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ABSTRACT
Perceptual similarity measurement allows mobile applications to elim-
inate unnecessary computations without compromising visual expe-
rience. Existing pixel-wise measures incur significant overhead with
increasing display resolutions and frame rates. This paper presents
an ultra lightweight similarity measure called LSIM, which assesses
the similarity between frames based on the transformation matrices
of graphics objects. To evaluate its efficacy, we integrate LSIM into
the Open Graphics Library and conduct experiments on an Android
smartphone with various mobile 3D games. The results show that LSIM
is highly correlated with the most widely used pixel-wise measure SSIM,
yet three to five orders of magnitude faster. We also apply LSIM to a
CPU-GPU governor to suppress the rendering of similar frames, thereby
further reducing computation energy consumption by up to 27.3% while
maintaining satisfactory visual quality.

CCS CONCEPTS
•Computer systems organization→ Embedded software; •Com-
puting methodologies → Graphics processors; Perception;

KEYWORDS
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1 INTRODUCTION
Graphics-intensive applications, especially mobile games, are the most
popular class of applications on smartphones. With the rapid growth
of hardware computing power and display resolution, the frames in
these applications lookmore realistic and appealing. However, increased
frame rates and resolutions lead to higher energy consumption. Because
users do not always perceive every frame update [9], reducing the
number of similar frames is a sensible way to maximize resource usage
efficiency.Content similarity measurement hasmany usage scenarios [10,
13]. For instance, a cloud game service can examine the quality of video
streaming sent to clients to control network resources [13]. It can also be
used to optimize algorithms and parameter settings of image processing
systems, such as video encoders [14]. Recently, it has been used to
reduce the computation workloads of deep neural networks by reusing
the intermediate results of the previous frame as the result of the current
frame when two frames are similar [7].

An intuitive way to determine whether two frames are identical is
to compare their RGB values pixel by pixel. However, because graphics-
intensive applications run at high frame rates, the direct comparison of
image pixels is highly burdensome due to the high display resolution
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of mobile devices. To reduce computational cost while maintaining
acceptable comparison accuracy, Kim et al. [9] proposed a grid-based
comparison scheme, where the center pixel of each grid is regarded as
the RGB values of the pixels in the grid. Subsequently, Chen et al. [4]
found that in graphics applications, each object in a frame is rendered
via several function calls provided by the graphics library, and two
frames are identical if their function call parameters are exactly the
same.

Users may not perceive every frame update, and thus tolerate small
differences between frames. Various content similarity measures have
been proposed. The peak signal-to-noise ratio (PSNR) [12] is a simple
measure that computes the mean squared error but does not comply
with the human visual system [15]. Under the hypothesis that human
visual perception is highly adapted for extracting structural information
from a scene, the Structural Similarity Index Measurement (SSIM) [16]
assesses image similarity based on the degradation of structural infor-
mation. SSIM is widely used to assess image similarity but involves
computationally intensive pixel-level image processing and is inap-
plicable for real-time graphics-intensive applications. Inspired by an
observation that a majority of visual information is conveyed by pat-
terns of contrasts from brightness changes, Hwang et al. [3] exploited
the differences in the luminance values between two frames to approxi-
mate SSIM. Inevitably, the computational overhead of these pixel-wise
measures increases with the increasingly-high resolution and frame
rate.

In this paper, we present an ultra lightweight similarity measure,
called LSIM, for mobile graphics applications. LSIM assesses the simi-
larity between frames based on the function call parameters that render
virtual objects. The notion is inspired by the following observations.
First, for graphics applications, a scene frame is composed of several
objects, and the number of objects is much smaller than the number of
pixels. Object-wise similarity measurement could be very lightweight.
Second, objects are rendered one by one via graphics function calls,
and the content changes between frames are mainly caused by the
transformation of individual objects, including translation, rotation, and
scaling. The transformation determines an object’s position, orientation,
and size as perceived by the human eye on the screen.

