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Abstract. In the class based image segmentation problem, one of the
major concerns is to provide large training data for learning complex
graphical models. To alleviate the labeling effort, a concise annotation
approach working on bounding boxes is introduced. The main idea is to
leverage the knowledge learned from a few object contours for the infer-
ence of unknown contours in bounding boxes. To this end, we incorporate
the bounding box prior into the concept of multiple image segmentations
to generate a set of distinctive tight segments, with the condition that at
least one tight segment approaching to the true object contour. A good
tight segment is then selected via semi-supervised regression, which bears
the augmented knowledge transferred from object contours to bounding
boxes. The experimental results on the challenging Pascal VOC dataset
corroborate that our new annotation method can potentially replace the
manual annotations.

1 Introduction

Class based image segmentation [1–6] is the task of labeling pixels with several
predefined object classes or background in an image. Distinct from the image
driven segmentation task e.g., [7–11], class based image segmentation aims to
not only identify the object classes of interest, but also determine the shapes
or boundaries of these objects. Namely, it de facto involves in resolving two of
the most fundamental problems in vision research: recognition and segmenta-
tion. Accordingly, it plays an essential role in many high-level computer vision
applications, such as image and scene understanding.

Recently, significant progress for addressing the class based image segmen-
tation has been made with the advances in many aspects, such as designing
powerful visual features [1, 12], fusing information from various ways of image
quantization [2, 4, 5], or exploring contextual relations between object classes [3,
6]. These approaches are implemented upon graphical models, especially condi-
tional random fields (CRFs) [13], for the expressive power of modeling diverse
cues and enforcing spatial consistency. However, learning graphical models in
these approaches typically relies on a sufficient number of training data in the
form of object contours. In general, the object contours are manually drawn or
delineated by tools with intensive user interaction. Since learning complex graph-
ical models typically requires large training data, the labeling cost of training
data deems to be one of the major concerns for class based segmentation.
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Fig. 1. Knowledge transfer from contours (left) to infer the unknown object contours
enclosed by bounding boxes (right).

In this work, we introduce a concise annotation method to collect training
data for class based image segmentation. Specifically, the annotation can be done
with the drawing of bounding boxes. The bounding box annotation is pretty
simple since we only have to click the four outer most boundary points of the
object. Fig. 1 illustrates the problem setting of this study. Given a few contours
as well as a set of bounding boxes of an object class, we would like to transfer
the knowledge carried by the few contours to the bounding boxes. With the
transferred knowledge, the object contour enclosed with the bounding box will
be inferred as a training instance for the task of class based image segmentation.
This work distinguishes itself with the following three main contributions.

First, we integrate the bounding box prior [14] into the concept of multiple
image segmentations [2, 15, 16] as a new algorithm that automatically generates
a set of tight segments [14] for each bounding box, and at least one of these tight
segments would be close to the ground truth. An example of bounding box and
its tight segments yielded by our approach are shown in Fig. 2. In this way, the
task of figure-ground segmentation within this bounding box can be achieved by
picking the best tight segment from the generated ones.

Second, we cast the tight segment selection for bounding boxes of an object
class as a semi-supervised regression problem. Suppose that we are given a set
of bounding boxes, and a few of them come with the object contours. In the
regression problem, tight segments yielded from bounding boxes with ground
truth serve as labeled training instances, while their target values for regression
are set to reflect how well these segments approach the ground truth. As for
tight segments without ground truth, we derive a difference upper bound of
the target values of each segment pair in a bounding box. These bounds are
formulated as additional constraints to regularize the learning process of the
regressor. It alleviates the high risk of overfitting caused by the lack of labeled
training instances. Once the regressor is obtained, the tight segment with the
highest target value is selected for the bounding box.

