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Abstract

We address weakly supervised point cloud segmentation
by proposing a new model, MIL-derived transformer, to
mine additional supervisory signals. First, the transformer
model is derived based on multiple instance learning (MIL)
to explore pair-wise cloud-level supervision, where two
clouds of the same category yield a positive bag while two
of different classes produce a negative bag. It leverages not
only individual cloud annotations but also pair-wise cloud
semantics for model optimization. Second, Adaptive global
weighted pooling (AdaGWP) is integrated into our trans-
former model to replace max pooling and average pooling.
It introduces learnable weights to re-scale logits in the class
activation maps. It is more robust to noise while discovering
more complete foreground points under weak supervision.
Third, we perform point subsampling and enforce feature
equivariance between the original and subsampled point
clouds for regularization. The proposed method is end-
to-end trainable and is general because it can work with
different backbones with diverse types of weak supervision
signals, including sparsely annotated points and cloud-level
labels. The experiments show that it achieves state-of-the-
art performance on the S3DIS and ScanNet benchmarks.
The source code will be available at https://github.
com/jimmy15923/wspss_mil_transformer.

1. Introduction

Point clouds capture geometric characteristics and sur-
face context, and hence serve as an essential representation
for many 3D vision applications such as scene understand-
ing [6, 22, 28], autonomous vehicles [4, 5], and robotics [9].
Point cloud segmentation aims to identify points belong-
ing to semantic categories of interest. It offers point-level
recognition, thereby being an intrinsic component of point
cloud analysis. However, learning a segmentation model re-
lies on training data with point-level annotations. The high
annotation cost poses an obstacle to this task. To address
this issue, existing weakly supervised methods derive the
segmentation model with different weak supervisory sig-
nals, such as partially labeled points [26, 42, 46, 47], sub-
cloud level annotations [38] or scene level annotations [31].

To compensate for the lack of complete annotations,
weakly supervised point cloud segmentation methods [26,
31, 38, 42, 46, 47] make the most of weakly labeled data by
different techniques such as graph propagation, permutation
consistency, and object proposals. Despite effectiveness,
these methods use only intra-cloud information: The super-
visory signals are grabbed from point clouds independently.
Inspired by image co-segmentation [13,45] and cross-image
pattern mining [32], we aim to explore inter-cloud seman-
tics to supervise segmentation model training. To this end,
we generalize the transformer model [34] to work on paired
point clouds and formulate the problem as a multiple in-
stance learning (MIL) [27] task. It follows that our method
can use both intra-cloud and inter-cloud information to bet-
ter accomplish weakly supervised segmentation.

Specifically, we develop an MIL-derived transformer
where MIL addresses the uncertainty of weak labels. As
shown in Figure 1, we apply the transformer to two point
clouds of the same category. One cloud is treated as an
anchor with each of its points being a query in the trans-
former. The other cloud serves as a reference where each of
its points forms a key-value pair. The transformer encoder
and decoder are applied to the reference and the anchor re-
spectively. Through the cross-attention [34] mechanism of
the decoder, each query (from the anchor) is expressed as a
weighted sum of the values (from the reference). The resul-
tant feature vectors of all points (i.e., queries) of the anchor
yield a positive bag in MIL for the common category of the
two clouds. MIL via this positive bag encourages the model
to attend to the foreground points of the anchor.

In contrast, we consider another reference point cloud
whose category is different from the anchor. This time,
the feature vectors of all queries of the anchor generate a
negative bag because the feature vector of each query is a
weighted sum of values of this reference where the target
category is not present. The model via this negative bag is
enforced to suppress irrelevant points. With the proposed
MIL-transformer, each pair of point clouds, forming either
a positive or a negative bag, produces extra signal to su-
pervise model training. In addition, long-range dependency
can be taken into account via the transformer.