Realizing this lightweight similarity measurement raises several de-
sign challenges. First, obtaining the magnitude of an object’s trans-
formation between frames is a major challenge. Because an object is
translated, rotated, and scaled according to its transformation matrix,
whose elements are the parameters of function calls invoked in the
graphics library, we decompose the transformation matrix to obtain
the object’s position, orientation, and size on the device screen. Another
challenge is to assess the content similarity in line with the perception
of the human eye. We extend a pixel-wise measure [8], which quantifies
the impact of object transformation on human perception, to assess the
similarity between two frames based on objects. Finally, to evaluate
the efficacy of LSIM, we implemented it in Android and conducted
experiments on a Google Nexus 5x smartphone using popular graphics
gaming apps. The experimental results show that LSIM is highly cor-
related with SSIM. However, the time and energy required for LSIM
to compare a pair of frames are respectively less than 0.3ms and 5mJ,
while SSIM requires more than 1600ms and 6000mJ. In addition, we
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applied LSIM to a CPU-GPU governing framework, namely UCCG [4],
and replaced the frame comparison procedure to reduce similar frames
instead of identical frames. This modified governor, denoted by UCCGL ,
can further reduce computation energy consumption by up to 27.3%
while maintaining satisfactory visual quality (SSIM ≥ 0.98 [2]).

The remainder of this paper is organized as follows. Section 2 pro-
vides some background information and the research motivation. We
then present the design and rationale behind LSIM in Section 3. The
experimental results are reported in Section 4. Section 5 contains some
concluding remarks.

2 BACKGROUND AND MOTIVATION

2.1 Graphics Rendering

Figure 1: Object construction, transformation, and projection

To render a 3D frame on the device screen, a mobile system requires
a sequence of steps in computer graphics called the graphics pipeline,
where a GPU is normally employed for acceleration via function calls to
graphics libraries, such as OpenGL ES. A graphic frame comprises 3D
objects that have a variety of shapes. First, each object is constructed
around its own 3D local coordinate system which does not consider
position, size, or orientation in relation to other objects in the frame.
Then, all the objects are brought together to form a 3D scene in the 3D
common coordinate system. This process is called transformation. Next,
the 3D scene is projected onto the 2D common coordinate system for
display on the flat screen. This process is called projection. Figure 1
shows how two objects are constructed, transformed and projected to
the screen. The virtual camera, which is imagined to take and display a
view of a 3D scene, is set at the origin of the 3D common coordinate
system; consequently, the 3D scene projected on the 2D screen is affected
by the focal length between the camera and the projection plane. When
the plane comes closer to the camera, more scene content is visible on
the screen, yet the objects look smaller on the screen, and vice versa.
Finally, the projected scene is written into the frame buffer and displayed
on the screen by the display driver.

Object transformation contains a sequence of operations, including
translation, rotation, and scaling, which determine an object’s attributes,
respectively its position, orientation, and size in a scene frame. In the 3D
common coordinate system, translation changes an object’s position
by moving the origin of its local coordinate system, rotation adjusts
its orientation by rotating the axes of its local coordinate system, and
scaling modulates the scale in each of its local coordinate axes to stretch
or shrink the object size. In graphics rendering, each operation on an
object is a linear map represented by a matrix, and all the operations
are combined into a single transformation matrix by matrix multiplica-
tion. Note that every operation is relative to the origin of the common
coordinate system, so different orders of operations may lead to dif-
ferent transformation results. Object projection is also represented by
a matrix and incorporated into the transformation matrix by matrix
multiplication. Accordingly, each object has a corresponding matrix
to transform and project it from its 3D local coordinate system onto
the 2D common coordinate system. Two frames are identical if they
have the same objects, and for each object, their matrices are the same.
Furthermore, the difference between two frames may not be perceivable
if they have similar object matrices.