The third contribution consists in the experiments conducted to demonstrate
that our approach provides an effective alternate for manually labeled contours.
We separately use the object contours obtained by manual drawings and the
tight segments of bounding boxes picked by our approach as the training data
for class based segmentation. Two state-of-the-art segmentation algorithms, i.e.,
[4, 5], are involved to compare the performances obtained by the two different
sets of training data. The experimental results by each algorithm show that
similar accuracy rates are achieved with either manual drawings or bounding
box annotations on PASCAL VOC 2007 [17] segmentation task. It implies that
the introduced annotation method can replace the tedious manual drawings.
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2 Related Work

The literature of image segmentation is quite extensive, so our survey focuses on
the key concepts relevant to the establishment of the proposed framework.
Class Based Image Segmentation. Approaches of this category, e.g., [1–6],
aim to perform multi-class object recognition and segmentation simultaneously.
Most of these segmentation approaches are established upon CRFs, since CRFs
provide desirable abilities to concisely express the dependencies among random
variables and observations, and enforce the consistency of labeling. For instance,
Shotton et al. [1] propose a rich set of features to capture the texture, layout and
contextual information of object classes in pixel level, and combine these features
via solving an energy minimization problem over CRFs. Kohli et al. [3] and
Gonfaus et al. [6] model the interaction between object classes by incorporating
higher order potential functions into CRFs. Ladický et al. [4] integrate features
extracted from different levels of image quantization by developing a hierarchical
generalization of CRFs. Despite the effectiveness of these work, the annotation
bottleneck for compiling sufficient training data remains unsolved.
Figure-Ground Segmentation. Some notable methods of this category, such
as graph-cut [8], GrabCut [11], constrained parametric min-cuts [16], cast this task
as an energy minimization problem over graph structures. A latter improvement
of GrabCut is made by Lempitsky et al. [14] with the so-called bounding box
prior. They show that the resulting foreground regions are sufficiently tight with
respect to the given bounding boxes. Instead of working on individual images,
the authors of [18–20] extend figure-ground segmentation for a set of images
of an object class. This way, additional class-specific cues can be included to
benefit figure-ground segmentation. Due to the inherent difficulty of unsuper-
vised segmentation, the steps of segmenting objects and learning class models in
[18–20] are carried out either alternately or sequentially. However, segmentation
methods being aware of object classes may suffer from the problems caused by
large intra-class variations or partial occlusions.
Multiple Image Segmentations. Classic image based segmentation meth-
ods, such as normalized cuts [7] or mean-shift [9], are developed with theoretic
support. Nevertheless, the general conclusion [21] is still that the resulting seg-
mentations typically are not good enough for discovering object contours. Since
there is barely universal single-shot solution or parameter setting to segment out
various objects with satisfactory results, the strategy of multiple image segmen-
tations, e.g., [2, 15, 16, 22, 23], arises, in which many segmentations are computed
with different segmentation algorithms, parameter settings, and/or seeds. In [15,
16], the authors assume that each object can be discovered by at least one seg-
ment. In [2], Pantofaru et al. propose to seek the most probable objects based
on the intersections of multiple segments. Distinct from these approaches, we
are motivated by the fact that the bounding box of an object can be acquired
with low labeling cost (four clicks) but contains rich information for object in-
ference. We couple the concepts of the bounding box prior and multiple image
segmentations into a framework to estimate the object segments enclosed in the
bounding boxes.
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3 Inferring Multiple Tight Segments in a Bounding Box

In this section, we present an algorithm that automatically generates a set of
tight segments for the bounding box of an object, and at least one of these tight
segments would approach the object segment. Our goal in this step is to account
for the information asymmetry between an object segment and its bounding
box, since the latter can be determined once the former is given, but not vice
versa. Specifically, we model the ambiguity in inferring the object segment from
a bounding box by generating multiple segment hypotheses. If at least one of
them is close to the object segment, the underlying task of inferring the object
segment from a bounding box is reduced to a segment selection problem.

In the following, the approach by Lempitsky et al. [14] that yields one tight
segment for a given bounding box is first reviewed. We then specify how to
generalize their approach to obtain a few tight segments and make sure that at
least one of them approaches the object contour.

3.1 Tight Segment via Bounding Box Prior

Let us consider a bounding box I of an object segment. We start by partition-
ing I into superpixels by mean-shift [9], which attains a fast and stable over-
segmentation. In practice, the bandwidth parameters in mean-shift algorithm
are adjusted by binary search, so that about 50 superpixels are obtained. Let
B denote the set of the superpixels. A figure-ground segmentation or a segment
can then be represented by a labeling vector ` = [lp] ∈ {0, 1}|B|, where lp takes
the value 1 if superpixel p belongs to foreground, otherwise 0.