Max or average pooling is widely used to aggregate in-

1

https://github.com/jimmy15923/wspss_mil_transformer
https://github.com/jimmy15923/wspss_mil_transformer


backbone

transformer
encoder

…
point embeddings

…

transformer
decoder

…
point embeddings

…

reference

backbone

…
 

key-value

…
 

anchor

query

a positive bag

Figure 1: Given two point clouds (anchor and reference) of the same category (chair), a backbone network is applied to
compute point embeddings. The transformer encoder and decoder are applied to the two clouds respectively. Self-attention
captures long-range dependency. In the cross-attention module of the decoder, the points (tokens) from the anchor serve as
the queries, while those from the reference act as key-value pairs. The transformer maps each query to a weighted sum of
values. The outputs of the queries produce a positive bag for multiple instance learning. Once the reference is changed to
another cloud without covering any chairs, the outputs of the queries then yield a negative bag for the chair category.

formation in weakly supervised segmentation, and hence is
crucial to the performance. Max pooling considers only
peak points, typically leading to incomplete object seg-
ments. In addition, it is sensitive to noise. Average pool-
ing for weakly supervised segmentation often suffers from
performance degradation caused by irrelevant points such
as those belonging to other classes or background. More-
over, stuff categories, e.g. floor or wall, in point cloud seg-
mentation bring the class imbalance problem, which makes
the aforementioned issues worse. We address these issues
by proposing adaptive global weighted pooling (AdaGWP),
which introduces learnable weights, one for each class.
These class-specific weights are derived so that the model
can attend to points of relevant classes. It turns out that
AdaGWP suppresses irrelevant points while recovering ob-
ject points more completely.

We also consider cross-scale consistency of point clouds
to regularize weakly supervised feature extraction. Random
point sampling is applied to subsample a point cloud. Sub-
sampling does not change point labels even if the labels are
unknown in weakly supervised learning. Thus, a consis-
tency loss is imposed to enforce the similarity between the
features of the original and subsampled point clouds, acting
as extra supervision signals for network training.

The main contribution of this work is the MIL-derived
transformer, which explores additional inter-cloud seman-
tics for weakly supervised segmentation. In addition, a
class-specific, learnable pooling technique AdaGWP and
multi-scale feature equivariance are utilized to enhance
model training. Our method is flexible to work with differ-
ent point cloud networks, and with diverse types of weak su-
pervisory signals, including sparsely annotated points [42],
subcloud-level [38] and scene-level [31] annotations. It per-
forms favorably against existing methods on the S3DIS [1]
and ScanNet [7] benchmarks.

2. Related work
Weakly supervised semantic segmentation on images.
This task aims at reducing the expensive annotation cost
of pixel-level labels for learning an image segmentation
model. It works on training data with weak annotations,
such as bounding boxes [18], scribbles [25], points [2], and
image-level labels [20, 21, 32, 37, 39, 40, 44, 49]. Labels in
the form of scribbles [25] and points [2] are referred to as
incomplete supervision, which corresponds to partially la-
beled points on point clouds. These methods under incom-
plete supervision usually explore image-specific properties,
such as spatial and color continuity [2, 25]. Image-level an-
notations [17, 20, 21, 23, 32, 37, 39, 40, 44, 49] are referred
to as inexact supervision, which corresponds to subcloud-
level or scene-level labels on point clouds. Many methods
[20,32,37,39,40,44] use class activation maps (CAM) [48]
with classification-oriented models for object localization.
Compared with methods of this category, our method is de-
veloped for point cloud segmentation. It is flexible to work
under incomplete and inexact supervision.

Weakly supervised point cloud segmentation. This task
learns a point cloud segmentation model under weak super-
vision, such as sparsely labeled points [12, 26, 42, 46, 47],
subcloud-level labels [38], and scene-level labels [31].
Given sparsely labeled points e.g. one labeled point for each
category in a scene, existing approaches use spatial con-
straints and different techniques, such as graph propagation
[26, 42, 47], self-training [26, 47], and pre-training [12, 46],
to derive segmentation models. Learning with scene-level
or subcloud-level annotations is even more challenging
since only class tags of clouds or subclouds are available.
With scene-level annotations, Ren et al. [31] jointly ad-
dress segmentation, proposal generation, and object detec-
tion through a cross-task consistency loss. With subcloud-
level labels, Wei et al. [38] subsample the whole scene into
subclouds and use multi-path attentions for self-training.
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Figure 2: Overview of our method for weakly supervised point cloud segmentation. Our method integrates the three proposed
components: the MIL-derived transformer, the adaptive global weighted pooling (AdaGWP), and the cross-scale feature
consistency. The whole network is optimized by three loss functions, i.e., Lcls, Lmil, and Lcon. The black arrows indicate
the path for training, while the blue ones form the path of inference. See text for details.