2.2 Characteristic Profiling
To investigate the similarity between adjacent frames rendered in
graphics-intensive applications, we conducted an experiment on a
Google Nexus 5x smartphone with four 3D games running at up to
60 FPS: Can You Escape 3D, Worldcraft, Candy Crush, and Asphalt
8. The smartphone features an LCD display with a Full HD resolu-
tion of 1920×1080 pixels. To ensure reproducible results, we used a
recorder called RepetiTouch to record and replay all the touch events
and recorded all rendered frames through the screenrecord service.
The service output a video clip encoded in MPEG-4, which was later
converted into a sequence of JPEG images. To assess the similarity
between two adjacent frames, we used SSIM [16], a measure specially
designed to comply with human visual perception and widely used to
assess image similarity. The resultant SSIM score is a decimal value
between -1 and 1, where 1 indicates two identical images and a score
above 0.98 indicates high visual similarity [2, 5].
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Figure 2: Characteristic profiling of graphics applications

Figure 2(a) shows the proportions of SSIM scores between every
pair of adjacent frames in the investigated games. We observed that
a large number of frames are similar to their preceding frames (i.e.,
SSIM≥ 0.98) and sometimes even identical, but these frame updates
may not be perceived by the human eye. To save computation energy,
redrawing highly-similar frames is unnecessary because the previously-
rendered frame in the frame buffer is similar to them and could be
displayed instead to be perceived by the user again. However, using a
conventional similarity measure like SSIM to detect unnecessary frame
rendering involves computationally intensive pixel-wise image process-
ing. Due to the frequent frame rendering of online graphics applications,
the similarity measurement should be applicable at runtime with a jus-
tifiable computational overhead. We observed that the display content
updates are mainly caused by object changes, and the number of objects
(typically, a few dozens to hundreds in a frame) is far smaller than the
number of pixels (1920×1080 or higher on modern smartphones), as
shown in Figure 2(b). These observations inspire us to develop an ultra
lightweight similarity measure based on object transformation.

3 LIGHTWEIGHT SIMILARITY MEASUREMENT

3.1 Design Overview
In mobile graphics applications, content updates are mainly caused by
changes to objects, and the magnitude of change between two frames
can be derived from the transformation matrices that specify the ob-
jects. Figure 3 shows a flowchart of the proposed similarity measure

called LSIM. Let A and B denote two given frames with n objects1 to
be rendered by the GPU. Each object is transformed and projected
according to its transformation matrix, which implicitly specifies the
object’s attributes including position, orientation, and size information.
First, we individually decompose each object’s matrix to obtain its three
attributes in each of the two frames. Then, based on the attributes, we
compute the magnitude of change to the object, where the object’s
change in translation, rotation, and scaling is respectively quantified by
the differences between the object’s positions, orientations, and sizes

1Two frames are deemed dissimilar if they have different numbers of objects because objects
which appear or disappear suddenly are usually perceivable.
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in the two frames. Finally, we calculate an overall similarity score of
the two frames based on the magnitude of object change between them.
The proposed measure raises several design challenges. One major chal-
lenge is to decompose an object’s transformation matrix into its three
attributes. Another challenge is to compute the magnitude of object
change and quantify the similarity between two frames. We address
these challenges in Sections 3.2 and 3.3 respectively.

Figure 3: Flowchart of LSIM

3.2 Transformation Matrix Decomposition
Computer graphics usually use homogeneous coordinates to perform
transformation and projection operations, and these operations on a
single object are combined into a single transformation matrix. Homo-
geneous coordinates represent N -dimensional coordinates with N + 1
numbers; that is, a 3D point (x ,y, z) is represented by (x ,y, z,w ), where
w = 1 permanently. For instance, OpenGL uses the equation below to
transform each point of an object from its 3D local coordinate system
into the 2D common coordinate system:
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⎢
⎢
⎢
⎣
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ŷ

ẑ

ŵ
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⎦

, (1)

where the 4×4 matrix is the transformation matrix, (x ,y, z, 1) is the
object’s point in its own 3D local coordinate system, and (x̂ , ŷ, ẑ, ŵ ) is
the transformed object’s point in the 2D common coordinate system.

Note that ŵ needs to be converted back to 1 by dividing all dimensions

by ŵ , so that ( x̂
ŵ
,
ŷ
ŵ
) indicates the point’s position on the screen while

ẑ
ŵ

indicates the point’s depth in the screen. Now, we present how to

decompose an object’s transformation matrix to obtain its position,

orientation, and size information.