We are particularly interested in tight segments within bounding box I. Here
a segment is tight with respect to I if the smallest rectangle covering this segment
is I itself. It is obvious that any non-tight segments won’t be the object segment.
In [14], Lempitsky et al. introduce the crossing paths of a bounding box, and
prove that a segment is tight if and only if it intersects all the crossing paths. It
turns out that a tight segment ` can be obtained by solving

min
`

∑
p∈B

Up · lp + λ
∑

(p,q)∈E

Vp,q · |lp − lq| (1)

subject to ∀p lp ∈ {0, 1}, (2)

∀C ∈ Γ
∑
p∈C

lp ≥ 1, (3)

where E is the set of pairs of adjacent superpixels. The unary potential Up speci-
fies the preference of assigning superpixel p to either foreground or background.
The pairwise potential Vp,q ensures the smoothness between superpixel p and
q. The nonnegative coefficient λ controls the importance tradeoff between the
unary and pairwise terms. Γ is the set of all the crossing paths of I.

Note that the constraints (3) cause that the energy minimization problem
(1) can no longer be solved by an efficient algorithm, like graph-cut [8]. Thus
Lempitsky et al. instead solve a series of its linear relaxation, in which active
constraints in (3) are added incrementally.
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(a)

(b) (c)

0.963 0.181 0.852 0.302 0.953 0.929

0.971 0.259 0.859 0.300 0.604 0.837

0.953 0.574 0.784 0.284 0.585 0.859

Fig. 2. (a) A bounding box defined by the four clicks (purple stars) for a kitty. Back-
ground seeds are placed in the blue highlighted region. (b) The superpixels of the
bounding box. (c) The object segment (ground truth). (Rest) A few tight segments,
marked by red contours, together with their accuracy by our approach. Each of them
is generated with its respective seed region for foreground (cyan circle). These regions
are sampled with different locations (columns) and radii (rows).

3.2 Multiple Tight Segments

The resulting segment by solving Eq.(1) is tightly enclosed by the given bounding
box, and hence the aspect ratio of the object is maintained. Due to the unsuper-
vised nature, a satisfactory figure-ground segmentation is not always guaranteed
in our empirical test. When addressing bounding boxes of objects with mul-
timodal color distributions and/or with clutter background, this shortcoming
becomes even more evident. Alas, it is usually the case in nowadays benchmark
databases of object segmentation, like MSRC-21 [1] or Pascal VOC [17].

We resolve this difficulty by implementing multi-segmentation relaxation.
Namely, we generate a few tight segments with different seeds [16, 22], and relax
the requirement to that at least one of them closely approaches the unknown
object segment. It can be observed that apart from the property of tightness,
the bounding box of an object also gives two additional hints for discovering the
object segment: (1) Its outside borders provide strong cues for identifying the
background in the bounding box; (2) It exists a few ROIs that are fully filled by
the foreground. If we can retrieve one of them, it helps much in revealing the ob-
ject segment. Specifically, we maintain the aspect ratio and expand the bounding
box by 10%. The background seeds are the pixels outside the bounding box and
inside the expanded one, i.e., those in the blue highlighted region in Fig. 2(a).
We sample multiple sets of foreground seeds to account for the uncertainty on
the locations and scales of those ROIs fully filled by the object. One circular
seed region for foreground is constructed for the centroid of each superpixel and
with each of predefined radii. The cyan circles in Fig. 2 show some of the seed
regions for foreground.
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We leverage the flexibility in developing potential functions {Up} and {Vp,q}
in Eq.(1), and derive one tight segment for each set of foreground seeds. A Gaus-
sian mixture model GMMf with five components is learned with the foreground
seeds in RGB color space. Similarly GMMb is acquired with the background
seeds. For each superpixel p, the unary potential Up is defined as

Up =
∑
u∈p

logP (cu|GMMb)− logP (cu|GMMf ), (4)

where u is an image pixel and cu is its RGB color vector. On the other hand,
the pairwise potential Vp,q between superpixels p and q is given by

Vp,q =
∑

u∈p,v∈q,(u,v)∈N

1

dist(u, v)
· exp (−β||cu − cv||2), (5)

where N is set of neighboring pixels. We use 8-connected neighbors, and
dist(u, v) is the Euclidean distance between pixels u and v. β is a positive con-
stant. One tight segment is inferred by optimizing Eq.(1) with these redefined
potentials in Eq.(4) and Eq.(5). The procedure is repeated for each combination
of foreground seed regions and parameter settings (λ in Eq.(1) and β in Eq.(5)).
Multiple tight segments of the bounding box are then produced.