Different from and complementary to the aforemen-
tioned methods, our method extends transformers to explore
inter-cloud semantics for weakly supervised learning. We
also present a learnable pooling technique for class-specific
information aggregation and implement inter-scale feature
equivariance to reach the state-of-the-art performance.

Co-segmentation and cross-image pattern mining. The
co-attention module [13, 32, 43] aims at discovering the
co-occurrence areas among multiple images. It has been
used for object co-segmentation [10, 13, 14, 24, 45]. For in-
stance, Hsu et al. [13] design a co-attention generator to
consider feature discrepancy across images and produce co-
segmentation maps by using contrastive learning. Sun et
al. [32] utilize contrastive co-attention to capture cross-
image semantics via computing an affinity matrix for a pair
of images. Methods for object proposal or saliency map
generation are usually required for common area mining
among multiple images, but they are not applicable to point
clouds. Our method addresses the unavailability of ob-
ject proposals and saliency maps by exploring the cross-
attention mechanism in transformers. We generalize the
transformer [3,34,35] with its encoder-decoder architecture
to identify inter-cloud co-occurrence points, and derive it
under weak supervision by multiple instance learning.

Global and weighted pooling. Pooling is widely used
to aggregate global information and handle uncertainty in
weakly supervised learning. Some advanced pooling meth-
ods integrate channel-wise and spatial information [8] or
include spatial attention [16]. Kolesnikov et al. [20] pre-
define the decay weight for each class before pooling. Com-
pared with these pooling methods, the proposed AdaGWP
learns a weight for each class, which is associated with a
channel in CAM to suppress less relevant points. Combin-
ing the proposed MIL-derived transformer and AdaGWP,
our method carries out point-specific identification and
class-specific suppression simultaneously, which is essen-
tial to weakly supervised point segmentation.

3. Proposed method
This section presents the proposed method. We first give

an overview of the method and elaborate on the proposed
MIL-derived transformer. Then, we describe the adaptive
global weighted pooling and cross-scale feature equivari-
ance. Finally, the implementation details are provided.

3.1. Overview

We are given a weakly annotated set of N point clouds
with either cloud-level labels or sparsely labeled points, i.e.,
D = {Pn,yn}Nn=1, where Pn denotes the nth point cloud
and yn is its label. Without loss of generality, we assume
that each cloud has M points, i.e., Pn = {pnm}Mm=1, where
each point pnm ∈ R3 is represented by its 3D coordi-
nate. If cloud-level labels are given, yn ∈ {0, 1}C is a C-
dimensional binary vector indicating which categories are
present in cloud Pn, where C is the number of object cate-
gories. If sparsely labeled points are provided, yn records
the categories of the labeled points of cloud Pn. With the
weakly labeled dataset D, we aim to derive a segmentation
model, which classifies each point of a testing cloud into
one of the C categories or the background.

Figure 2 illustrates our method. In training, we con-
sider a point cloud P and its label y. A backbone network,
such as 3D U-Net [6], is employed to extract the per-point
embeddings. The embeddings are then fed into the MIL-
derived transformer’s encoder to produce the self-attention
features X = {xm}Mm=1 of P , where M is the number of
points. The MIL-derived transformer’s decoder is applied
to another cloud P ′. As shown in Figure 1, point clouds P
and P ′ serve as the reference and the anchor, respectively.
For each category c present in anchor P ′, the transformer
outputs a positive bag if category c is also present in P , or
a negative bag otherwise. An MIL (multiple instance learn-
ing) loss Lmil works on the produced positive and negative
bags, and is used to train the transformer and the preceding
backbone network.
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The features X of the point cloud P , produced by the
transformer’s encoder, serve as the input to the class-aware
layer [32], i.e. a 1× 1 convolution layer with C filters, get-
ting the class activation maps (CAM) S ∈ RM×C . The pro-
posed adaptive global weighted pooling (AdaGWP) makes
the classification predictions. A classification loss Lcls is
computed based on the predictions and the label y.