3.2.1 Object Position. An object’s position is represented by its

origin on the screen. In the transformation matrix,m13,m14, andm15

are related to translation. Specifically, an object is translated along the x-

, y-, and z-axis of the 3D common coordinate system and then projected

onto the 2D common coordinate system according to the three elements,

wherem13 andm14 change the object’s position andm15 changes the

object’s depth. Figure 4 shows a simple example, where the object’s

local coordinate origin is at the 3D common coordinate origin before

translation. If m13 is assigned 0.5, the object’s origin will be moved

along the positive x-axis of the 2D common coordinate system by 0.5

after translation and projection. Then, the object is linearly mapped to

the screen coordinate system to be displayed on the screen. The screen

coordinates range from (0,0) to the screen width and height (in pixels).

An object comprises a set of 3D points and is represented by its origin

(0, 0, 0, 1) in the local coordinate system. To obtain an object’s position

on the screen, we first assign the object’s local coordinate origin to Equa-

tion (1) to obtain the transformed object’s position (m13,m14,m15,m16)
in the 2D common coordinate system. Next, to convert ŵ back to 1,

we divide all dimensions by ŵ and obtain (m13
m16
, m14
m16
, m15
m16
, 1), where

Figure 4: An illustration of object translation

(m13
m16
, m14
m16

) indicates the object’s position on the screen and m15
m16

indi-

cates the object’s depth. Finally, we transform (m13
m16
, m14
m16

) into the screen

coordinates (x ,y) by simple linear mapping. The screen coordinates

(x ,y) are the object’s position on the screen.

3.2.2 Object Orientation. Extracting an object’s rotation from the

transformation matrix is a bit tricky, because the rotation, scaling, and

projection operations are mixed up in the upper-left 3×3 section of the

matrix in Equation (1). Fortunately, we observe that graphics rendering

always applies the rotation, scaling, and projection operations in a

certain multiplication order, as follows:

P × R × L =
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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px 0 0 0

0 py 0 0
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⎢
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⎤
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⎥
⎥
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×
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⎢
⎢
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⎢
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⎣
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0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2)

where L is a scaling matrix to scale a local object, R is a rotation matrix

to orientate an object, and P is the scaling matrix used by the projection

operation to scale all objects. The rotation matrix R is an orthogonal

matrix comprising three orthogonal unit vectors. These three vectors

respectively specify the new directions to which the x-, y-, and z-axis of

the local coordinate system point after rotation. Specifically, the three

local coordinate axes are respectively changed to (r1, r2, r3), (r4, r5, r6),
and (r7, r8, r9) after rotation. The scaling matrix L is a diagonal matrix,

where lx , ly , and lz respectively specify the object’s scaling ratios along

the x-,y-, and z-axis in the common coordinate system. Similarly, the

projection operation can also scale an object with the scaling matrix P ,
but it scales all objects in the scene together instead of a single object.

Based on the above observation, we extract the rotation matrix R
according to some properties of orthogonal and diagonal matrices. The

multiplication result of P × R × L is written as

P × R × L =
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

px lx r1 px lyr4 px lzr7 0

pylx r2 pylyr5 pylzr8 0

pzlx r3 pzlyr6 pzlzr9 0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3)

where the upper-left 3×3 section is the same as the counterpart of

the transformation matrix in Equation (1). The rotation matrix is an

orthogonal matrix whose inverse is equal to its transpose, while either

scaling matrix is a diagonal matrix whose inverse is the reciprocals of

elements of the main diagonal. Therefore, the multiplication result of

(L−1 × R−1 × P−1)T can be written as

(L−1 × R−1 × P−1)T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r1
px lx

r4
px ly

r7
px lz

0
r2

py lx

r5
py ly

r8
py lz

0
r3

pz lx

r6
pz ly

r9
pz lz

0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4)

Note that because (L−1×R−1×P−1)T = [(P ×R×L)−1]T , we can obtain

the upper-left 3×3 elements in Equation (4) by simply inverting and

then transposing the corresponding elements of the transformation
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matrix in Equation (1). Interestingly, because scaling ratios are often

positive, if we multiply each element of the matrix in Equation (3) with

the corresponding element of the matrix in Equation (4), and then take

the square root with the sign of each resultant element assigned as that

of the corresponding, we can obtain the rotation matrix R of the object2.

