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Abstract

We present a novel approach to boost image matching
performance by fusing multiple local descriptors in the ho-
mography space. Traditional matching methods find cor-
respondences based on a single descriptor and the perfor-
mance becomes unstable due to the goodness of the chosen
descriptor. To address this problem, our method uses mul-
tiple descriptors and select a good descriptor for matching
each feature point. Specifically, we project every correspon-
dence into the homography space, where correct correspon-
dences tend to gather together due to the similarity of their
homographies. Then kernel density estimation is applied to
measure the density in the homography space and verify the
correctness of correspondences. The proposed approach is
comprehensively compared with the state-of-the-art meth-
ods and the promising results manifest its effectiveness.

1. Introduction
Image matching is a key component of image content

analysis. It is one of the critical stages in widespread im-
age processing and computer vision applications, such as
panoramic stitching [19], object recognition [14], and im-
age retrieval [9]. The development of powerful descriptors,
such as [14, 2, 20, 11, 17], has gained significant progress
on matching challenging images. However, the goodness of
a descriptor is usually image-dependent. There is in gen-
eral no such a single descriptor that is sufficient for dealing
with all kinds of variations in feature matching. Without
any prior knowledge about images, using only one descrip-
tor becomes insufficient and unreliable to conquer the wild
image matching problems.

To address the aforementioned problem, this paper pro-
poses an unsupervised approach to improve the quality of
image matching with the use of multiple, complementary
descriptors. Two challenges arise in this scenario. First,
features extracted by distinct descriptors are of different di-
mensions and with diverse scales of statistics. How to effec-
tively fuse heterogeneous descriptors becomes a challenge.

Second, image matching in general is an unsupervised task.
The goodness of descriptors is hard to determine without
ground truth. When feature matchings by different descrip-
tors present, how to identify correct ones from them is an-
other problem. For the first challenge, we use homogra-
phy space as the unified domain for descriptor selection.
For the second challenge, motivated by the observation that
correct matchings are highly consistent with each other and
gather together in the homography space as shown in Fig-
ure 1, we carry out density estimation for identifying correct
correspondences. We introduce an unsupervised approach
to overcome the two problems so that it can generate more
accurate correspondences by leveraging complementary de-
scriptors.

2. Related work

Image matching with geometric verification Image
matching through geometric layout checking is one of
the most effective ways for identifying correct correspon-
dences. RANSAC [10] is a classic method for remov-
ing outliers through geometric checking, but RANSAC be-
comes time-consuming when dealing with large number of
outliers. Graph matching [6, 13] finds a mapping that max-
imizes the coherent relationship between two sets of feature
points. However, as pointed out in [22], graph matching is
less robust in multiple object matching. Clustering based
techniques [5, 25] and voting schemes [21, 4] have also
been explored. Our work is inspired by approach in [4],
which casts the voting process as a kernel density estima-
tion problem. Nonetheless, our work can be distinguished
from [4] by leveraging multiple descriptors to increase the
quality and the number of matched points.

Image matching with multiple descriptor fusion Using
multiple descriptors is a feasible way for improving per-
formance since different descriptors can catch diverse vi-
sual cues. Mortensen et al. [18] proposed to concatenate
SIFT [14] and shape contexts [1]. However, simple feature
concatenation may lead to suboptimal performance. Works
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(a) SIFT (b) DAISY (c) RI (d) The homography space
Figure 1. (a)-(c)are the matching results of SIFT, DAISY and RI, respectively. (d) gives the 2D visualization of correspondences in the
homography space via classical multi-dimensional reduction [8]. Each correct matching is colored according to the common object it
resides in, and wrong matchings are in black.

in [3, 24] try to address this problem by using kernel matri-
ces or energy functions. Although both of them can serve as
the unified domains for descriptor fusion, these approaches
tune or learn weights for descriptor combination. Thus,
such methods need training or validation data for determin-
ing the weights. In contrast, the plausible correspondences
by various descriptors can be identified by our method in a
fully unsupervised manner.