As shown in Figure 2, we apply random point sampling
to the point cloud P and get its subsampled point cloud
P̃ . The same process of feature extraction is used for P̃ .
The consistency loss Lcon enforces feature equivariance be-
tween the common points of P and P̃ . In sum, the whole
network is optimized in a weakly-supervised manner by the
following loss function

L = Lcls + Lmil + Lcon, (1)

where loss Lcls is the multi-label classification loss [38,42]
under inexact supervision or the per-point classification
loss [42] under incomplete supervision. The MIL loss Lmil

and the consistency loss Lcon will be elaborated later.

Inference. Given a testing cloud P for segmentation, we
get its sub-sampled version P̃ by using random sampling.
Both P and P̃ are fed into the backbone network followed
by the transformer encoder to extract their features X and
X̃ . The class-aware layer maps these features X and X̃ to
the class activation maps, S and S̃, respectively. To fuse the
multi-scale information, we apply the nearest upsampling
method [30, 38] to S̃. The final segmentation results are
obtained by applying the element-wise max operation to S
and the upsampled counterpart of S̃.

3.2. MIL-derived transformer

We describe how to construct the MIL-derived trans-
former, which generates positive and negative bags under
weak supervision. As shown in Figure 2, we apply the back-
bone network to a point cloud of M points P = {pm}Mm=1.
Suppose that class c is present simultaneously in P and an-
other point cloud P ′ = {p′

m}Mm=1. The transformer treats
P and P ′ as reference and anchor respectively, and takes
them as the input. As illustrated in Figure 1, the transformer
encoder is applied to reference P . Each encoder layer com-
prises a self-attention module and a feed forward network
(FFN). Through the encoder, the output embeddings {xm}
for points of the reference P are obtained.

The transformer decoder is composed of layers, each of
which has a self-attention module, a cross-attention module,
and an FFN. The decoder applies the self-attention module
to anchor P ′ by treating the points of P ′ as tokens. The
cross-attention module considers both the reference P and
anchor P ′, where each point (token) of the anchor P ′ serves
as a query while each point of the reference P forms a key-
value pair. The output embeddings of anchor P ′ compose

a positive bag with M instances, i.e., b+ = {z′m}Mm=1, of
class c, which is then used for multiple instance learning.

The transformer maps each query (corresponding to a
point in P ′) to a weighted combination of the values (cor-
responding to all points of P ). This property is realized by
turning off residual learning in the transformer in our imple-
mentation. Since both reference P and anchor P ′ contain at
least one point of class c, treating b+ = {z′m}Mm=1 as a pos-
itive bag in MIL enforces the transformer and the preceding
backbone network attend to similar or matched points in
P and P ′. In contrast, if the reference P is changed to
a point cloud without covering any points of class c, the
output embeddings of the anchor P ′ yield a negative bag,
b− = {z′m}Mm=1. The reason is clear: Each instance z′m is
a weighted sum of the values, which are derived from points
not belonging to class c. Thus, instance z′m must be irrele-
vant to class c. Treating b− = {z′m}Mm=1 as a negative bag
helps discard the points in anchor P ′ that are similar to any
points of reference P , namely those irrelevant to class c.

We adopt mini-batch optimization in the implementa-
tion. For every pair of point clouds in a batch, if class c
is present in at least one of them, a positive or negative bag
can be created for class c depending on whether c is present
in the other cloud. It follows that a set of positive bags
B+ = {b+} and a set of negative bags B− = {b−} are
collected for this batch. The developed MIL loss Lmil for
class c is defined by

Lmil(B
+, B−, c) =

α
∑
b∈B+

− log fc(b) + β
∑
b∈B−

− log (1− fc(b)),
(2)

where fc(b) = maxz∈b fc(z) is the probability of bag b be-
ing positive for class c, and fc is an MLP followed by soft-
max which predicts whether the input embedding z belongs
to class c. α and β are positive constants controlling the im-
portance of positive and negative bags, respectively. Via the
MIL loss Lmil, each pair of training point clouds produces
extra supervisory signals for optimizing the whole network.