3.2.3 Object Size. To obtain an object’s size, we derive the object’s

scaling ratios along the x-,y-, and z-axis when it is displayed on the

screen. During graphics rendering, the scaling matrices L and P scale

the object along the x-, y-, z-axis when it is transformed from its local

coordinate system to the 3D common coordinate system and then pro-

jected to the 2D common coordinate system, respectively. Finally, the ŵ
value, which is related to the object’s depth, scales the object in the 2D

common coordinate system on the screen. The elements with respect to

the scaling matrices L and P , as shown in Equation (5), can be obtained

by multiplying each element of the matrix P × R × L in Equation (3)

by the corresponding element of the inverse of the rotation matrix R
derived previously in Section 3.2.2.

P × R × L ◦ R−1 =
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

px lx px ly px lz 0

pylx pyly pylz 0

pzlx pzly pzlz 0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5)

where lx , ly , lz are respectively the scaling ratios of the object along

the x-,y-, and z-axis in the 3D common coordinate system, while px , py ,
pz are the scaling ratios applied when all objects in the same scene are

projected altogether onto the 2D common coordinate system.

We observe that transformation would not change an object’s shape.

Normally, the object’s shape created in its 3D local coordinate system

will not change in the 3D common coordinate system. Thus, L can be

regarded as a uniform matrix, where the scaling ratios along the three

axes are the same (i.e., lx = ly = lz = l ), and the compound scaling ratios

of L and P along the x-, y-, z-axis after projection are respectively px l ,
pyl , and pzl . In homogeneous coordinates, the ŵ value is used to make

a closer object look larger on the screen, so its value depends on the

object’s depth. Recall that a transformed point needs to be normalized

by dividing all dimensions by ŵ such that ŵ is converted back to 1; in

other words, the object is scaled 1
ŵ

times on the screen, compared with

its size in the 2D common coordinate system. As derived previously

in Section 3.2.1, ŵ =m16 of the transformation matrix in Equation (1).

In conclusion, an object is scaled respectively by { px lm16
,
py l

m16
,
pz l
m16
} along

the x-, y-, and z-axis on the screen, compared with its original size in

the local coordinate system.

3.3 Similarity Score Calculation

Now, we present how to calculate the similarity score between two

frames A and B based on their objects’ attributes, including position

(x ,y), orientation R, and size { px lm16
,
py l

m16
,
pz l
m16
}, obtained in Section 3.2.

Prior research has proposed various perceptual quality measures that

consider psychological characteristics of the human visual system to

score the resemblance between two images. To quantify object transfor-

mation, it was found in [8] that the effect of primitive object transfor-

mation, including translation, rotation, and scaling, are decisive factors

and are mutually independent. Accordingly, the effect of pixel transfor-

mation on visual perception was modeled as follows [8]:

T (Δvi ,Δr i , {Δsix ,Δsiy ,Δsiz }) + H (i ), (6)

2If an object’s transformation matrix has different upper-left 3×3 sections in two frames but
its rotation matrix cannot be decomposed in this way, we consider the frames dissimilar.

where functionT () quantifies the effect of the ith pixel’s transformation,

function H () quantifies the relationship between the pixel’s transforma-

tion and the other pixels’, Δvi is the visual angle caused by translation,

Δr i is the rotation angle caused by rotation, and {Δsix ,Δsiy ,Δsiz } are
respectively the scaling ratios of size along the x-, y-, and z-axis between

the two frames. Note that this formula quantifies the object transforma-

tion based on pixels, whereas the basic unit of our measure is an object

instead of a pixel. Therefore, we revise the formula3 while setting the

coefficients at their default values in [8] to quantify the resemblance

between frames A and B as follows:

LSIM (A,B) = max
1≤i≤n[T (Δv

i ,Δr i , {Δsix ,Δsiy ,Δsiz }) + H (i )], (7)

where n is the number of objects in either frame, and i indicates the ith
object instead of a pixel. The similarity score of an object is a decimal

value between 0 and ∞, where 0 indicates that the two frames are

identical. LSIM selects the maximum score among all objects as the

similarity score between the two frames because the object with the

largest transformation is often most salient to the human eye.