3. The proposed method
We aim to match two given images IP and IQ, which

come with two sets of detected feature points, UP =

{uPi }N
P

i=1 and UQ = {uQi }N
Q

i=1, respectively. The support
region of each feature ui ∈ UP ∪ UQ is assumed to be
an ellipse in this work. The elliptical support region is de-
cided during feature detection. We use Hessian-Affine de-
tector [16] for its efficiency and high repeatability. Multiple
descriptors are employed to characterize each feature point.
The center and the described appearances of feature ui are
respectively denoted by xi and {fi,m}Mm=1, where M is the
number of the employed descriptors. For each feature uPi
in IP , we find the set of the most similar r correspondences
(or matchings), Ci,m = {(uPi , u

Q
ik
∈ IQ)}rk=1, with de-

scriptor m, i.e. ‖fPi,m − fQik,m‖. Since total M descriptors
are adopted, at most r ×M matchings of uPi are kept in C
after removing duplicated matchings. Namely,

C =
NP⋃
i=1

Ci, where Ci =
M⋃

m=1

Ci,m. (1)

Our goal is to detect the correct correspondence for each
uPi ∈ UP in C if it exists.

3.1. Homographies of feature correspondences

A homography in this work refers to the geometric trans-
formation of a feature correspondence. After the elliptical
region of feature ui is detected by the detector, it can be
specified by mapping a circular region centered on the ori-
gin via the affine transformation defined as:

T (ui) =

[
A(ui) xi

0> 1

]
∈ R3×3, (2)

where xi ∈ R2×1 is the feature center, and A(ui) ∈ R2×2

is a non-singular matrix which accounts for the scale, the
shape, and the orientation of ui. After normalization with
the transformation T (ui)−1, all the adopted descriptors can
be applied to ui, and generate {fi,m}Mm=1. Refer to [16]
for the details about the calculation of T (ui). Note that
T (ui) for mapping the elliptical region of feature ui to a
circular region centered at the origin is not unique and we
follow [16] to find T (ui).

For a correspondence between uPi ∈ UP and uQj ∈ UQ,
its homography can be derived as

Hij = T (uQj ) ∗ T (u
P
i )
−1 ∈ R3×3. (3)

Hij is a 6-dof (degrees of freedom) affine homography.
Thus, it can be viewed as a point in the 6-dimensional ho-
mography spaceH.

Consider two correspondences c = (uPi , u
Q
j ) ∈ C and

c′ = (uPi′ , u
Q
j′) ∈ C and their homography Hij and Hi′j′ .

We use the reprojection error [5] to measure their geometric
dissimilarity. Specifically, the projection error of (uPi , u

Q
j )

with respect to Hi′j′ is then calculated by

derr(u
P
i , u

Q
j , Hi′j′) = ‖xQ

j − ρ(Hi′j′

[
xP
i

1

]
)‖, (4)

where function ρ : R3 → R2 is defined as ρ(
[
a b c

]T
) =[

a
c

b
c

]T
. The projection error derr(uPi , u

Q
j , Hi′j′) is the

induced error when changing the homography from Hij to
Hi′j′ on correspondence (uPi , u

Q
j ). The reprojection error

between correspondences c and c′ is then defined as

d(c, c′) =
1

4

(
derr(u

P
i , u

Q
j , Hi′j′) + derr(u

Q
j , u

P
i , H

−1
i′j′)

+ derr(u
P
i′ , u

Q
j′ , Hij) + derr(u

Q
j′ , u

P
i′ , H

−1
ij )
)
. (5)

We will use the reprojection error to measure the geometric
dissimilarity between correspondences in C.