3.3. Adaptive global weighted pooling

Most point cloud networks [29, 36] are developed to ex-
tract point-specific features from the orderless data struc-
ture. For weakly-supervised point cloud segmentation,
pooling, such as global average pooling (GAP) or global
max pooling (GMP), is widely adopted to aggregate point-
level features to make cloud-level predictions, with which
the classification loss Lcls in Eq. 1 is enabled to supervise
network training. However, GAP often suffers from perfor-
mance degradation caused by dominant irrelevant points,
such as those belonging to categories floor or wall. GMP
emphasizes just few points with peak responses, and hence
is less effective to discover more the whole segments. It is
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also sensitive to noise or outliers. To reduce these unfavor-
able issues, we propose adaptive global weighted pooling
(AdaGWP), which introduces extra learnable parameters,
one for each class, and can suppress irrelevant points while
discovering more complete segments.

In Figure 2, the class activation maps (CAMs) of point
cloud P with M points are computed by passing through
the class-aware layer. Each point of P at this stage is
represented as a C-dimensional vector, i.e., P = {sm ∈
RC}Mm=1, where C is the number of classes. CAMs en-
code the point-class relationships: Positive sm(c) implies
that point m probably belongs to class c, while negative
sm(c) means that point m is likely irrelevant to class c.
Based on this property, the proposed AdaGWP introduces
one learnable parameter wc for each class c, which is de-
rived to determine the weights of irrelevant points. Specifi-
cally, AdaGWP applied to P is a re-weighted average pool-
ing with its output for class c computed as follows:

rc = AdaGWP({sm(c)}Mm=1) =

∑M
m=1 vmsm(c)∑M

m=1 vm
,

where vm =

{
1, if sm(c) > 0,
σ(wc), otherwise,

(3)

and σ(·) is the sigmoid function. In Eq. 3, wc is the intro-
duced learnable parameter and its value is optimized dur-
ing training. Each point m is associated with a weight vm.
For points with positive responses for class c in CAM, their
weights are set to 1, meaning that all these points will be
taken into consideration during pooling. For points with
negative responses, they are probably irrelevant to class c,
and hence suppressed by shrinking their weights from 1 to
σ(wc). Via AdaGWP for re-weighting CAMs, the output
of point cloud P for class c, namely rc in Eq. 3, is ob-
tained by average pooling. AdaGWP alleviates all the is-
sues mentioned above regarding GAP and GMP by intro-
ducing few learnable parameters {wc}Cc=1, and can substan-
tially improve the performance of weakly-supervised point
cloud segmentation in the experiments.

3.4. Cross-scale feature equivariance

Multi-scale feature equivariance constraints [15, 37] of-
fer extra supervisory signals and can enhance weakly super-
vised segmentation. In this work, we extend the image scal-
ing method to the 3D point cloud domain by random point
sampling. We enforce feature equivariance among cross-
scale point features, where the scale of a cloud means the
number of its points. For each point cloud P = {xm}Mm=1

in the training set, random point sampling is applied to P
for obtaining a subset of P , i.e., P̃ ⊂ P . The size of P̃ is
denoted by M̃ . We set M̃ = γM , and the sampling ratio
0 < γ < 1 is given in the implementation details. As shown
in Figure 2, the point-wise features X = {xm}Mm=1 of P

and X̃ = {x̃m}M̃m=1 of P̃ are obtained via the backbone net-
work and the transformer’s encoder. The cross-scale consis-
tency loss on the cloud P is defined by

Lcon(P ) =
1

M̃

M̃∑
m=1

∥xπ(m) − x̃m∥2, (4)

where the m-th point in P̃ is sampled from the π(m)-th
point in P .

The consistency loss Lcon enforces the feature equivari-
ance between a point cloud at two different scales. This
loss offers an additional supervisory signal to regularize
the weakly-supervised training process of the segmentation
model. The consistency loss Lcon in Eq. 4 can be general-
ized directly to enforce multi-scale consistency.