To obtain the parameters required for function T (), we use each

object’s respective positions, orientations, and sizes in frames A and

B. Given an object’s positions (x ,y) in both frames and the eye-to-

screen distance4, we simply calculate the visual angle Δv caused by

the object’s translation based on a trigonometric function that relates

an angle of a triangle to the lengths of its adjacent and opposite sides.

The rotation angle Δr of an object is estimated based on the change

of the object’s rotation matrix R between the two frames. Recall that

the rotation matrix comprises an object’s direction vectors along the

three local coordinate axes in a frame. We calculate the angle between

each pair of direction vectors in the two frames according to the law

of cosines, and select the maximum among the three angles as Δr
because the object in the preceding frame needs to rotate around an

arbitrary axis by at least this angle to match its orientation in the current

frame. To derive an object’s size scaling ratios, we directly divide the

object’s size { px lm16
,
py l

m16
,
pz l
m16
} in the current frame by its size in the

preceding frame. The visual angles, rotation angles, and scaling ratios

of all n objects are also used by functionH () to quantify the relationship
between an object’s transformation and the others’. Finally, according

to Equation (7), LSIM gives a similarity score between two frames.

4 PERFORMANCE EVALUATION

4.1 Experiment Setup

We integrated LSIM into a graphics library, called OpenGL ES 2.0,

supported by Android 6.0 on the Google Nexus 5x smartphone. In

OpenGL, whenever a new frame is to be rendered, a function named

eglSwapBuffersWithDamageKHRwill be called to swap the image buffer

used for the frame being displayed on the screen and that used for the

frame in preparation. Accordingly, we implement LSIM in this function

to capture the frame to be rendered. With each object’s transformation

matrix acquired via glUniformMatrix4fv and the frame’s number of

objects obtained via glDrawElements, LSIM calculates the similarity

score between the frame to be rendered and the frame being displayed

according to the measurement proposed in Section 3.

We conducted a series of experiments on the Google Nexus 5x smart-

phone with some popular 3D gaming apps. The smartphone features

an Adreno 418 GPU that can operate at 6 frequency levels and an LCD

3Any pixel-wise similarity measure that quantifies object transformation based on transla-
tion, rotation, and scaling could be used instead.
4A typical smartphone viewing distance is 12 inches [1, 6].
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display with a Full HD resolution of 1920×1080 pixels. To reduce the

potential influence of human intervention, we used a recorder called

RepetiTouch to record and replay all the touch events for each in-

vestigated app. This ensured that the same interaction patterns were

reproducible in the experiments. We used the power monitor produced

by Monsoon Solutions to measure the smartphone’s transient power

and energy consumption.

Figure 5: Snapshots and SSIM scores of the selected games

The efficacy of the proposed scheme is mainly determined by two

factors: the frequency and themagnitude of scene change in the 3D game.

To exhaustively evaluate our scheme, we chose four representative

games, namely Asphalt 8, Can You Escape 3D, Worldcraft, and Candy

Crush, such that the frequency and magnitude of scene changes in these

games are different. Figure 5 shows some snapshots of the games and

the SSIM score between each pair of adjacent frames. Asphalt 8, which

is a typical racing game, comprises diverse scenes; thus, the SSIM scores

vary frequently and significantly. For Can You Escape 3D, the magnitude

of scene change is also significant, but the consecutive scenes are longer

and more similar than those in Asphalt 8. In contrast, for Worldcraft,

the SSIM scores vary frequently, but the changes are small. Finally, the

SSIM scores vary slightly and the changes are small in Candy Crush.

We conducted two sets of experiments to validate the accuracy of

LSIM and evaluate its efficacy. First, we validate whether the similarity

score given by LSIM is highly correlated to the score given by SSIM [16],

whereas the computational overhead of LSIM makes it appropriate for

online applications. Then, to evaluate efficacy, we applied LSIM to a

CPU-GPU governing framework [4] as a use case study, where the

rendering of similar frames is suppressed to save computation energy

while maintaining satisfactory perceptual quality.