3.2. Homography as a unified representation

It can be observed that the homography of a feature cor-
respondence in Eq. (3) is descriptor-independent, and can



hence serve as the domain for descriptor fusion. That is,
each descriptor determines its own candidate correspon-
dences as shown in Eq. (1), while all the candidate corre-
spondences are represented by the corresponding homogra-
phies, each of which can be treated as a point in the homog-
raphy spaceH as shown in Figure 1(d). In this way, the dis-
similarity between correspondences that are generated by
different descriptors can be measured through Eq. (5). We
use this property to fuse various features and we select good
features by measuring the geometric distribution in this do-
main.

3.3. Correct matching identification
The goal at this stage is to decide the correct corre-

spondence for each uPi in Ci, if it exists. We tackle this
issue based on the observation that correct matchings are
similar and hence get together in the homography space
(see Figure 1). It implies that the density in the homog-
raphy space can verify the correctness of correspondences.
Correct matchings will form high density regions in the ho-
mography space. Therefore, we utilize kernel density esti-
mation to identify correct correspondences and our kernel
density estimator is defined as

f̂(ci) =
∑

cj∈C,cj 6=ci

k(ci, cj) =
∑

cj∈C,cj 6=ci

exp (−d(ci, cj)
σ

),

(6)

where σ is empirically set to the average reprojection er-
ror from each correspondence to its nearest neighbor. It fol-
lows that each correspondence ci ∈ C is predicted via its
density f̂(ci). For each feature point uPi in image IP , we
pick its correspondence as the one that has the highest den-
sity in Ci (cf. Eq. (1)).

The average running time of our approach on Co-reg
dataset [7] is about 3.27 seconds including measuring the
dissimilarities of correspondences and estimating the den-
sity in the homography space. It is tested on a single PC
with an Intel i7-4770 CPU and 16GB memory, and there
are around 1,100 detected feature points in each image of
Co-reg dataset.

4. Experimental results
In this section, we first describe the experimental setup

and then we present two sets of experiments.

4.1. Experimental setup

Adopted baselines We adopt the five state-of-the-art
matching algorithms, including SM [12], RRWM [6],
ACC [5], HV [4] and VFC [15]. As their original setting,
the five methods use only a single descriptor. Besides, we
implement two fusion baselines that employ multiple de-
scriptors, including Ranking and Ratio. In baseline Rank-
ing, we find the first nearest neighbors of all feature points
in image Ip with a specific descriptor, and rank the yielded

correspondences according to the descriptor distances. For
each feature point in Ip, we determine its correspondence
by using the descriptor that has the highest rank at this point.
In baseline Ratio, we match each point in Ip to its first two
nearest neighbors by a specific descriptor, and compute the
distance ratio between the two matches. The smaller the ra-
tio is, the more confident the descriptor is at this point. We
find the correspondence of this point by the descriptor with
the smallest distance ratio.

Adopted descriptors We adopt five descriptors to con-
struct the initial candidate set, C, namely SIFT [14],
LIOP [23], DAISY [20], GB [2] and raw intensities (RI)
for their complementary properties. The RI descriptor de-
scribes the support region by storing the gray-level intensi-
ties in a raster scan order. We set r for establishing initial
correspondences as 1 in our approach, Ranking and Ratio,
while r in the five single-descriptor baselines is set to 5 as
used in [4]. Therefore, though we use multiple descriptors,
the size of the initial candidate sets in our approach and the
adopted baselines are basically the same for fair compari-
son, except there are some duplicates being removed.

Evaluation metrics The performance of a matching algo-
rithm on an image pair is measured by precision and recall
which are defined as

PRECISION =
nTP

nTP + nFP
and RECALL =

nTP

nTP + nFN
, (7)

where nTP and nFP are the numbers of correctly and
wrongly detected correspondences by a matching method,
respectively. nFN is the number of correct correspondences
that are not detected. Then the 1-precision vs. recall curve
(PR curve) can be drawn.