3.5. Implementation details

The proposed method is implemented in PyTorch. We
have used DGCNN [36], KPConv [33] and 3D U-Net [6]
as the feature extractor in different experimental settings.
The numbers of heads, encoder layers, decoder layers, and
the width of FFN in the transformer are set to 2, 2, 2, and
256, respectively. The network is optimized on a machine
with eight V100 GPUs with 512 epochs. The batch size,
learning rate, and weight decay are set to 32, 10−3, and
10−4 respectively. We use AdamW [19] as the optimizer,
like the previous work [3]. The parameters α and β for
Lmil are set to 0.7 and 0.3 respectively. The sampling ratio
γ for Lcon is set to 0.8.

4. Experimental results
This section evaluates the proposed method. First, we

present the datasets and evaluation metrics. We then intro-
duce the competing methods and provide comparisons with
them. Finally, we show the analysis and ablation studies for
the individual components of our method.

4.1. Datasets and evaluation metrics

We conduct the experiments on two benchmark point
cloud datasets, S3DIS and ScanNet. S3DIS [1] consists of
six indoor areas including 272 rooms in total. Each room
is scanned with RGBD sensors and represented by point
clouds with XYZ coordinates and RGB values. Following
the previous practice [29, 30, 36, 42], area 5 is used as the
test scene. ScanNet [7] has 1,513 training scenes and 100
test scenes with 20 classes. Following the setting adopted
in [33], there are 1,201 training scenes and 312 validation
scenes. For both datasets, we use mean Intersect over Union
(mIoU) as the evaluation metric.

4.2. Competing methods and comparisons

We compare our method with the state-of-the-art seg-
mentation methods with different supervision settings.
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Method Pub. Sup. Val. Test
PointNet++ [30] NIPS’17 Full - 33.9
KPConv [33] CVPR’19 Full - 68.4
MinkNet [6] CVPR’19 Full - 73.6
MPRM [38] CVPR’20 Scene 21.9 -
WYPR [31] CVPR’21 Scene 29.6 24.0
Ours - Scene 26.2 -
MPRM [38] CVPR’20 Subcloud 43.2 41.1
Ours - Subcloud 47.4 45.8
SPT [46] AAAI’21 1% - 51.1
PSD [47] ICCV’21 1% - 54.7
WYPR [31] CVPR’21 20pts 51.5 -
CSC [12] CVPR’21 20pts 53.8 53.1
OTOC [26] CVPR’21 20pts 52.5 -
OTOC [26]† CVPR’21 20pts 55.1 -
Ours - 20pts 57.8 54.4

Table 1: Quantitative results (mIoU) of several point-cloud
segmentation methods with diverse supervision settings on
the ScanNet dataset. “Sup.” denotes the type of supervision.
“Pub.” gives the publication venue. † indicates iterative
self-training strategy without any post-processing.

First, fully supervised methods [6, 30, 33] for point cloud
segmentation are compared and they offer the potential per-
formance upper bounds. Second, the segmentation meth-
ods [31, 38] utilizing 3D weak labels that only indicate the
appeared classes in either scene or subcloud data, are com-
pared. This type of supervision is challenging for the large-
scale point cloud datasets and shows great room for per-
formance improvement. Third, the methods using sparsely
labeled points are compared [12, 26, 46, 47] by using the
20 labeled points per scene provided from official Scan-
Net [7, 26] benchmark. For a fair comparison, the same
backbones, data pre-processing and training strategies as
the state-of-the-art methods are used.

Table 1 and Table 2 report the mIoU results of the com-
peting methods using different types of supervision. For
ScanNet (Table 1), our method often considerably outper-
forms the existing methods, by using all different types and
numbers of sparse labels. Our method without extra post-
processing or iterative re-training outperforms the state-of-
the-art method OTOC [26] under the same training process.
It is worth mentioning that OTOC introduces several mech-
anisms to achieve better performance, such as pseudo label-
ing propagation, iterative self-training, and prediction re-
finement. For a fair comparison, we compare our method
to OTOC with self-training only. Moreover, OTOC [26] re-
lies on at least few annotated points for robust graph prop-
agation, and it cannot be directly applied with subcloud-
level or scene-level annotations. In addition, our method
using 20 labeled points can achieve better performance than
PSD [47] using 1% labeled points.