An example is shown in Fig. 2. The left three figures give the bounding box,
its representation in superpixels, and the ground truth (GT) respectively. The
others are 18 of the yielded tight segments for the bounding box. We evaluate the

goodness of a segment, say `, by 1− XOR(R(`),GT )
#pixel , where XOR is the function of

exclusive or, and R(`) is a binary vector that indicates each pixel in ` assigned
to either foreground or background. Hereafter we will use the pixelwise XOR
function to measure the goodness of a segment w.r.t. the ground truth, or the
overlapping between two segments. From Fig. 2, it can be observed that seed
regions for foreground located within the object and with proper radii often lead
to satisfactory tight segments. Since the object must appears in some location
of the bounding box with one particular scale, the seeding strategy with high
chance will discover at least one tight segment close to the ground truth.

Redundance Removal. Each generated tight segment is parameterized by the
location and scale of the seed region for foreground, and the values of λ and
β. In our implementation, the number of the tight segments generated for a
bounding box is in the order of 103. Since many of them are redundant, we
develop a (1 − ε)-approximation procedure to compile the tight segmentations
into a smaller set of representative ones. In initialization, all the tight segments
are sorted in a queue according to their scores measured by ratio cut [24]. We
pop the first tight segment, add it into the representative set, and remove all
the tight segments of more than 1 − ε overlapping with it from the queue. The
process is done repeatedly until the queue is empty. It is obvious that the best
tight segment remained in the representative set shares at least 1−ε overlapping
with the original best one. We empirically set ε as 0.05 in all the experiments.
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(a) bounding box (b) tight segment A (c) tight segment B (d) XOR(A,B).

Fig. 3. For each pair of tight segments in a bounding box, an upper bound on the
difference of their target values can be determined. See text for the details

4 Semi-supervised Regression for Segment Selection

Given a few contours as well as a set of bounding boxes of an object class, we
illustrate how to infer the object segments of these bounding boxes by solving a
semi-supervised regression problem in this section.

4.1 Our Formulation

Consider a bounding box set D, which is collected from object segments of a
class. A few bounding boxes in D come with the object contours (ground truth),
i.e., D = L ∪ U , where L = {Bi, GTi}`i=1, U = {Bi}`+ui=`+1, and ` << u. We
generate multiple tight segments for each bounding box Bi by the procedure
described above. That is, Bi = {xij}Ni

j=1, where Ni is number of the yielded
tight segments, and xij is the feature vector of the jth tight segment. Our goal
is to infer the object segments of these bounding boxes. Since at least one tight
segment with high probability is close to the object contour, this goal can be
accomplished by picking the tight segment as close to object contour possible.
We cast this task as a semi-supervised regression problem.

We start by creating the labeled training instances for the regression problem.
Inspired by work [16, 22, 23] of ranking multiple segmentations or proposals, we
treat each tight segment in a bounding box with the ground truth as one labeled
instance, whose target value is set via computing the pixelwise XOR function
w.r.t. the ground truth as mentioned before. A set of labeled training instances
is then produced, i.e., {(xij , yij)}(i,j)∈SL

, where SL = {(i, j)|1 ≤ i ≤ `, 1 ≤ j ≤
Ni}. Unlike [16, 22, 23] where sufficient training instances are available from other
sources, we have too few labeled bounding boxes to stably derive the regressor.
The unfavorable effect of overfitting hence may occur.

We resolve this problem by introducing the unlabeled tight segments. For
each pair of tight segments in a bounding box, an upper bound on the dif-
ference of their target values can be derived without the ground truth. Let’s
illustrate it via Fig. 3. Given a pair of tight segments A and B, the bound-
ing box can be divided into two regions according to their labeling consistence,
i.e., the magenta (consistent) and cyan (inconsistent) regions in Fig. 3(d). Sup-
pose that the inconsistent part takes θ × 100% area of the bounding box. It
can be verified that the difference between the target values of A and B is at
most θ, since the target value is defined as the percentage of correct pixels, and
only the inconsistent region contributes to the difference of their target values.
Thus a set of these bounds is yielded, i.e., {(xij ,xij′ , θijj′)}(i,j,j′)∈SU