4.2 Accuracy and Overhead

First, we compare the respective overhead of LSIM and SSIM in terms

of the time and energy consumption required to score a pair of frames

on the smartphone. To this end, we intercepted the necessary OpenGL

function calls to record the transformation matrices of all objects while

using Android’s built-in API to record all rendered frames. We then

used LSIM and SSIM to score each pair of adjacent frames, respectively.

To correlate the respective scores given by LSIM and SSIM, we used

the Pearson correlation coefficient (PCC) [11], a widely used metric to

measure the linear correlation between two variables. The resultant

PCC is a decimal value between -1 and 1, where an absolute value

between 0.7 and 1 indicates a strong correlation5.

5LSIM gives a score of∞ if the numbers of objects in two frames are different. However,
PCC cannot deal with the infinity, so those frames scored infinity by LSIM were excluded.

4.2.1 Overhead Measurement. Table 1 shows the longest time taken

by LSIM and SSIM to score two frames on the smartphone. LSIM requires

much less time than SSIM, because the time of LSIM depends on the

number of objects, while the time of SSIM depends on the number of

pixels. Importantly, LSIM requires less than 0.3ms to compare a pair

of frames, while the time constraint of rendering a frame is 16.6ms for

a 3D game running at 60 FPS. This indicates that LSIM is applicable

for online scenarios, but SSIM is not. In addition, the average energy

consumed to compare a pair of frames is less than 5mJ for LSIM but

greater than 6000mJ for SSIM.

Escape 3D Worldcraft Candy Crush Asphalt 8

Time SSIM 1681.51 1681.89 1604.53 1679.72

(ms) LSIM 0.03 0.23 0.01 0.17

Energy SSIM 6014.80 6090.30 6073.89 6100.30

(mJ) LSIM 1.50 4.30 0.94 3.00

Table 1: Computational and energy overhead

4.2.2 Correlation Between LSIM and SSIM. Figure 6 shows the cor-

relation (assessed by PCC) between the scores given by LSIM and SSIM.

For all four games, LSIM is highly correlated with SSIM. The result

indicates that the content change between adjacent frames is mainly

caused by the change of objects, and LSIM is capable of quantifying the

magnitude of change. Interestingly, we observe that for some pairs of

dissimilar frames, the scores given by LSIM and SSIM are not perfectly

linearly correlated. The reason is that LSIM is more sensitive to object

transformation than SSIM. This also explains why the linear correlation

between LSIM and SSIM in Asphalt 8 is slightly lower than that in other

games. Nevertheless, the respective values of PCC between LSIM and

SSIM for the four games are 0.910, 0.902, 0.916 and 0.829, all of which

are still in the strongly correlated range between 0.7 and 1 [11].

 0

 1  0

 2

Time (s)

SS
IM

 sc
or

e

Escape 3D, PCC = -0.910

Worldcraft, PCC = -0.902

Candy Crush, PCC = -0.916

Asphalt 8, PCC = -0.829
LS

IM
 sc

or
e

SSIM LSIM

 0

 1  0

 2

Time (s)

SS
IM

 sc
or

e

Escape 3D, PCC = -0.910

Worldcraft, PCC = -0.902

Candy Crush, PCC = -0.916

Asphalt 8, PCC = -0.829
LS

IM
 sc

or
e

 0

 1  0

 2

Time (s)

SS
IM

 sc
or

e

Escape 3D, PCC = -0.910

Worldcraft, PCC = -0.902

Candy Crush, PCC = -0.916

Asphalt 8, PCC = -0.829
LS

IM
 sc

or
e

 0

 1

 15  30  45  60  75  90

 0

 2

Time (s)