Method Pub. Sup. Test
PointNet++ [30] NIPS’17 Full 53.5
KPConv [33] CVPR’19 Full 70.6
MinkNet [6] CVPR’19 Full 65.4
MPRM [38] CVPR’21 Scene 10.3
WYPR [31] CVPR’21 Scene 22.3
Ours - Scene 12.9
Xu et al. [42] CVPR’20 0.2% 44.5
Xu et al. [42] CVPR’20 10% 48.0
SPT [46] AAAI’21 0.02% 45.8
PSD [47] ICCV’21 0.02% 48.2
OTOC [26] CVPR’21 0.02% 42.9
OTOC [26]† CVPR’21 0.02% 43.7
Ours - 0.02% 51.4

Table 2: Quantitative results (mIoU) of several point-cloud
segmentation methods with diverse supervision settings on
the S3DIS dataset. “Sup.” denotes the type of supervision.
“Pub.” gives the publication venue. † indicates iterative
self-training without any post-processing.

For scene-level or subcloud-level annotations, our
method consistently and significantly outperforms
MPRM [38] by 4.3 and 4.2 in terms of the validation
mIoU, respectively. Although our method is inferior
to WYPR [31] with the scene-level annotation, WYPR
requires the extra 3D object proposals and shows inferior
generalization results with sparsely labeled annotations.
For S3DIS (Table 2), our method also often outperforms
other methods. For example, by using 0.02% labeled
points, the proposed method already performs favorably
against Xu et al.’s method [42] with 10% annotations.

Figure 3 and Figure 4 show examples of the qualitative
results using different types of supervisions and the com-
parisons with the competing methods. For subcloud-level
supervision, most objects are accurately classified by our
method, e.g., cabinets (in blue) and chairs (in gold) are
classified more correctly by our method but sometimes mis-
classified by MPRM, showing the effectiveness of the pro-
posed MIL transformer. We believe the formulated pos-
itive and negative bags help the network learn more dis-
criminative features using weak supervision. Moreover,
the proposed sampling consistency loss and adaptive pool-
ing benefit the precise segmentation of the contour of ob-
jects. Our method can distinguish the objects even if they
are closed, while MPRM often fails to separate the closed
objects. For sparsely labeled supervision, we have sim-
ilar observations as found in subcloud-level supervision.
Our method with MIL-derived transformer and AdaGWP
generally classifies the objects more accurately and gener-
ates much smoother segmentation results compared with the
OTOC method [26].
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Figure 3: Examples of segmentation results on the ScanNet dataset under subcloud-level supervision. (a) Input point cloud,
(b) Ground truth, (c) MPRM [38], (d) Ours. Our method provides more accurate segmentation than MPRM.
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Figure 4: Examples of segmentation results on the ScanNet dataset under sparsely labeled point supervision. (a) Input point
cloud, (b) Ground truth, (c) OTOC method [42], (d) Ours.

4.3. Ablation study and analysis

We report ablation studies to evaluate the effects of our
proposed components and present performance analysis.

4.3.1 Contributions of components

To evaluate the effectiveness of each proposed component,
we first build the baseline by considering only the class
activation maps derived from standard classification loss
[38, 42]. Then, we assess the contributions of the three pro-
posed components, including the MIL-derived transformer
(Lmil), cross-scale consistency (Lcon), and AdaGWP, by
adding them to the baseline one after the other. Table 3
shows the performance of different combinations with these
components. The results validate that each component has
its contribution. In addition, they show the generalization
and effectiveness on different datasets. Finally, to show
that the performance gain does not come from the trans-
former itself, we enhance the baseline by augmenting it
with the transformer’s encoder layer. The last row of Ta-
ble 3 (base.+transformer) reports the performance of the
enhanced baseline. It shows that the proposed MIL formu-
lation also contributes to the performance.

Component ScanNet S3DISLmil Lcon Ada.

base. 52.3 46.3
✓ 55.4 49.1
✓ ✓ 55.9 49.6
✓ ✓ ✓ 57.8 51.4

base.+transformer 55.0 47.9

Table 3: Performance in mIoU of different combinations of
proposed components, including Lmil, Lcon, and AdaGWP
(Ada.), under the sparsely labeled point supervision.