, where
SU = {(i, j, j′)|` + 1 ≤ i ≤ ` + u, 1 ≤ j < j′ ≤ Ni}, and θijj′ is the bound
between segments xij and xij′ of bounding box Bi.
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Integrating the labeled and unlabeled tight segments, the semi-supervised re-
gression problem is formulated as the following constrained optimization problem

min
w,b,{ξij},{ρijj′}

1

2
||w||2 + C`

∑
(i,j)∈SL

ξij + Cu
∑

(i,j,j′)∈SU

ρijj′ (6)

subject to w>xij + b− yij ≤ ε+ ξij , for (i, j) ∈ SL, (7)

yij −w>xij − b ≤ ε+ ξij , for (i, j) ∈ SL, (8)

w>xij −w>xij′ ≤ θijj′ + ρijj′ , for (i, j, j′) ∈ SU , (9)

w>xij′ −w>xij ≤ θijj′ + ρijj′ , for (i, j, j′) ∈ SU , (10)

where w and b are parameters of the learned regressor, f(x) = w>x + b. {ξij}
and {ρijj′} are two sets of slack variables that are nonnegative, and are used to
measure the degrees of violation in the corresponding constraints. C`, Cu, and
ε are nonnegative constants whose values are determined via cross validation.

We now justify for the above optimization problem. The first two terms in
Eq.(6) together with constraints in Eq.(7) and Eq.(8) jointly lead to the formu-
lation of support vector regression [25]. The constraints in Eq.(9) and Eq.(10)
result from pairs of unlabeled tight segments. In other words, the regressor is
derived by not only fitting the labeled segments but also preserving the im-
plicit structure of the unlabeled segments. Despite the complexity of Eq.(6), it
is a quadratic programming (QP) problem, and there exist efficient solvers, e.g.,
MOSEK [26], for optimization.

The optimization problem still cannot be handled by a QP solver due to
the large number of constraints in Eq.(9) and Eq.(10). However, this is not as
hard a problem as it may seem at the first glance, since the active constraints in
Eq.(9) and Eq.(10) are quite sparse. It implies that we can tackle this issue via
the cutting-plane method [27] where a working constraint set is maintained by
adding the most violated constraints incrementally. In our case, we start with
a empty working set. At each iteration, we add the most violated constraint to
the working set for each bounding box, if any. Iterations are repeated until no
constraints can be added or a maximum number of iterations is reached.

Once the regressor, f(x) = w>x+b, is obtained, we infer the object segment
for each bounding box Bi as the j∗th tight segment with j∗ = arg maxj f(xij).

4.2 The Adopted Features for Segment Description

We implement a set of mid-level features, suggested in [16, 23], for characterizing
each tight segment, including 1) Percentage of boundary pixels: The ratio of the
number of boundary pixels to the number of foreground pixels; 2) Boundary edge
strength: The edge strengths along the object contour; 3) Centroid: The normal-
ized coordinates of the mass center of the segment; 4) Major and minor axis
length: The lengths of the major and minor axes of the ellipse that approximates
the segment; 5) Convexity and area: The ratios of the number of foreground pix-
els to the area of the convex hull and to the whole bounding box; 6) Foreground
and background dissimilarity: The dissimilarity is respectively measured by three
visual features, i.e., color, SIFT [28], and Texton [1]. A pair of histograms, one
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Fig. 4. Boxplot of the best accuracy rates of the best tight segments w.r.t. each of the
20 object classes. The edges of each box are the 25th and 75th percentiles. Outliers are
marked as red-cross signs. The numbers of the generated tight segments are given.

for foreground and one for background, over the quantized clusters is yielded for
each feature. The χ2 distance is employed for dissimilarity measure.

5 Experimental Results

To evaluate the performances of the proposed approach, three experiments are
carried out on Pascal VOC 2007, a benchmark dataset for object segmentation.
We investigate the validness of the assumption that there exists at least a good
one in the pool of multiple tight segments in the first experiment. The efficacy
of the semi-supervised regression model for segment selection is assessed in the
second experiment. We demonstrate the effectiveness of using the bounding box
annotations as training data for the class based image segmentation algorithms
in the last experiment.