Besides, mean average precision (mAP) is used to sum-
marize the performance of each algorithm on a dataset. The
average precision on an image pair is calculated by averag-
ing the precisions with different numbers of returned cor-
respondences. Mean accuracy (mAcc) on a dataset is also
used, where accuracy [6] is defined as

ACCURACY =
nTP

nTC
(8)

where nTC is the number of points that have correct cor-
respondences in the candidate set, C. The candidate sets for
single-descriptor and multi-descriptor baselines are differ-
ent. Thus, mAcc is used only for the comparisons between
our approach and multi-descriptor baselines.

4.2. Single descriptor vs. multiple descriptors

In this subsection, we show the advantages of using mul-
tiple descriptors over a single descriptor. In Figure 2, there
are two pairs of results on car and face of object dataset.
In car, GB finds more correct correspondences. How-
ever, in face, SIFT outperforms other descriptors. The



(a) SIFT (57/80) (d) LIOP (11/31) (g) SIFT (88/96) (j) LIOP (66/80)

(b) DAISY (57/94) (e) RI (15/18) (h) DAISY (78/100) (k) RI (45/79)

(c) GB (79/121) (f) Ours (122/154) (i) GB (38/64) (l) Ours (109/120)
Figure 2. The matching results by using a single descriptor and multiple descriptors on object dataset, car ((a) ∼ (f)) and face((g) ∼ (l)).
The accuracy (nTP / nTC) are shown in the brackets. Only correct matchings are drawn. The color indicates which descriptor is used for
matching.

results point out that the goodness of descriptors is image-
dependent, and no a single descriptor can outperform others
in all the cases. Our method take multiple, complementary
descriptors into account, and can select a good descriptor
for matching each point. We further use colors to specify
which descriptors our approach selects for matching each
feature point. Specifically, SIFT is drawn in orange, LIOP
in blue, DAISY in green, RI in magenta, and GB in cyan.
We can unsupervisedly pick good descriptors, such as SIFT
for most of the points in face and GB for the upper part of
the car in car.

4.3. Evaluation on two benchmarks

The performance evaluation is conducted on object
dataset [6] and Co-reg dataset [7]. Object dataset [6] gath-
ers 30 pairs of images and each pair contains different object
instances of the same category. Co-reg dataset consists of
6 image pairs. There are multiple common objects in every
pair. They jointly serve as a good test bed for performance
evaluation.

We compare our method with the state-of-the-art ap-
proaches, and the results of each image pair are reported
in the form of PR curves in Figure 3 for Co-reg dataset.
The performances on the two datasets are summarized in the
forms of mAP and mAcc in Table 1 and Table 2. Note that
we don’t compare mAcc with the single descriptor baselines
because the denominators of the accuracy in Eq. (8), namely
nTC, are different. Because HV, SM, ACC and VFC use
only a single descriptor, we manually pick the best descrip-
tor for them for the clarity of PR curves. Thus, their perfor-
mances may be overestimated in this sense. Their recalls are
limited because their candidate sets are constructed by only
a single descriptor. Note that Co-reg dataset contains mul-
tiple common objects with different transformations, thus
VFC is less able to rank correct matchings properly due to
its assumption on one smooth vector field. Fusion base-
lines Ranking and Ratio, which use the five descriptors as
our approach does, can increase the recall with the aid of

multiple descriptors in most cases, but their precision and
mAcc is unsatisfactory. On the contrary, our method can not
only effectively match multiple objects, but further improve
the performance of matching in both recall and precision by
leveraging multiple descriptors.

5. Conclusion
We have presented a simple but effective matching ap-

proach that can leverage multiple, complementary descrip-
tor. Specifically, the correspondences yielded by all de-
scriptors are firstly projected into the homography space, in
which we select good descriptors in an unsupervised way.
Kernel density estimation is then employed to identify cor-
rect matchings. The proposed approach is featured with its
high flexibility in the sense that it can work with any el-
liptical region detectors as well as heterogeneous descrip-
tors. Our approach has been evaluated and compared with
the state-of-the-art approaches on two benchmark datasets.
The experimental results demonstrate that our approach can
enhance the matching quality in both precision and recall.
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