Figure 5 gives the segmentation examples using our
method with different combinations of the proposed com-
ponents. When the MIL-derived transformer (Lmil) is in-
cluded, our method successfully identifies the sofa in the
middle, which is misclassified as a chair by the baseline
method. It is because the MIL-derived transformer helps
learn better features by exploring extra intra-class and inter-
class information. Both the cross-scale consistency loss
(Lcon) and AdaGWP helps on completing objects and de-
lineating finer object boundaries.
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(a) (b) (c) (f)(d) (e)

Figure 5: Ablation study of each components on the S3DIS and ScanNet datasets. (a) Input point clouds, (b) Ground truth,
(c) baseline, (d) Lmil, (e) Lmil + Lcon, (f) Lmil + Lcon + AdaGWP (our full model).

Scene Subcloud 20pts Full
mIoU 26.2 47.4 57.8 73.3

label cost < 1 min 3 min 2 min 22.3 min
Table 4: Average annotation time per scene on ScanNet.

4.3.2 Performance analysis

Performance with different types of annotations. An-
notating 3D point clouds is time-consuming and labor-
intensive. According to previous work [26, 31, 41], the an-
notation cost for point cloud segmentation is 22.3 minutes
per scene on average in ScanNet. To save the cost, several
types of weak supervision have been introduced. As shown
in Table 4, the annotation time is reduced from 22.3 min-
utes to 2 ∼ 3 minutes using sparsely labeled points [26]
and subcloud-level labeling [38], and to less than a minute
using scene-level labeling. Our method can work with di-
verse weak supervision, with the results reported in Table 4.
Our method with sparsely annotated points performs signif-
icantly better than with scene-level or subcloud-level an-
notations. Considering the performance by using fully an-
notated training data, our weakly supervised method can
greatly save the annotation cost.

Performance with the different parameters. The pro-
posed MIL-derived transformer in Section 3.2 generates
positive and negative bags. The hyperparameters α and β
are introduced to control the relative importance between
the two types of bags. Table 5 shows the performance of
our method with different values of α and β, showing that
the positive bags and negative bags are complementary, but
the former contributes more than the latter. In Section 3.4,
the cross-scale consistency loss Lcon works with hyperpa-
rameter γ, the sampling ratio. We evaluate our method by
setting γ to 0.25, 0.5, and 0.75, and get the performance
55.5, 56.4 and 57.8, respectively.

Performance with different pooling strategies. In Sec-
tion 3.3, AdaGWP is developed to aggregate information
from relevant points. We compare it with existing pooling
strategies, including GMP, GAP, the one proposed by Ilse et
al. [16], and parametric ReLU [11] followed by GAP.

MIL ScanNet S3DIS
α β

1 0 57.4 49.1
0.7 0.3 57.8 51.4
0.3 0.7 57.1 51.2
0 1 56.9 48.9

Table 5: Performance with
different values of α and
β under sparsely labeled
point supervision.

Pooling ScanNet S3DIS

GMP 52.4 46.2
GAP 55.9 49.6
Ilse et al. [16] 56.5 49.9
PReLU + GAP 57.1 49.8
AdaGWP 57.8 51.4

Table 6: Performance with
different pooling strategies
under sparsely labeled point
supervision.

For comparison, our method works with each of the
pooling strategies. In Table 6, AdaGWP performs favorably
against all competing pooling strategies on both datasets.

5. Conclusion
This paper presents a novel method for weakly super-

vised point cloud segmentation. As the key component,
the proposed MIL-derived transformer explores additional
cross-cloud supervisory signals to facilitate weakly super-
vised learning, and is learned via multiple instance learn-
ing. Also, we develop cross-scale consistency and adap-
tive weighted pooling to improve the performance further.
All proposed components are integrated into an end-to-end
trainable network. Experiments show that our method out-
performs existing weakly supervised methods, and even de-
feats some fully supervised methods. One limitation of our
method is the performance bounded by the backbone net-
work. Another limitation is that we have not fully utilized
the information conveyed in the annotated points. Neverthe-
less, in addition to boosting the performance of weakly su-
pervised semantic segmentation for point clouds, we believe
that the proposed techniques could benefit other recognition
tasks for point clouds and images with weak supervision.
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