learning the discriminative povr@rariance
trade-off. InICCV, 2007.6

H. Zhang, A. Berg, M. Maire, and J. Malik. Svm-knn: Disomative
nearest neighbor classification for visual category reitimgn In
CVPR 2006.2, 5, 6