SS
IM

 sc
or

e

Escape 3D, PCC = -0.910

Worldcraft, PCC = -0.902

Candy Crush, PCC = -0.916

Asphalt 8, PCC = -0.829
LS

IM
 sc

or
e

Figure 6: Correlation between LSIM and SSIM

4.3 A Use Case: Energy and Quality Tradeoff

As a use case study, we applied LSIM to a governing framework, called

UCCG [4], which dynamically scales up and down the CPU/GPU fre-

quencies to reduce energy consumption while maintaining visual qual-

ity. Specifically, UCCG scales down the frequencies when identical

frames are detected and, consequently, the frame in the image buffer is

displayed several times to achieve the screen’s fresh rate. We replaced

UCCG’s detection module to suppress the rendering of similar frames

whose LSIM scores are above 0.0009 (which approximately corresponds

to an SSIM score above 0.98, i.e., highly similar, based on our profiling)

and denote the modified governor as UCCGL . The governors trade off

visual quality for energy savings. Thus, the energy saved by UCCG
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and UCCGL , compared with that used by Android’s governor (denoted

as NATIVE) to run a 3D game, was adopted as a performance metric.

Moreover, to quantify the perceived quality, we used SSIM to assess the

resemblance between each frame rendered by NATIVE and its counter-

part under UCCG or UCCGL .
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Figure 7: Energy savings achieved by UCCG and UCCGL

4.3.1 Energy Consumption. Figure 7 shows the energy savings achieved

by UCCG and UCCGL , where the computation energy consumption

is measured by subtracting the energy consumed for the smartphone

in the idle state from the energy consumed to run each 3D game. For

Escape 3D, both UCCG and UCCGL can provide considerable energy

savings because the game has many identical frames. However, for

Worldcraft and Candy Crush, whose respective scenes vary frequently

and slightly but the changes are all small, UCCGL can provide fur-

ther energy savings over UCCG by avoiding the rendering of a large

number of similar frames. Interestingly, for Asphalt 8, whose scenes

vary frequently and significantly, UCCG could even increase the energy

consumption if the energy savings is offset by its extra computational

overhead. By contrast, UCCGL can still leverage the small number of

similar frames to save energy. Overall, compared to UCCG, UCCGL

can further save computation energy by 4.4 to 27.3%, depending on the

number of similar frames in the 3D game.
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Figure 8: SSIM scores between frames under UCCG and UCCGL

4.3.2 Visual Quality. Figure 8 shows the variations in the visual

quality (assessed by the SSIM score, with 1 representing no quality

loss) under UCCG and UCCGL . As expected, UCCG causes almost no

quality loss because those identical frames, although not rendered, could

still be displayed on the screen and perceived by the user. By contrast,

UCCGL achieves relatively worse visual quality for a game comprised

of consecutive similar frames, as can be seen by comparing Escape 3D

and Candy Crush with Asphalt 8 and Worldcraft. However, the loss is

deemed too subtle to be discerned by the human eye or, at least, does

not incur adverse interference to the user, because the average SSIM

score approaches 1 for every game and the lowest score between any

two adjacent frames exceeds 0.98 [2]. To sum up, a CPU/GPU governor

like UCCG can use LSIM to ease the energy consumption of similar

frames while maintaining satisfactory visual quality for mobile 3D

games. Many other applications that require real-time content similarity

measurement could also benefit substantially from LSIM.

5 CONCLUDING REMARKS

We have presented LSIM, an ultra lightweight similarity measure for

mobile graphics applications. Unlike existing pixel-wise measures, LSIM

exploits the transformation metrics of objects. To validate its accuracy

and overhead, we integrated LSIM into the OpenGL ES graphics library

used in the Google Nexus 5X smartphone. The scores given by LSIM and

SSIM are highly correlated, yet LSIM is three to five orders of magnitude

faster than SSIM, thereby allowing for real-time frame comparison

during graphics rendering. As a use case study, we applied LSIM to

a CPU-GPU governor called UCCG [4] to suppress the rendering of

similar frames. The smartphone was found to further achieve energy

savings of 4.4 to 27.3% while maintaining the visual quality of the

played 3D mobile game. To enable LSIM to quantifies not only object

transformation but also changes in object colors, future work will seek

to extend LSIM to consider the textures bound to each object. We hope

more use cases will benefit from LSIM.
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