5.1 Dataset: Pascal VOC 2007

The Pascal VOC 2007 Segmentation Challenge contains 21 categories, including
20 object classes with the plus of background. Each object category contains
about 30 to 100 annotated objects, except the class of person, which has more
than 300 ones. Due to the large intra-class variations in this dataset, the annota-
tion cost of segmentation is conceivably substantial. It hence serves as good test
beds for corroborating our purpose of concise annotations, and for justifying the
effectiveness of the proposed approach. In our work, the training and validation
data in this dataset are used in the experiments I and II, and the selected tight
segments by the semi-supervised regression models are treated as training data
in the experiment III.

5.2 Experiment I: Multiple Tight Segments

The effectiveness of multiple segmentation strategy lives with the underlying
assumption that there is at least one tight segment close to the object segment.
To inspect if this assumption is held in our method, we crop the bounding box of
each annotated object segment in the training and validation sets, and generate
a set of tight segments for the bounding box. The resulting tight segments are
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bird GT 0.977 0.785 0.520 0.844 0.370

dog GT 0.974 0.786 0.843 0.431 0.721

train GT 0.915 0.844 0.672 0.420 0.733

bike GT 0.822 0.601 0.794 0.519 0.596

dog GT 0.738 0.494 0.706 0.611 0.335

motor bike GT 0.742 0.681 0.484 0.343 0.503
(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Examples of the yielded multiple tight segments. (a) Bounding box. (b) Ground
truth. (c) The best tight segment and its accuracy. (d) ∼ (g) Other tight segments.

compared to the annotated ground truths. Specifically, the input tight segments
for the semi-supervised regression models of each class are first evaluated with
the accuracy metrics. The tight segment with the highest accuracy of a bounding
box is then regarded as the performance upper bound of the semi-supervised
regression model. Figure. 4 depicts the MATLAB’ boxplot of the best accuracy
distributions of bounding boxes w.r.t. each of the 20 object classes. Meanwhile,
the average numbers of the yielded tight segments are also reported in Fig. 4,
with the variation from 52 to 367. The number of the yielded tight segments for
each bounding box typically depends on the complexity of object appearance and
the foreground/background discernibility. In general, it can be found that most
bounding boxes hold good tight segments with accuracy rates higher than 0.9,
except for those of class bike. However, the lowest Q1, i.e., the 25th percentile,
of class bike is still higher than 0.8. This may set up a good foundation for
the semi-supervised regression models to pick satisfying tight segment for the
objects within the bounding boxes.

Figure. 5 lists several cases of the generated tight segments for visual assess-
ment. The first three rows show the examples where the accuracy rates of the
best tight segments are higher than 0.9. The last three rows give the cases where
the proposed approach doesn’t perform well, including objects constituted with
fine details in the example of bike, objects sharing similarly color components
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Fig. 6. The accuracy rates of the semi-supervised regressor (plotted with boxplot) are
compared with those of the best tight segments (cyan triangles), of GrabCut (green
squares), and of the supervised regressor (magenta ∗ signs).

with background in the latter example of dog, and objects co-presented with
other objects in the example of motor bike.

5.3 Experiment II: Segment Selection for Object Contour
Estimation

The experiment II is designed to assess the quality of the selected tight segments
by the regressors derived via the proposed supervised (without constraints (9)
and (10)) and semi-supervised regression models. Similar to the experiment I, the
quality of the selected tight segment is evaluated with the accuracy metrics. To
give comparative study, alternative segmentations from GrabCut [11] algorithm
are involved in this experiment. The foreground model in GrabCut is initialized
with the center 50% area of the bounding box, while the background model is
fitted from the same background sample region of our method.

Both the supervised and semi-supervised models learn a regressor for each
of the 20 object categories in Pascal VOC 2007. For each category, randomly
selected 10% of bounding boxes come with the ground truths (object contours),
while the rest are treated as unlabeled. In learning the regressors, all parameters
(C` and Cu in(6), ε in (7)) are automatically determined via cross validation. The
accuracy distributions of the tight segments selected by the semi-supervised re-
gressor for each class are depicted with function boxplot in Fig. 6. Meanwhile,
the average accuracy rates of each class w.r.t. the best tight segments in ex-
periment I, the segments picked by supervised regressor, and the comparative
segmentations from GrabCut are also plotted as the cyan triangles, magenta ∗
signs, and green squares, respectively.

It can be found in Fig. 6 that in most classes the tight segments selected
by the semi-supervised regressor hold higher accuracy rates than the segments
yielded by GrabCut or picked by the supervised regressor. It reveals that the
additional constraints induced by unlabeled tight segments facilitate the training
process, and lead to a regressor with low generalization error. The worst perfor-
mance of our approach arrives at the 2nd class, i.e., bike. In this class, regressors
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boat GT 0.917 0.661 0.746 0.917

bird GT 0.972 0.794 0.850 0.944

aeroplane GT 0.949 0.888 0.899 0.899

bike GT 0.953 0.448 0.810 0.815

dog GT 0.882 0.810 0.798 0.798

horse GT 0.953 0.761 0.507 0.770
(a) (b) (c) (d) (e) (f)

Fig. 7. Inferred object segments by various approaches. (a) Bounding box. (b) Ground
truth. (c) The best tight segment. (d) Segment yielded by GrabCut. (e) Segment se-
lected via supervised regression. (f) Segment selected via semi-supervised regression.

learned by either supervised or semi-supervised models obtain similar accuracy
rates around 0.6. The determined value of Cu approaches zero in this class. It
implies that satisfying the additional constraints is not helpful for reducing the
validation error. We infer that it may result from the large intra-class variations.

To give visual assessment, Fig. 7 lists the tight segments selected from the
supervised and semi-supervised regressors with the comparison to the ground
truths, best tight segments, and the segmentation results by GrabCut.

5.4 Experiment III: Class Based Image Segmentation

The experiment III aims to verify the effectiveness of the concise annotations for
the class based image segmentation methods. To this end, the tight segments
selected by the supervised and semi-supervised regression models, GrabCut seg-
ments, and ground truths in the experiment II are treated as training annotations
for two state-of-the-art class based segmentation methods [4, 5]. The yielded seg-
ments from the two variational regression models and GrabCut are pasted back
to the original training and validation images for reasonable comparison to the
ground truths. The two segmentation methods [4, 5] learnt from the distinctive
four sets of annotations are further evaluated with the testing data of the PAS-
CAL VOC 2007 Segmentation dataset.
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Table 1. Quantitative results of methods [4, 5] on Pascal VOC Segmentation task w.r.t.
annotations of the ground truth, GrabCut, supervised and semi-supervised regression
models.

Ground Truth GrabCut Supervised Reg. Semi-Sup. Reg.

Hierarchical CRF [4] 11.23 9.96 11.06 10.64
CRF+N = 0 [5] 14.10 12.47 13.29 13.33
CRF+N = 2 [5] 25.26 24.56 26.51 26.51
CRF+N = 4 [5] 23.92 21.31 24.81 24.85

Table 1 summarizes the averaged performances of the methods [4] and [5]
w.r.t. the four sets of training data. In Table 1, the performances of the method
[4] are first given, while the performances of the method [5] under the three
settings, i.e., “CRF+N=0”, “CRF+N=2”, and “CRF+N=4”, are then reported
respectively. Variable N here indicates the neighborhood size in [5]. Referring
to Table 1, the class based segmentations learnt from the two variations of our
annotations achieve similar performances to the results of ground truth anno-
tations. This promises our goal of using bounding boxes as concise annotations.
The reason why the method [5] outperform to the method [4] may lie in that the
hierarchical conditional random field model may highly rely on large training
data to learn a powerful segmentation model.

Furthermore, it can be observed in the third and fourth rows of Table 1
that the accuracy rates with our annotations are slightly higher than the rates
with ground truths. It may be because that the method [5] tends to overfit
the difficult/noisy training data like the second dog case in Fig. 2, provided
with precise annotations of manual drawings. Vague annotations resulted from
our method may instead lower down the importance of this kinds of difficult
training data, and lead to a surprisingly better performance.

6 Conclusions

A new concise annotation method for the task of class based image segmenta-
tion is introduced in this study. Guided by the bounding box prior, the pro-
posed method first renders distinctive tight segments, and a good tight segment
is further inferred by the supervised and semi-supervised regression models. The
inferred tight segment from the given bounding box serves as a hidden object
contour to train a complex graphical model for the class based image segmen-
tation task. The results of three extensive experiments support the efficacy of
our method. In the future, we will extend our inference model to account for
the interaction between different classes, as the co-presentation of objects with
different classes is the major limitation of our method. Moreover, performance
evaluation on other challenging datasets is planned in our future work.
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